You are here

  • Zweigenbaum P, Demner-Fushman D. Advanced Literature-Mining Tools. In Edwards D, Stajich J, and Hansen D. (Editors). Bioinformatics: Tools and Applications. Springer 2009.
  • Castle PE, Jeronimo J, Schiffman M, Herroro R, Rodriguez AC, Bratti MC, Hildesheim A, Wacholder S, Long LR, Neve L, Pfeiffer R, Burk RD. Age-related changes of the cervix influence human papillomavirus type distribution Cancer Res. 2006 Jan 15;66(2):1218-24.
  • Cheng W, Pearson G. Algorithm Developed To Make More Reliable Links To Better Photographic Views of Nursing Homes For Prototype "Nursing Home Screener" Web Site. Poster Section III at NIH Research Festival (TECH-3). National Institutes of Health October 2008. Bethesda, MD. October 2008.
  • Almubarak H, Guo P, Stanley RJ, Long LR, Antani SK, Thoma GR. Algorithm Enhancements for Improvement of Localized Classification of Uterine Cervical Cancer Digital Histology Images. in Handbook of Research on Emerging Perspectives on Healthcare Information Systems and Informatics,. IGI Global (Hershey, PA).
  • Stanley RJ, De S, Demner-Fushman D, Antani SK, Thoma GR. An image feature-based approach to automatically find images for application to clinical decision support. Comput Med Imaging Graph. 2011 Jul;35(5):365-72. doi: 10.1016/j.compmedimag.2010.11.008. Epub 2010 Dec 8.
  • Rahman MM, Antani SK, Demner-Fushman D, Thoma GR. An Interactive Region-Of-interest (ROI)- Based Image Retrieval Approach of Biomedical Articles in a Local Concept- Based Feature Space [Poster]. NIH Intramural Research Festival, Bethesda MD, November 6-8, 2013.
  • Hu L, Bell D, Antani SK, Xue Z, Yu K, Horning MP, Gachuhi N, Wilson B, Jaiswal MS, Befano B, Long LR, Herrero R, Einstein MH, Burk RD, Demarco M, Gage JC, Wentzensen N, Schiffman M. An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening. J Natl Cancer Inst. 2019 Jan 10. doi: 10.1093/jnci/djy225
  • Van Der Volgen J, Harris BR, Demner-Fushman D. Analysis of Consumer Health Questions for Development of Question-Answering Technology [Poster]. Proceedings of One HEALTH: Information in an Interdependent World, the 2013 Annual Meeting and Exhibition of the Medical Library Association (MLA), 2013.
  • Thoma GR. Anatomic Images for the Public May 2003 Technical Report to the LHNCBC Board of Scientific Counselors.
  • Demner-Fushman D, Simpson M, Antani S, Thoma GR. Annotation and retrieval of clinically relevant images. Int J Med Inform. 2009 Dec;78(12):e59-67. doi: 10.1016/j.ijmedinf.2009.05.003. Epub 2009 Jul 9.
  • Demner-Fushman D, Lin J. Answering Clinical Questions with Knowledge-based and Statistical Techniques Computational Linguistics. 2007 Jan;33(1):63-103
  • Lure F, Jaeger S, Cheng G, Li H, Lu P, Yu W, Kung J, Guan Y. Applying Multi-modality Artificial Intelligence for Screening of Tuberculosis in a TB High-burden Large Rural Region in China TBScience, 50th Union World Conference on Lung Health, Hyderabad, India.
  • Antani SK, Long RL, Thoma GR. Applying Vertebral Boundary Semantics to CBIR of Digitized Spine X-Ray Images Proc SPIE Electronic Imaging Science and Technology, Conference on Storage and Retrieval Methods and Applications for Multimedia. 2005;5682:98-107.
  • Demner-Fushman D, Elhadad N. Aspiring to Unintended Consequences of Natural Language Processing: A Review of Recent Developments in Clinical and Consumer-Generated Text Processing. IMIA Yearbook of Medical Informatics 2016.
  • Candemir S, Jaeger S, Antani S, Bagci U, Folio LR, Xu Z, Thoma G. Atlas-based rib-bone detection in chest X-rays. Comput Med Imaging Graph. 2016 Jul;51:32-9. doi: 10.1016/j.compmedimag.2016.04.002. Epub 2016 Apr 13.
  • KC S, Antani SK. Automated chest X-ray screening: Can lung region symmetry help detect pulmonary abnormalities? IEEE Transactions on Medical Imaging. doi: https://doi.org/10.1109/TMI.2017.2775636.
  • Santosh KC, Antani SK. Automated chest x-ray screening: Can lung region symmetry help detect pulmonary abnormalities? doi: 10.1109/TMI.2017.2775636 vol. 37, no. 5, 1168-1177.
  • Zhang, K, Demner-Fushman D. Automated classification of eligibility criteria in clinical trials to facilitate patient-trial matching for specific patient populations. J Am Med Inform Assoc. 2017 Jul 1;24(4):781-787. doi: 10.1093/jamia/ocw176.
  • Antani SK. Automated Detection of Lung Diseases in Chest X-Rays April 2015 Technical Report to the LHNCBC Board of Scientific Counselors
  • Kim I, Le DX, Thoma GR. Automated method for extracting "citation sentences" from online biomedical articles using SVM-based text summarization technique. Proc. the 2014 IEEE Int'l Conf. on Systems, Man, and Cybernetics (SMC 2014), pp. 2006-2011, San Diego, October, 2014
  • Yang F, Poostchi M, Silamut K, Maude RJ, Jaeger S, Thoma G. Automated Parasite Classification of Malaria on Thick Blood Smears. ASTMH 67th Annual Meeting, New Orleans, LA, Oct. 28 – Nov. 1, 2018.
  • Lure F, Jaeger S, Antani SK. Automated Systems for microscopic and radiographic tuberculosis screening. Electronic Journal of Emerging Infectious Diseases, Vol. 2, No. 1, pp. 5-9, February 2017. [In Chinese]
  • Yu H, Yang F, Silamut R, Maude S, Jaeger S, Antani SK. Automatic Blood Smear Analysis with Artificial Intelligence and Smartphones. ASTMH 68th Annual Meeting, Washington DC, Nov. 20-24, 2019.
  • Greenspan H, Gordon S, Zimmerman G, Lotenberg S, Jeronimo J, Antani S, Long LR. Automatic Detection of Anatomical Landmarks In Uterine Cervix Images IEEE Trans Med Imaging. 2009 Mar;28(3):454-68
  • Folio, L, Sigelman, J, Wang, Y, Lu, P, Antani SK, Jaeger S. Automatic Identification and Classification of Tuberculosis Findings on Chest Radiographs for Global Surveillance Programs [Abstract]. Annual Meeting of the American Roentgen Ray Society (ARRS)

Pages