You are here

  • Rae A, Kim J, Le DX, Thoma GR. Main Content Detection in HTML Journal Articles. DocEng ’18: ACM Symposium on Document Engineering 2018, August 28–31, 2018, Halifax, NS, Canada. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3209280.3229115
  • Rajaraman S, Candemir S, Xue Z, Alderson P, Kohli M, Abuya J, Thoma GR, Antani SK. A novel stacked generalization of models for improved TB detection in chest radiographs. Proc. IEEE Engineering in Medicine and Biology Conference (EMBC 2018), Honolulu, Hawaii, 2018. pp. 718-721.
  • Xue Z, Long LR, Jaeger S, Folio L, Thoma GR. Extraction of Aortic Knuckle Contour in Chest Radiographs Using Deep Learning. EMBC 2018.
  • Kim I, Thoma GR. Automated Identification of Potential Conflict-of-Interest in Biomedical Articles Using Hybrid Deep Neural Network. Proc. 14th Int’l Conf. Machine Learning and Data Mining (MLDM 2018), LNAI 10934, pp. 99-112, Newark, NJ, July 2018.
  • Xue Z, Rajaraman S, Long LR, Antani SK, Thoma GR. Gender Detection from Spine X-ray Images Using Deep Learning. Proc. IEEE International Symposium on Computer-Based Medical Systems (CBMS), Karlstad, Sweden, 2018. pp. 54-58, DOI:10.1109/CBMS.2018.00017.
  • Kim I, Thoma GR. Automated Identification of Potential Conflict-of-Interest in Biomedical Articles Using Hybrid Deep Neural Network. Proc. 14th Int’l Conf. Machine Learning and Data Mining (MLDM 2018), LNAI 10934, pp. 99-112, Newark, NJ, July 2018.
  • Kim J, Candemir S, Chew E, Thoma GR. Region of Interest Detection in Fundus Images Using Deep Learning and Blood Vessel Information. The 31th IEEE International Symposium on Computer-Based Medical Systems. (IEEE CBMS 2018), pp. 357-362, Karlstad, Sweden, June 2018.
  • Moallem G, Sari-Sarraf H, Poostchi M, Maude RJ, Silamut K, Hossain MA, Antani SK, Jaeger S, Thoma G. Detecting and segmenting overlapping red blood cells in microscopic images of thin blood smears. Proc. SPIE 10581, Medical Imaging 2018:Digital Pathology, 105811F (6 March 2018); doi: 10.1117/12.2293762.
  • Xue Z, Jaeger S, Antani SK, Long LR, Karargyris A, Siegelman J, Folio L, Thoma GR. Localizing tuberculosis in chest radiographs with deep learning. Proc SPIE 10579, Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, 105790U (6 March 2018) pp. doi: 10.1117/12.2293022
  • Xue Z, Antani SK, Long LR, Thoma GR. Using deep learning for detecting gender in adult chest radiographs. Proc SPIE 10579, Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, 105790D (6 March 2018) pp. doi: 10.1117/12.2293027.
  • Zohora FT, Antani SK, Santosh KC. Circle-like foreign element detection in chest x-rays using normalized cross-correlation and unsupervised clustering. Proc. SPIE 10574, Medical Imaging 2018: Image Processing, 105741V (2 March 2018); doi: 10.1117/12.2293739; doi.org/10.1117/12.2293739.
  • Almubarak H, Guo P, Stanley RJ, Long LR, Antani SK, Thoma GR. Algorithm Enhancements for Improvement of Localized Classification of Uterine Cervical Cancer Digital Histology Images. in Handbook of Research on Emerging Perspectives on Healthcare Information Systems and Informatics,. IGI Global (Hershey, PA).
  • Rajaraman S, Antani SK, Candemir S, Xue Z, Abuya J, Kohli M, Alderson P, Thoma GR. Comparing deep learning models for population screening using chest radiography. Proc. SPIE 10575, Medical Imaging 2018: Computer-Aided Diagnosis, 105751E (27 February 2018).
  • Thamizhvani TR, Lakshmanan S, Rajaraman S. Computer Aided Diagnosis of Skin Tumours from Dermal Images. Hemanth D., Smys S. (eds) Computational Vision and Bio Inspired Computing. Lecture Notes in Computational Vision and Biomechanics, vol 28. Springer, Cham
  • Xue Z, Jaeger S, Antani SK, Long LR, Karargyris A, Siegelman J, Folio LR, Thoma GR. Localizing tuberculosis in chest radiographs with deep learning. SPIE Medical Imaging 2018
  • Xue Z, Antani SK, Long LR, Thoma GR. Using deep learning for detecting gender in adult chest radiographs. SPIE Medical Imaging 2018
  • Bryant B, Sari-Sarraf H, Long LR, Antani SK. A Kernel Support Vector Machine Trained Using Approximate Global and Exhaustive Local Sampling. Proceedings of the 4th IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT) 2017, Austin, Texas, USA, December 2017. Pp. 267-8 DOI: https://doi.org/10.1145/3148055.3149206
  • de Herrera G, Long LR, Antani SK. Graph Representation for Content–based fMRI Activation Map Retrieval. Proceedings of 1st Life Sciences Conference, Sydney, Australia, December 2017 pp. 129-32 DOI: https://doi.org/10.1109/LSC.2017.8268160.
  • Rajaraman S, Antani SK, Xue Z, Candemir S, Jaeger S, Thoma GR. Visualizing abnormalities in chest radiographs through salient network activations in Deep Learning. Proc. IEEE Life Sciences Conference (LSC), Sydney, Australia, 2017. pp. 71-74, DOI:10.1109/LSC.2017.8268146.
  • Zou J, Antani SK, Thoma GR. Localizing and Recognizing Labels for Multi-Panel Figures in Biomedical Journals. Proceedings of International Conference on Document Analysis and Recognition, November 13, 2017
  • Almubarak HA, Stanley RJ, Long LR, Antani SK, Thoma GR, Zuna R, Frazier SR. Convolutional Neural Network Based Localized Classification of Uterine Cervical Cancer Digital Histology Images. Procedia Computer Science, Volume 114, 2017, Pages 281-287, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2017.09.044.
  • Ekong DU, Fontelo P. Prototype telepathology solutions that use the Raspberry Pi and mobile devices. 2017 IEEE Global Humanitarian Technology Conference (GHTC), San Jose CA, 2017: 1-4.
  • Guan Y, Li M, Jaeger S, Lure F, Raptopoulos V, Lu P, Folio LR, Candemir S, Antani SK, Siegelman J, Li J, Wu T, Thoma GR, Qu S. Applying Artificial Intelligence and Radiomics for Computer Aided Diagnosis and Risk Assessment in Chest Radiographs. 2nd Conference on Machine Intelligence in Medical Imaging (CMIMI) of the Society for Imaging Informatics in Medicine (SIIM), Poster, 2017.
  • Ben Abacha A, De Herrera A, Gayen S, Demner-Fushman D, Antani SK. NLM at ImageCLEF 2017 Caption Task. International Conference of the Cross-Language Evaluation Forum for European Languages 2017 Sep 11 (pp. 358-360). Springer, Cham.
  • Rajaraman S, Antani SK, Jaeger S. Visualizing Deep Learning Activations for Improved Malaria Cell Classification. Proceedings of The First Workshop in Medical Informatics and Healthcare (MIH 2017), Proceedings of Machine Learning Research (PMLR), v. 69, p. 40-47.

Pages