You are here

Printer-friendly versionPrinter-friendly version
Leonard
R
Long
,
MA
Electronics Engineer
Location: 
38A
/
10S1008
Phone Number: (
301
435-3208
Expertise and Research Interests: 

Mr. L. Rodney Long leads a development group in creating applications for image-based biomedical information collection and dissemination. He is currently working in collaboration with the National Cancer Institute to develop a suite of tools for uterine cervix cancer databases.  His research interests are in telecommunications, systems biology, image processing, and scientific/biomedical databases.  He has an M.A. in applied mathematics from the University of Maryland.

Professional Organizations: 

He is a member of  the Mathematical Association of America (MAA) , the Institute of Electrical and Electronics Engineers (IEEE) and the IEEE Computer Society.

Honors and Awards: 

Mr. Long has received numerous staff honors. In addition, he has received the NLM Regents Award for Scholarship and Technical Achievement (2002), the NIH Award of Merit (2007), the Federal Computer Week Fed 100 Award (2009), and the American Society for Colposcopy and Cervical Pathology (ASCCP) Award of Merit (2010).

Publications/Tools by Leonard Long: 
Xue Y, Zhou Q, Ye J, Long LR, Antani SK, Cornwell C, Xue Z, Huang X. Synthetic Augmentation and Feature-based Filtering for Improved Cervical Histopathology Image Classification. ArXiv, abs/1907.10655.
Ganesan P, Xue Z, Singh S, Long LR, Ghoraani B, Antani SK. Performance Evaluation of a Generative Adversarial Network for Deblurring Mobile-phone Cervical Images. Proc. IEEE Engineering in Medicine and Biology Conference (EMBC), Berlin, Germany, 23 – 27 July 2019. pp. 4487 – 4490.
Ganesan P, Rajaraman S, Long LR, Ghoraani B, Antani SK. Assessment of Data Augmentation Strategies Toward Performance Improvement of Abnormality Classification in Chest Radiographs. Proc. IEEE Engineering in Medicine and Biology Conference (EMBC), Berlin, Germany, 23 – 27 July 2019. pp. 841 – 844.
Hu L, Bell D, Antani SK, Xue Z, Yu K, Horning MP, Gachuhi N, Wilson B, Jaiswal MS, Befano B, Long LR, Herrero R, Einstein MH, Burk RD, Demarco M, Gage JC, Wentzensen N, Schiffman M. An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening. J Natl Cancer Inst. 2019 Jan 10. doi: 10.1093/jnci/djy225
Xue Z, Long LR, Jaeger S, Folio L, Thoma GR. Extraction of Aortic Knuckle Contour in Chest Radiographs Using Deep Learning. EMBC 2018.
Xue Z, Rajaraman S, Long LR, Antani SK, Thoma GR. Gender Detection from Spine X-ray Images Using Deep Learning. Proc. IEEE International Symposium on Computer-Based Medical Systems (CBMS), Karlstad, Sweden, 2018. pp. 54-58, DOI:10.1109/CBMS.2018.00017.
Sornapudi S, Stanley RJ, Stoecker WV, Almubarak H, Long LR, Antani SK, Thoma GR, Zuna R, Frazier SR. Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels. J Pathol Inform. 2018 Mar 5;9:5. doi: 10.4103/jpi.jpi_74_17. eCollection 2018.
Xue Z, Antani SK, Long LR, Thoma GR. Using deep learning for detecting gender in adult chest radiographs. Proc SPIE 10579, Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, 105790D (6 March 2018) pp. doi: 10.1117/12.2293027.
Xue Z, Jaeger S, Antani SK, Long LR, Karargyris A, Siegelman J, Folio L, Thoma GR. Localizing tuberculosis in chest radiographs with deep learning. Proc SPIE 10579, Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, 105790U (6 March 2018) pp. doi: 10.1117/12.2293022
Almubarak H, Guo P, Stanley RJ, Long LR, Antani SK, Thoma GR. Algorithm Enhancements for Improvement of Localized Classification of Uterine Cervical Cancer Digital Histology Images. in Handbook of Research on Emerging Perspectives on Healthcare Information Systems and Informatics,. IGI Global (Hershey, PA).

Pages