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Abstract

Grounding linguistic symbols with digitized images requires a reliable representa-
tion of visual concepts. Whether from a cognitive perspective, or a computational
perspective, those iconic representations are meant to be reused in different linguis-
tic contexts. For visual grounding applications, this poses an important premise
question: what would be the levels of agreement on purely visual content when no
linguistic descriptions are involved? In particular, (i) the agreement between human
assessors on purely visual content can be a relevant indicator of the scalability of vi-
sual grounding as a computational approach to natural language understanding, and
(ii) the agreement between computer models and human assessors can give us some
insights on the difficulty of bringing added value from grounding. In this paper, we
study these agreements through the design of a new image similarity collection.
In particular, we study inter-human, inter-model, and human-model agreements
both on open-domain images and on medical images involving a more challenging
context. Our experiments show that coarse-grained agreement between human
assessors can reach 90.1%, at different expertise levels, even when no linguistic
descriptions are associated with the images. However, a detailed analysis of deep
learning search results on our collection showed that different interpretations of the
same neural layer have highly different perspectives on visual content, with average
correlation ratios ranging between 0.1 and 0.4 for the top 50 results. Although these
findings confirm that there is a sufficiently common ground in cognitive iconic
representations to build relevant references for visually-grounded language models,
they also show that relying on one single model (or layer) for image representation
is not suited for grounding applications, and that ensemble representations might
be a more viable option.

1 Background

Today’s state-of-the-art natural language understanding models rely on symbolic contexts such as
sequences of words in a sentence, paragraph, or document, to build relevant neural encoders from
large textual corpora [6, 16, 11]. The benefits of this approach have been demonstrated on several
benchmarks related to text-classification, named entity recognition, and answer extraction [23].
However, the reuse of these models for different domains, or with texts having substantial structural
and syntactic differences remain challenging, and often requires transfer learning networks with
dedicated datasets.

Visually-Grounded Language Models (VGLM) follow a different approach by trying to enrich
text-based representations with information from associated images [22, 24, 18]. These models
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are particularly useful for emerging applications such as Visual Question Answering [1, 14, 2, 13],
Image-based dialogue systems [4], or image captioning[17, 10].

Reliable representations of visual concepts are a crucial prerequisite of VGLM. From the perspective
of the cognitive theory of connectionism [7], this purely visual component is referred to as an iconic
representation that is separate from the symbolic component, even if they have only one shared
learning process. This theoretical separation raises two fundamental questions:

• To what extent would we agree on visual contents when no linguistic descriptions are
involved?

• How difficult would it be to build relevant image representations that can be used as reference
for visually-grounded language models?

In this paper, we investigate both aspects through the design of a new image similarity collection.
To answer the first question, we designed dedicated manual annotation guidelines to study human
agreement on purely visual content. To answer the second question, we studied the correlations in
search results when different computer-models are used, and the accuracy of these computer models
when averaging the raters point of view as a gold standard.

Our results show that inter-rater agreement can reach 90.1% overall, with slight variations across
different levels of expertise. On another hand, different readings of the same neural layers for image
representation showed low levels of correlation on the top 50 results, with the best model achieving
a precision of 75% on the top 5 results. These two factors combined highlight a potentially strong
bottleneck for future endeavors in visual grounding.

We present and discuss these results in more detail in section 3. We present our image annotation
approach, source data, and experimental setting in the next section.

2 Approach

Image collection. We collected all accessible images from the PubMed Central Open Access subset
of biomedical articles1, the chest X-ray collection from the Indiana University, images from the
History of Medicine section of the National Library of Medicine, MedPix radiology images2, and the
USC Othopedic Surgical Anatomy association, leading to a total of 5,362,166 images. Both PubMed
Central and History of Medicine contain large subsets of open-domain images such as portraits,
maps, and animal species. We filtered out abstract illustrations (e.g., charts) using a supervised SVM
classifier similar to Simpson et al.’s approach [21]. Many images have also multiple sub-figures which
can bring a substantial ambiguity to the manual assessment task. We applied a panel segmentation
classifier adapted from [3] and filtered out the images having two or more sub-figures. This process
led to the final collection size of 678,347.

Queries. We defined four query categories to build assessor groups with similar expertise: i.e., Medi-
cal (Expert), Medical (Intermediate), Medical (Open), and Open Domain. The test images (queries)
were selected by a medical doctor with research experience in information retrieval. Two hundred
total queries were selected manually using an online search. The query categories were assigned to
each test image by one medical expert and a computer scientist with no medical background, then
manually reconciled. We selected 98 open-domain images (49%), and assigned the relevant subsets
to different assessor groups (cf. 1). The specific numbers of assessors per category were computed
automatically to ensure a balanced workload.

Deep Learning Features. We considered the convolutional model from the Visual Geometry Group
(VGG16) [20] and the residual (RESNET) models that obtained the state-of-the-art performance in
the ILSVRC 2015 challenge [8]. Both models are pre-trained on ImageNet which was shown to be
relevant for several medical tasks [15]. In order to pick the best layers for the collection we conducted
preliminary experiments on the ImageCLEF 2011 dataset for medical image retrieval [9]. The best
performing feature space was found to be the sum and max aggregations of the convolutional layer
5A of RESNET50, with a top ten precision of 16% and a Mean Average Precision of 3.52% on the
first thousand results. In order to take into account these observations and the unaltered embeddings
vectors, we derived three feature spaces from the RESNET embeddings:

1https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
2https://medpix.nlm.nih.gov
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Queries Assessors
Category Number Ratio MD ML CS Total
Medical (Expert) 24 12% 2 0 0 (2)
Medical (Intermediate) 32 16% 2 2 0 (4)
Medical (Open) 46 23% 0 2 0 (2)
Open Domain 98 49% 0 0 7 (7)
Total 200 100% 2 2 7 11 (15*)

Table 1: Query statistics and assignments per category. MD (Medical Doctor); ML (Medical
Librarian); CS (Computer Scientist). *: 4 assessors contributed to two different categories.

• The full feature vector including 25,088 dimensions (Rfull).

• A sum based aggregation of the convolutional layer (512 dimensions) (R∑).

• A max pooling of the same layer (512 dimensions) (Rmax).

For all three variants, we use a brute-force search method based on the euclidean distance between
the query images and the images in our collection.

Global features. Global features bring a distinct perspective that might enrich the annotation pools
with good candidates for both positive and negative matches. For our experiments we reused features
from the OpenI image retrieval system, which obtained the best results at the medical ImageCLEF
challenge [5]. OpenI uses global features, such as the Fuzzy Color Texture Histogram, the Color
Layout Descriptor, the Edge Histogram Descriptor. We created two feature spaces for this global
feature set: (1) a clustering-based space, called CW , where each global feature is used to generate
cluster words (cluster assignments) for the collection images, which are then used for retrieval with
boolean queries, and (2) a concatenation of all global features vectors, called GF , which is then used
with the same brute force search method that was applied to the deep learning features.

Table 2 presents a summary of each feature space and the associated search method. We select the
top 50 results from all listed methods to form the final result pools for manual assessment.

Feature Dimensions Search method
RESNET Full (Rfull) 25,033 BFS
RESNET SUM (R∑) 512 BFS
RESNET MAX (Rmax) 512 BFS
GF 492 BFS
CW Word vocabulary Boolean queries

Table 2: List of methods selected for result pooling. (BFS stands for brute-force search).

It is important to note that this list of features, combinations, and search methods is far from being
exhaustive. Restrictions had to be made to obtain a manageable assessment workload (e.g. RESNET
vs other architectures) and a good trade-off between the type of a feature space and its computational
cost (e.g., GF vs SIFT[12] and ORB[19]). To make these choices we relied either on preliminary
experiments or on results reported in related works.

Assessment Guidelines. One of the goals of our study is to observe inter-rater agreements on image
similarity when no linguistic bias is introduced (e.g., image captions or labels). Such approach
requires a minimal frame to give an orientation to the assessors without interfering with their own
reasoning process. We establish such a frame by using the words content and thing. I.e.: two images
are considered to have a similar content if they describe the same thing, or things. We leave it up to
the assessors of the different groups to decide what are the important things in an image.

We use three labels to rate a candidate result that is similar to the query image: (5) Very Similar; (4)
Similar; (3) Somewhat Similar. We use two labels to assess a candidate result that is not similar to
the query image: (2) Graphically Similar (i.e., close in shape and/or color, but not content-wise) and
(1) Very Different. At the end of the process, our annotators rated 45,360 results for 200 queries.
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Aggregation Open Domain Med. (Open) Med. (Intermediate) Med. (Expert) (Micro) Total
(1) (2,3,4,5) 86.10 (0.14) 91.96 (0.04) 79.77 (0.15) 91.60 (0.04) 85.76 (0.10)
(1,2) (3,4,5) 91.31 (0.09) 90.91 (0.04) 81.43 (0.15) 81.58 (0.09) 90.41 (0.09)
(1,2,3) (4,5) 77.56 (0.21) 89.43 (0.05) 77.03 (0.18) 62.70 (0.18) 77.65 (0.16)
(1,2,3,4) (5) 82.37 (0.18) 82.88 (0.08) 92.12 (0.06) 83.44 (0.08) 83.18 (0.12)

Table 3: Inter-Rater Agreements. Computed as micro-average accuracy % based on different binary
aggregations of the 5 similarity labels. Numbers in () indicate the standard deviation.

3 Results & Discussion

Inter-Rater Agreements. We selected a 10% random subset of queries from each query category
to compute inter-rater agreements. All assessors in a given category rated their common subset,
leading to either double or multiple ratings according to the number of assessors in the group. We
study inter-rater agreements with the Mirco-average accuracy (MAA) according to different binary
aggregations of the 5 ratings (cf. table 3). The MAA computation relies on exact counts of agreeing
rating pairs, A, and disagreeing rating pairs, D:

MAA =
A

A+D
(1)

The binary agreement results are relatively high, with a best accuracy of 90.41% on the second
aggregation. This means that, on average, most assessors agreed on what constituted an important
content in the query image, and differentiated clearly between the similar-content labels (3, 4, 5) and
the different-content labels (1 and 2). We can also notice a weaker agreement on this distinction for
the Medical (Expert), and Medical (Intermediate) categories with only 81.5% and 81.4% accuracy.

This observation corresponds to the qualitative feedback reported by our expert assessors. For
instance, a radiologist noted that he considered images showing similar conditions in the same organ
as similar or very similar, images showing an abnormality in the same organ as somewhat similar, and
images showing the same organ in a healthy condition as graphically similar. However, an MD with
specialization in immunology relied mostly on the abnormal or healthy distinction in her assessments
without using the graphically similar category when the image described the same organs. Similar
observations can also be made for the Medical (Intermediate) category which was assessed by two
medical librarians.

These relative divergences are a good example of the challenges facing visual grounding approaches
with contextual and domain-specific images.

Model agreements. In order to study the agreement between the considered models, we computed
the Common Result Ratio at n (CRn) between several candidate methods. CRn is defined as:

CRn(m1,m2) =
|m1(n) ∩m2(n)|

n
(2)

where m1, and m2 are two given image search methods and m1(n), and m2(n) are their respective
result sets at rank n. CRn is a direct correlation measure that shows exactly how many distinct (or
redundant) results are found by a given pair of methods. The values were computed by applying the
search methods to the full collection of 678K images using our 200 test queries. The CRn analysis
led to the following observations:

• Despite the fact that the full vector, and the sum and max aggregations are extracted from the
same convolutional layer, their disagreement in terms of similarity rankings is substantial.
The correlation between the full vector and both aggregations do not exceed 25% in the top
10 result and up to the top 500. The correlations between the sum and max aggregations
have only 40% of results in common in the top 10 retrieved images, a value that increases
only slightly for the top 500.

• The correlations between the GF variants and the deep learning features are very low (below
0.05), and almost equivalent to the synthetic baseline of two methods agreeing only on the
first result. The correlation between GF and CW is also close to the minimal baseline.
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Feature Space Dimensions P@5 P@10 P@20 P@50
Rfull 25K 71.0 65.4 60.9 54.8
R∑ 512 73.3 67.4 64.21 58.5
Rmax 512 75.7 69.6 64.28 58.0
GF 492 49.5 40.4 35.0 30.5
CW word index/search 32.7 27.0 23.6 20.2

Table 4: Micro-Average Precision (P@N) of methods

Human-Model Agreements. We study the level of agreement between the manually produced
ratings and the automatic search methods through the precision of the top N results when considering
the best binary aggregation, i.e., (1,2) (3,4,5), according to the inter-rater agreements (cf. table
3). When multiple annotations exist for an image pair, we computed their final similarity value by
rounding the average rating scores. Table 4 presents the Micro-Average Precision values at different
ranks, noted (P@N).

The best performing approach was the Max-based aggregation of the convolutional layer from
RESNET with a micro average precision of 64.2% for the top 50 results and 75.7% for the top 5
results. The full vector from the convolutional layer had a weaker performance than the Max and Sum
aggregations, showing that the additional dimensions brought more noise than relevant information.
Global features (GF ) had a substantially lower performance than the RESNET approaches, with the
cluster words variant causing an additional loss of relevant information.

By studying further the behaviour of each method for specific query categories, we observed that
the open domain and medical (open) categories played an important role in decreasing the overall
performance. For instance, the best approach reached 89.1% P@5 and 78.2% P@50 for the medical
(expert) category, but only 68.3% P@5 and 43.9% P@50 for the open domain category. This open-
domain performance can be explained by the very strong distractors that face some queries and the
limited number of good matches for a few others. For instance, one of the open-domain queries is
a distant picture of the moon which is very similar to many kinds of tissue samples and microbial
cultures. Another example is a query image of a postage stamp which had only 5 similar and very
similar matches, with the vast majority of results consisting of brochures for different drugs, medical
procedures, and health campaigns, which have been rated mostly as graphically similar.

The high levels of agreement obtained on the binary aggregations (up to 90.1%) are very encouraging
for future visual grounding efforts, especially considering that our guidelines were designed to have a
very low level of control. The baseline RESNET embeddings also achieved up to 75% precision on
the top 5 similarity results on average for the 200 test queries. However, the disagreements between
close computer models (i.e., different aggregations of the same neural layers) were substantial, with
correlation values ranging between 0.1 and 0.4 for the top 50 results. This highlights that relying
on the perspective of only one neural layer (or one aggregation) might not be suitable to build
visually-grounded language models. Further research efforts are therefore needed to asses whether
representations based on an ensemble of models would provide a more stable perspective on visual
contents.

4 Conclusion

We studied agreement levels on visual similarity when no linguistic descriptions are involved. We
found that a high level of agreement (90.1%) can be reached between human assessors on whether or
not two images describe a similar content, with a moderate decrease in agreement on domain-specific
images, and that baseline RESNET embeddings trained on ImageNet are able to reach a precision
of 75% on the top 5 most similar results. Our experiments also showed that different readings of
the same neural layers lead to substantially different similarity results. These findings suggest that
convolutional embeddings of images can be a good reference point for visually grounded language
models, but that more sophisticated image representation methods are needed to bypass the closed-
world assumption that is implicitly made by any individual neural layer and its aggregations. A new
image similarity collection was created to support this study and will be shared publicly to promote
further research efforts.
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