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Abstract— Respiratory diseases account for a significant 
proportion of deaths and disabilities across the world. Chest X-
ray (CXR) analysis remains a common diagnostic imaging 
modality for confirming intra-thoracic cardiopulmonary 
abnormalities. However, there remains an acute shortage of 
expert radiologists, particularly in under-resourced settings, 
resulting in severe interpretation delays. These issues can be 
mitigated by a computer-aided diagnostic (CADx) system to 
supplement decision-making and improve throughput while 
preserving and possibly improving the standard-of-care. 
Systems reported in the literature or popular media use 
handcrafted features and/or data-driven algorithms like deep 
learning (DL) to learn underlying data distributions. The 
remarkable success of convolutional neural networks (CNN) 
toward image recognition tasks has made them a promising 
choice for automated medical image analyses. However, CNNs 
suffer from high variance and may overfit due to their sensitivity 
to training data fluctuations. Ensemble learning helps to reduce 
this variance by combining predictions of multiple learning 
algorithms to construct complex, non-linear functions and 
improve robustness and generalization. This study aims to 
construct and assess the performance of an ensemble of machine 
learning (ML) models applied to the challenge of classifying 
normal and abnormal CXRs and significantly reducing the 
diagnostic load of radiologists and primary-care physicians. 

I. INTRODUCTION 

Respiratory diseases are reported to be the leading cause of 
mortality and disability globally [1]. Chest X-ray (CXR) 
evaluation by expert radiologists remains a routine protocol to 
diagnose intra-thoracic cardiopulmonary disorders. In 
resource-constrained settings, however, acute radiologist 
shortage leads to delayed interpretation and severe backlogs in 
patient care. There is a high research interest in developing 
automated computer-aided diagnostic (CADx) tools to 
supplement radiological interpretation [2]. A study of the 
literature reveals several works pertaining to the use of 
handcrafted features toward classifying abnormalities in 
CXRs [3]–[5]. These handcrafted features are built and 
optimized to improve performance with individual datasets. 
The performance suffers from variability in source machinery, 
morphology, background, orientation, and position of the 
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region of interest (ROI) [6]. Unlike handcrafted feature 
descriptors, data-driven methods including deep learning (DL) 
learn hierarchical feature representations directly from the 
underlying data without the need for manual feature extraction 
[7]. These methods deliver promising results in classifying 
highly heterogeneous images in the presence of a large amount 
of annotated data [8]. DL models have shown promise in 
detecting lung nodules [9], TB [10], image retrieval [11] and 
other applications. In classifying CXRs, these models 
outperformed conventional feature extraction and 
classification methods [12]. While the existing literature 
serves as a substantial proof of concepts, the methods 
discussed are not generalizable to different kinds of 
abnormalities. This is because new training data and 
associated labels need to be obtained to train the models 
toward learning each specific abnormality. As well, there 
exists a high inter-class variability and intra-class similarity 
across the thoracic abnormalities that do not have a defined 
shape and boundary. This makes it difficult for the models to 
predict the disease labels only from the CXRs in the absence 
of associated radiological reports. In real-world applications, 
it is a challenging task to train models and achieve 
generalization on datasets with varying distributions. Under 
these circumstances, improving results from multiple ML 
approaches could benefit from ensemble learning (EL) [13]. 
The process helps in combining the predictions of multiple, 
high-performing, less-correlated models called base-learners 
to create a robust system with improved performance and 
generalization. An ensemble could be performed in various 
ways that include: a) averaging; b) majority voting; and c) 
weighted averaging [14]. Averaging the models’ predictions 
deliver promising results on a wide range of metrics and 
problems [15]. Majority voting considers the predictions with 
maximum recommendation/vote from base-learners while 
predicting the final outcome [16]. Weighted averaging 
improves generalization by assigning higher weights to more 
accurate base-learners [17].  

Goal: This work aims to simplify the analysis in a binary 
triage classification problem that classifies CXRs into normal 
and abnormal categories. We evaluate the performance of 
different ensemble strategies that combine predictions of ML 
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classifiers trained with handcrafted/CNN-extracted features 
toward the current task. We extract HOG and LBP features and 
train a binary SVM classifier on the extracted features. We use 
DL models including a custom CNN, pretrained VGG16, and 
VGG19 [18] to learn hierarchical feature representations from 
the CXRs. Finally, we combine the predictions of individual 
base-learners through different ensemble strategies including 
majority voting, simple averaging, and weighted averaging to 
observe for a possible improvement in performance.  

We note that the Kaggle Pneumonia detection challenge, 
organized by the joint effort of radiologists from the 
Radiological Society of North America (RSNA) and Society 
of Thoracic Radiology (STR) aims to predict the 
presence/absence of pneumonia in a given CXR. This is done 
by categorizing the data into pneumonia and non-pneumonia 
classes, the latter includes both normal, and abnormal images 
with lung opacities that are not related to pneumonia. This is 
distinct from our goal that aims to classify CXRs as normal 
versus abnormal, with the intent of serving as a triage for 
global health applications with a special interest in 
applicability in resource-challenged settings.  

We use a Linux Ubuntu System with Nvidia GTX 1080 Ti 
GPU and CUDA/cuDNN dependencies for GPU acceleration. 
The remainder of this study is organized as follows: Section II 
elaborates on the materials and methods, Section III discusses 
the results, and Section IV concludes this report of the study. 

II. MATERIALS AND METHODS 

A. Datasets 

The Kaggle pneumonia detection challenge 
(https://www.kaggle.com/c/rsna-pneumonia-detection-
challenge/data) dataset was used in this study. The dataset 
includes images with pulmonary opacities that may represent 
pneumonia and other images that are normal and those without 
a pulmonary opacity suspicious for pneumonia. The 
distribution of data across the classes is tabulated in Table 1. 
All images were of 1024×1024 pixel dimensions with 8-bit 
depth.  Institutional Review Board (IRB) do not apply since 
the dataset has been de-identified and made publicly available.  

TABLE I. DATASET AND ITS CHARACTERISTICS. 

# Abnormal # Normal File type Bit-depth 

17833 8851 DICOM 8 

B. Preprocessing 

The lung ROI is segmented using the all-dropout UNET 
(AD-UNET) [19] to help the base-learners learn relevant 
information toward arriving at the predictions. After lung 
segmentation, the resulting images are cropped to the size of a 
bounding box containing all the lung pixels and resized to 
224×224 pixel dimensions for further study. 

C. Feature extraction using LBP/HOG and classification 
using SVM  

In LBP based feature extraction, the local textural 
representation is obtained by the comparison of each pixel 
with its surrounding neighbors [20]. While extracting HOG 
features, the input images are divided into cells and features 
are computed for the pixels within each cell [21]. The 

histograms across multiple cells are accumulated to form the 
final feature vector. The extracted LBP and HOG feature 
descriptors are used to train an SVM classifier with a radial 
basis kernel (RBF) and the predictions are recorded. We used 
the original images of 1024×1024 pixel dimensions for 
extracting HOG and LBP features. 

D. Sequential CNN model  

We designed a sequential CNN as the baseline for the 
current task. The model has a linear stack of convolutional, 
ReLU, max-pooling, and dense layers. The global average 
pooling (GAP) layer computes the average of each feature map 
in the deepest convolutional layer. A Softmax [7] probabilistic 
classifier regularizes the outputs to the interval [0, 1] and 
assigns a probability to each image category. Fig. 1 shows the 
architecture of the custom CNN used in this study. 

E. Feature extraction and classification using pretrained 
VGG16 and VGG19 models 

We used the pretrained VGG16 and VGG19 models and 
customized them for the task under study as shown in Fig. 2. 
The models are truncated at the deepest convolutional layer, a 
GAP and dense layer are added to predict on the outcome. The 
VGG16 model is trained end to end to learn CXR-specific 
feature representations and categorize them to their respective 
classes. The VGG19 model is instantiated with the 
convolutional base and loaded with the pretrained weights. 
The activation maps before the dense, fully-connected layers 
are extracted and a dense model is trained on top of the stored 
features. 

 
Figure 1.  The architecture of the customized CNN. 

 
Figure 2.  The customized architecture of VGG16 and VGG19 

models. 
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We performed a randomized grid search [22] to obtain the 
optimal values for the hyperparameters including learning rate, 
momentum, and L2-regularization for the DL models under 
study. The search ranges are initialized to [1e-7, 1e-1], [0.8, 
0.99], and [1e-9,   1e-1] for the learning rate, momentum, and 
L2-penalty respectively. The models’ performance is 
evaluated in terms of accuracy, the area under the ROC curve 
(AUC), F-score and Matthews Correlation Coefficient (MCC). 

F. Ensemble learning 

We performed multiple ensembles of the predictions of 
individual base-learners through averaging, majority voting, 
and weighted averaging strategies to classify the CXRs into 
normal and abnormal categories. Fig. 3 shows the block 
diagram of the proposed ensembles. 

 
Figure 3.  Ensemble learning for CXR classification. 

III. RESULTS AND DISCUSSION 

The results obtained with LBP/SVM and HOG/SVM are 
shown in Table 2. We performed 5-fold cross-validation and 
presented the results in terms of mean and standard deviation 
(SD).  

TABLE II. SVM-BASED CLASSIFICATION OF HANDCRAFTED FEATURES. 

Fold LBP HOG 

Acc AUC F  MCC Acc AUC F  MCC 

1 87.9 86.6 91.1 72.6 96.5 95.1 97.5 92.0 

2 87.8 86.6 91.1 72.2 96.1 94.5 97.3 91.1 

3 87.7 86.2 90.9 72.0 96.4 94.9 97.5 91.8 

4 86.7 85.5 90.3 70.4 96.0 93.5 97.2 90.7 

5 88.7 87.2 91.7 74.0 96.4 94.9 97.5 91.7 

Mean 87.8 86.3 91.1 72.3 96.3 94.6 97.4 91.5 

SD 0.65 0.63 0.50 1.29 0.22 0.65 0.14 0.54 

 

As observed from Table 2, HOG descriptors gave 
promising results across the folds than LBP. The accuracy of 
the HOG/SVM model is 96.3±0.22 in comparison to 
87.8±0.65 achieved with the LBP/SVM. The AUC, F-score, 
and MCC values for the HOG/SVM outperformed that of 
LBP/SVM by achieving 94.6±0.65, 97.4±0.14, and 91.5±0.54 
respectively. The performance of custom CNN and pretrained 
VGG16 are tabulated in Table 3.  The optimal values of 
hyperparameters including learning rate, momentum, and L2 
penalty are found to be [1e-2, 0.95, 1e-7], [1e-4, 0.99, 1e-6], 
and [1e-4, 0.99, 1e-6] for the custom CNN, VGG16 and 
VGG19 models under study. We observed that the VGG16 
demonstrated promising performance than the custom CNN 
under study. The generic feature representations learned from 
the ImageNet data served as a good initialization that assisted 
the model in faster convergence with reduced overfitting and 

improved generalization. The custom CNN is initialized with 
random weights. The custom model didn’t optimally learn 
discriminative feature representations owing to the 
imbalanced distribution of samples across the normal and 
abnormal categories.  

Table 4 shows the performance of the VGG19 model, 
trained as a classifier toward the current task. As observed, 
the performance is not promising like the other methods. This 
may be attributed to several reasons: a) The architecture depth 
of VGG19 appears adverse to this binary classification task; 
b) The data variability is several orders of magnitude smaller 
in comparison to ImageNet and deeper networks do not 
appear to be a fitting tool; and c) The top layers of VGG19 
are probably too specialized and progressively more complex 
and may not be the best candidate to be used for the current 
task.  

TABLE III. PERFORMANCE METRICS OF CUSTOMIZED CNN AND 
PRETRAINED VGG16 MODELS. 

Fold Custom CNN VGG16 

Acc AUC F MCC Acc AUC F MCC 

1 93.4 97.8 95.2 85.2 97.5 99.8 98.2 94.2 

2 93.1 97.7 95.1 84.0 96.8 99.8 97.8 92.6 

3 94.3 98.3 95.9 87.0 96.8 99.7 97.8 92.7 

4 92.3 98.1 94.5 82.2 97.2 99.8 98.0 93.5 

5 92.5 97.8 94.6 82.5 97.1 99.8 98.0 93.3 

Mean 93.2 98.0 95.1 84.2 97.1 99.8 98.0 93.3 

SD 0.81 0.23 0.56 1.99 0.30 0.05 0.17 0.65 

 

TABLE IV. PERFORMANCE METRICS OF THE PRETRAINED VGG19 MODEL. 

Fold VGG19 

Acc AUC F MCC 

1 87.5 93.3 91.0 71.2 

2 87.9 93.6 91.3 71.7 

3 88.7 86.2 91.9 73.7 

4 87.9 93.9 91.4 71.7 

5 87.9 93.8 91.3 71.7 

Mean 88.0 92.2 91.4 72.0 

SD 0.43 3.36 0.33 0.97 

 

The results of ensemble strategies are tabulated in Table 5 
and Table 6. In weighted averaging, we awarded high/low 
importance to the predictions by assigning higher weights to 
more accurate base-learners. We found that the VGG16 
outperformed the other methods toward the current task. 
Thus, we assigned weights of [0.1, 0.4, 0.1, 0.1, 0.3] to the 
predictions of the custom CNN, VGG16, VGG19, LBP/SVM, 
and HOG/SVM models respectively. We observed that 
weighted averaging outperformed majority voting and simple 
averaging ensembles by achieving an accuracy of 98.7±0.078, 
AUC of 100±0.02, F-score of 99.1±0.05, and MCC of 
96.8±0.18.   
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TABLE V. PERFORMANCE METRICS OF MAJORITY VOTING AND SIMPLE 
AVERAGING ENSEMBLES. 

Fold Majority voting Averaging 

Acc F MCC Acc AUC F MCC 

1 98.2 98.7 95.8 98.7 99.9 99.1 97.1 

2 97.6 98.3 94.5 98.3 99.9 98.8 95.9 

3 98.0 98.6 95.3 98.4 99.9 98.9 96.3 

4 97.5 98.3 94.3 98.3 100.0 98.8 96.1 

5 97.7 98.4 94.6 98.5 100.0 99.0 96.5 

Mean 97.8 98.5 94.9 98.5 100.0 99.0 96.4 

SD 0.27 0.18 0.63 0.18 0.02 0.13 0.46 

 

TABLE VI. PERFORMANCE METRICS OF THE WEIGHTED AVERAGING 
ENSEMBLE. 

Fold Weighted averaging 

Acc AUC F MCC 

1 98.7 100.0 99.1 97.0 

2 98.6 100.0 99.1 96.8 

3 98.6 100.0 99.1 96.7 

4 98.5 99.9 99.0 96.5 

5 98.6 100.0 99.0 96.8 

Mean 98.7 100.0 99.1 96.8 

SD 0.78 0.02 0.05 0.18 

IV. CONCLUSION 

We conclude that the weighted averaging of the predictions 
of individual base-learners significantly improves the 
performance toward the challenge of classifying normal and 
abnormal CXRs. We also observed that the winning solution 
in the Kaggle pneumonia detection challenge used an 
ensemble of pretrained CNN models toward detecting 
pneumonia in CXRs. Model ensembles provide a reliable 
solution by making a combined prediction where the final 
accuracy is promising than that of the individual learners. The 
ensemble promises to be a functional classification 
framework and would serve as a triage, particularly in 
resource-constrained settings to supplement diagnosis and 
improve patient treatment. 
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