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Abstract. Cervical intraepithelial neoplasia (CIN) grade of histopathology im-
ages is a crucial indicator in cervical biopsy results. Accurate CIN grading of ep-
ithelium regions helps pathologists with precancerous lesion diagnosis and treat-
ment planning. Although an automated CIN grading system has been desired,
supervised training of such a system would require a large amount of expert anno-
tations, which are expensive and time-consuming to collect. In this paper, we in-
vestigate the CIN grade classification problem on segmented epithelium patches.
We propose to use conditional Generative Adversarial Networks (cGANs) to ex-
pand the limited training dataset, by synthesizing realistic cervical histopathology
images. While the synthetic images are visually appealing, they are not guaran-
teed to contain meaningful features for data augmentation. To tackle this issue,
we propose a synthetic-image filtering mechanism based on the divergence in
feature space between generated images and class centroids in order to control
the feature quality of selected synthetic images for data augmentation. Our mod-
els are evaluated on a cervical histopathology image dataset with limited number
of patch-level CIN grade annotations. Extensive experimental results show a sig-
nificant improvement of classification accuracy from 66.3% to 71.7% using the
same ResNet18 baseline classifier after leveraging our cGAN generated images
with feature based filtering, which demonstrates the effectiveness of our models.

1 Introduction

Cervical cancer is the fourth-most frequently diagnosed cancer among women all over
the world [1]. The diagnosis of cervical cancer and its precancerous stages can be ac-
complished through assessment of histopathology slides of cervical tissue by patholo-
gists. An important outcome of the assessment is the cervical intraepithelial neoplasia
(CIN) grade, an important indicator for abnormality assessment identified by the abnor-
mal growth of cells on the surface of the cervix. CIN grade can be divided into CIN1,
CIN2, and CIN3 with increased severity from mild to severe. Thus, accurate assessment
of CIN grade is crucial for diagnosis and treatment planning of cervical cancer.

Considering the shortage of pathologists, an automatic cervical histopathology im-
age classification system has great potential in under developed regions for its low cost
and accessibility. Moreover, such a system can help pathologists with diagnosis and po-
tentially mitigate the inter- and intra- pathologist variation. Existing literature [2,6] have
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studied various supervised learning methods for nuclei-based cervical cancer classifi-
cation. Chankong et al. [2] proposed automatic cervical cancer cell segmentation and
classification using fuzzy C-means (FCM) clustering and various types of classifiers.
Guo et al. [6] designed hand-crafted nuclei-based features for fusion-based classifi-
cation on digitized epithelium histopathology slides with linear discriminant analysis
(LDA) and support vector machines (SVM) classifier. While accomplishments have
been achieved with fully-supervised learning methods, they require large amounts of
expert annotations of cervical whole slide images. Since the annotation process can be
tedious and time-consuming, it often results in limited number of labeled data available
for supervised learning models.

Recently, several works have leveraged unsupervised learning methods, more specif-
ically, Generative Adversarial Networks (GANs) [4] in medical image analysis to miti-
gate the small dataset sizes and limited annotations [10,14,3]. Frid-Adar et al. [3] inves-
tigated conditional GANs (cGANs) [11] to generate synthetic CT images and improved
the performance of CNN in liver lesion classification, by adding generated images into
the training data as data augmentation. Similarly, Madani et al. [10] found GAN based
data augmentation achieved higher accuracy than traditional augmentation in Chest X-
ray classification. Ren et al. [14] explored a method to classify the prostate histopathol-
ogy images by domain adaptation so that knowledge learned in the source domain can
be transferred to the target dataset without annotation. Although the GANs in previous
applications can generate visually appealing synthetic images, the feature quality of
generated images varies among examples and not all of them are guaranteed to contain
meaningful features to improve the model performance in the original task.

In this paper, we study the 4-class (normal, CIN 1-3) cervical histopathology image
classification problem based on a ResNet18 [7] baseline classifier. We run and evalu-
ate our models on a heterogeneous epithelium image dataset with limited number of
patch-level annotations. Images in the dataset have various color, shapes and texture
which makes the classification very challenging. While the capability of the baseline
model is limited by the number of training data, we propose a cGAN based image syn-
thesis model to generate high-fidelity synthetic epithelium histopathology patches to
expand the training data. To improve the diversity of synthetic images, we incorporate
the minibatch discrimination [15] to reduce the closeness between examples inside a
minibatch. Moreover, unlike previous works which directly added the generated data
into the training set, we apply a feature based filtering mechanism to further improve
the feature quality of the synthetic images added. We first pre-train a feature extractor
using baseline ResNet18 model and calculate feature centroids for each class as the
average feature of all training images. The generated images are then filtered based
on the distance to the corresponding centriod in the feature space. Experimental results
show that our proposed cGAN model along with the feature based filtering significantly
outperform the baseline ResNet18 model and the traditional augmentation methods.

2 Methodology

An overall illustration of our proposed data augmentation pipeline can be found in
Fig. 1. In traditional fully-supervised training, the model is trained on training images
and the inference is done by feeding the test data to the trained model. In previous
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Fig. 1: Illustration and comparison between different training processes. (a) Traditional
training pipeline; (b) Conditional GAN augmented training pipeline; (c) Our proposed
cGAN augmentation with feature based filtering. The input to the cGAN are noise vec-
tor z and label condition vector c.

GAN-based augmentation works [3,10], a GAN model is first trained to generate some
synthetic images based on the training data, then the generated images are added to the
original training data as a data augmentation strategy. However, since the discriminator
in GAN only outputs a high level judgement (0 or 1) of the fidelity of generated images,
such pipeline cannot guarantee that the generated data have similar features to the real
images which contribute to the classification task. To tackle this issue, we propose a
feature based filtering mechanism to further improve the feature quality and fidelity of
the synthetic images. We first introduce the cGAN model used in our framework.

2.1 Theoretical Preliminaries

The conventional cGANs [11] have an objective function defined as:

min
θG

max
θD
LcGAN = Ex∼pdata [logD(x | c)] + Ez∼N [log(1−D(G(z | c)))] . (1)

In the objective function above, θG and θD represent the parameters for the gen-
erator G and discriminator D in cGAN, respectively. x represents the real data from
an unknown distribution pdata and c is the conditional label (e.g., CIN grades). z is
a random vector for the generator G, drawn from a normal distribution N (0, 1). G is
trained to fool the discriminator with synthetic data by minimizing the objective. Mean-
while, D that takes both z and c as input is trained to maximize the objective, aiming to
distinguish real data and synthetic images generated by G.

During the experiments, we observe that the intra-class diversity of the generated
images greatly affects the data augmentation performance. Consider a mode-collapse
GAN model which only generates very limited number of modes, all generated im-
ages will look similar. In such case, no matter how many examples are added to the
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training data, only few of them contribute to the data augmentation. To this end, we
incorporate the minibatch discrimination module [15] into our discriminator to reduce
the homogeneity between generated examples inside a minibatch. Let f(xi) ∈ RA de-
note a feature vector for input xi from an intermediate layer in the discriminator, where
A = out channels × weight × height. We multiply f(xi) by a transformation matrix
T ∈ RA×B×C to compute a matrix Mi ∈ RB×C , where B represents the number of
output features of the minibatch discriminator, and C refers to the number of kernel
dimension which is set to 3 by default in our experiments. The similarity of the image
xi with the rest of images xj in the same batch is computed as

o(xi)b =

n∑
j=1

exp(−||Mi,b −Mj,b||L1) , (2)

and o(xi) = [o(xi)1, o(xi)2, ..., o(xi)B ] ∈ RB . Then the similarity o(xi) is concate-
nated with f(xi) and fed into the next layer of the discriminator. Minibatch discrimina-
tion penalizes the generator if mode is collapsing and encourages the model to generate
diverse images. With minibatch discrimination, our cGAN models can generate more
diverse images which can be effectively added to the training data for augmentation.

We then introduce the feature based filtering method after generating synthetic im-
ages from our trained cGAN model. One of the advantages of GANs is that the input
is drawn from a distribution and one can generate an infinite number of images with a
trained GAN. Thus, any filtering methods will not affect the number of images available
to be added to the training data. We first pre-train a feature extractor using the baseline
classifier on the original training set to extract visual features of the input images. The
features consist of activations produced by different layers in the feature extractor. The
feature distance between image x and centroid c is then defined as

Df (x, c) =
∑
l

1

HlWl
||φ̂l(x)− φ̂l(c)||22 , (3)

where φ̂l is the unit-normalized activation in the channel dimension Al of the lth layer
of a feature extraction network with shape Hl × Wl. This `2 distance between unit-
normalized activation can be regarded as a cosine distance in the feature space.

The centroid c is calculated as the average feature of all training images in the same
class. For class i, its centroid ci is represented by

ci = [
1

Ni

Ni∑
j=1

φ1(xj),
1

Ni

Ni∑
j=1

φ2(xj), ...,
1

Ni

Ni∑
j=1

φL(xj)] , (4)

where Ni denotes the number of training samples in ith class and xj is the jth training
sample. Similar to Eq. 3, φl is the activation extracted from the lth layer of the feature
extraction network. L is the total number of layers utilized in the feature based filtering.

2.2 Implementation Details

Our GAN model is built upon the DCGAN [13] and WGAN-GP [5] with several al-
terations. The conditional generator consists of 8 convolutional blocks, where the first
block consists of two separate transpose convolutional blocks for conditional labels c
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and random vector z. After the first block, the activations of c and z are concatenated
along the channel dimension and fed into the next layer of the generator. Different from
DCGAN which uses transpose convolution for upsampling, our convolutional block
consists of a bilinear upsampling with factor 2 except for the first shared block which
has factor 2 × 1, a 3 × 3 convolution with stride 1, a batch normalization layer and a
ReLU activation. The final block is a 7× 7 convolution followed by a tanh activation.

The conditional discriminator consists of 7 convolutional blocks, where the first
block includes two separate convolutional blocks for conditional labels c and random
vector z with no batch normalization as in DCGAN. The activations of c and z are
concatenated and fed into the rest of convolutional blocks. Each of the rest of the con-
volutional blocks contains a 4× 4 convolutional layer, a batch normalization layer and
a LeakyRelu activation. Each convolution has stride 2 except for the 6th and 7th block
which has stride 2×1 and 1, respectively. Activations of the last convolutional block are
then fed into the minibatch discrimination layer as described in Eq. 2. After the mini-
batch discrimination, a fully connected layer outputs the final logits of discriminator.

Our cGAN model is trained with WGAN-GP loss with batchsize 100, fixed learn-
ing rate 2e − 4 and 700 training epochs. The baseline classifier is the widely used
ResNet18 [7] which has shown promising performance in various vision tasks. All clas-
sification models are trained using the same baseline classification model with batchsize
64 by Adam optimizer [8] with weight decay 2e − 5 and the cross-entropy loss. The
initial learning rate of all classification models is 1e − 3 and is reduced by factor 0.2
when the validation accuracy has stopped being improved for 5 epochs.

3 Experiments

The experimental dataset is a cervical histopathology image dataset collected from a
collaborating health sciences center. It contains multiple data sources, all of which are
annotated by the same pathologist. The data processing follows [6] by dividing an an-
notated image into patches according to the medial axis of the epithelium tissue in
that image. We first divide the medial axis into several straight segments, and crop the
patches with each containing one straight segment. The cropped patches are then rotated
such that all their medial axes align horizontally after rotation. The cropped patches are
resized to a unified size of 256 × 128. In total, there are 1, 112 normal, 181 CIN1,
463 CIN2, 454 CIN3 patches. Examples of the images can be found in the first row of
Fig. 2. All evaluations are done based on the patch-level ground truth annotations. We
randomly split the dataset, by patients, into training, validation, and test sets, with ratio
7 : 1 : 2 and keep the ratio of image classes almost the same among different sets. All
evaluations and comparisons reported in this section are done on the test set.

We report quantitative evaluation scores between all baseline models and our mod-
els including the accuracy, area under the ROC curve (AUC), sensitivity and specificity
to provide a comprehensive comparison. All models are run for 5 rounds with random
initialization for fair comparison. The mean and standard deviation results of 5 runs
are illustrated in Table 1. We use the same baseline classifier with same hyperparame-
ters setting in all experiments to ensure differences only come from the augmentation
mechanisms.
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Fig. 2: Examples of real and synthetic images for all CIN grades.

We first conduct experiments with the baseline ResNet18 [7] classifier trained on the
original training data and the data with traditional data augmentation. The traditional
data augmentation used in our experiments includes random horizontal and vertical flip-
ping, random adjustment of brightness, contrast and saturation to serve as a color based
augmentation. From the first two rows of Table 1, one can see that there are no obvious
improvements from leveraging traditional data augmentation, which further indicates
that traditional augmentation methods do not perform well on such classification prob-
lem. Since we cannot ensure the feature quality of the traditional augmentation, we only
train all our GAN models using the original training data.

Examples of the synthetic images generated by our cGAN models compared to the
real images in the training set are shown in Fig. 2. As one can observe from Fig. 2,
our generated images are realistic and keep important features such as color, shape and
location of nuclei, and texture information so that the generated images can be used to
extend the original training set.

While the synthetic images are visually appealing, high realism is not equivalent to
meaningful features for improving classification results. We further explore the distri-
bution of generated images in the feature space in Fig. 3 to ensure they are separable.
We use the t-SNE [9] dimension reduction algorithm which can convert the embedding
of high-dimensional data into a two-dimensional space for better visualization. After
training a baseline ResNet18 classifier with the original training data, we use the pre-
trained ResNet18 model as the feature extractor to extract features from the last con-
volutional layer in the ResNet18 model. We use the same feature extractor for both the
expanded training data without and with feature based filtering in Fig. 3 (a) and (b), re-
spectively. Although overall there are overlapping between classes in the feature space
which indicates the difficulty of such classification problem, the new training data with
feature based filtering clearly have more distinguishable features than the ones without
the feature filtering, which supports our claim and is in accord with the improvements
in classification performance.

In all GAN-based augmentation models, the generated synthetic images are added
into the original training set in equal proportion and we use ratio R to represent the
number of synthetic images to the number of real images. We keep the same proportion
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(a) Expanded training data before filtering (b) Expanded training data after filtering

Fig. 3: t-SNE visualization of extracted image features of expanded training data. The
ratio of synthetic images to the original training images is set to 2 for both before and
after filtering (R=2).

between classes as in the original set to make sure synthetic images generated from
minority classes are meaningful for augmentation. We start with a cGAN model with
an auxiliary classifier (AC) [12] which is similar to [3]. The auxiliary classifier is added
to the last layer of the discriminator network to output the class labels for both real
and synthetic images. While cGAN with AC works fine when the ratio is 0.5, the same
model with ratio being 2 significantly degrades the classification performance, resulting
in even worse scores than the baseline model with no augmentation. One possible rea-
son is that the auxiliary classifier is trained on both real and synthetic images (mainly
trained on synthetic images when R > 1), the features learned in the training process
may not represent the original real data very well. Rather, if a feature extractor is trained
only on the real data, the learned features could be more meaningful to the original data.

Following this idea, we provide an ablation study of our cGAN models with and
without the feature filtering. For feature based filtering, we first generate 5, 000 images
for each class, then the images with lowest distance to the corresponding centroids will
be kept. Retained quantity is calculated based on the ratio R. As shown in Table 1, our
no filtering cGAN model with different ratios all show improvements in classification
performance. Meanwhile, the feature filtering brings obvious benefits to all evaluation
metrics, and our full models with different number of synthetic images added to the
training data achieved best performance in all metrics. More importantly, the quality
levels of generated images from our full models are very stable. Classification perfor-
mances are similar among different ratios and during different runs, with consistently
high mean and low std, which demonstrates that the feature qualities of generated im-
ages after filtering are superior to images generated by other models or without filtering.

4 Conclusions

In this paper, we investigate a novel GAN based aumentation pipeline for cervical
histopathology image classification problem. We mainly focus on one of the major lim-
itations of using GAN for augmentation: one cannot measure and control the quality of
the synthetic images. While traditional GANs try to improve the fidelity of synthetic im-
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Method Accuracy AUC Sensitivity Specificity
ResNet18 [7] 0.663± 0.032 0.775± 0.021 0.553± 0.019 0.866± 0.010

Traditional Augmentation 0.670± 0.015 0.780± 0.010 0.587± 0.016 0.868± 0.006

cGAN + AC R=0.5 0.687± 0.009 0.792± 0.006 0.596± 0.009 0.874± 0.003

cGAN + AC R=2 0.660± 0.020 0.773± 0.014 0.551± 0.032 0.862± 0.011

Ours w/o Filtering R=0.5 0.695± 0.009 0.796± 0.006 0.559± 0.032 0.874± 0.006

Ours w/o Filtering R=2 0.705± 0.010 0.804± 0.007 0.555± 0.019 0.872± 0.005

Ours w/ Filtering R=0.5 0.716± 0.009 0.810± 0.005 0.611± 0.012 0.886± 0.006

Ours w/ Filtering R=2 0.717± 0.008 0.811± 0.006 0.608± 0.009 0.882± 0.003

Table 1: Quantitative comparisons of baseline classification models and different aug-
mentation models. All evaluation metrics are averaged over four classes. AC stands for
the auxiliary classifier in the discriminator and R represents the data augmentation ratio.

ages, an augmentation system should try to generate images which have better feature
quality rather than visual realism. By introducing a feature based filtering mechanism,
our model boosts the performance of baseline classifier significantly on a challenging
cervical histopathology dataset. As an attempt to make better use of GAN based aug-
mentation models in medical imaging, our proposed pipeline has great potentials in
other medical imaging applications where the number of labeled data is limited.
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