
  

  

Abstract— In this paper, we aim to extract the aortic knuckle 
(AK) contour in chest radiographs, an anatomical structure 
rarely being addressed in the literature. Since the AK structure 
is small and thin, simply adopting the deep network methods 
that are successful for large organ segmentation is inadequate 
for achieving good pixel-level accuracy and resolving local 
ambiguities. To address this challenge, we propose a new 
coarse-to-fine segmentation approach which focuses on global 
and local information contexts, respectively. Two convolutional 
networks are used. For the coarse segmentation, we use Faster-
RCNN; for the fine segmentation, we use U-Net. Our evaluation 
uses the publicly available JSRT dataset; the results are quite 
promising. Besides presenting these results, we analyze issues 
such as the imprecision of manual contour marking, and 
automatic generation of the coarse segmentation ground-truth 
mask used for deep network training. Our approach is general 
and can be applied to extract other curve-like objects-of-
interest. 

I. INTRODUCTION 

Chest radiographs are frequently used by clinicians to 
diagnose diseases and conditions in and around the thorax. 
Automatic analysis of chest radiographs has been an active 
research field for decades. One of the main research topics is 
segmentation or extraction the region of interest. The 
majority of the work focuses on identifying regions of lung, 
heart, clavicle, and rib. Our group also has developed 
algorithms to segment these major regions [1, 2]. In this 
paper, we present our work on extracting aortic knuckle, a 
task that is rarely being addressed in the literature. Aortic 
knuckle (AK), also called aortic knob, is a radiographic 
structure that represents the part of the thoracic aorta arching 
backwards over the left main bronchus and pulmonary 
vessels. As shown in Figure 1, it refers to the hump-shape 
contour of aorta seen in frontal radiographs on the 
mediastinal silhouette. Abnormal aortic knuckle shape, such 
as the sign of enlargement and aortic nipple, may indicate 
cardiovascular disease [3]. 

Deep learning has become one of the most popular 
research topics in computer vision due to several converging 
factors, including its state-of-the-art performance, in 
particular for classification tasks, the open-source code 
contributed by the community, the affordability of GPU 
hardware to make network training time practical, and the 
access to large annotated datasets. Although most of the work 
concentrates on classification because of its significant 
success, deep learning has been investigated for other 
research tasks and achieved very promising performance. For 
semantic segmentation, the cornerstone deep network is the 
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fully convolutional network (FCN) proposed in 2014 [4]. It is 
the first CNN architecture that can be trained end-to-end and 
generate segmentation maps for input images of arbitrary 
size. Stemming from FCN, subsequent important deep 
networks for object segmentation include encoder-decoder 
networks, and multiscale networks that incorporate context 
knowledge [5, 6]. For reviews on recent deep learning 
techniques developed for semantic segmentation, please refer 
to [7]. Most of these segmentation deep networks were 
evaluated on general-domain image datasets. 

Deep learning techniques have been applied for analyzing 
chest x-rays; the majority are for classification (such as 
classifying images into certain types of clinical 
manifestations [8]). There are only a few works on using 
deep learning to segment regions (lungs, heart, and clavicles) 
in chest radiographs (with lungs being the main focus) [9, 
10]. The work on extracting aortic knuckle/arch is very 
scarce. The only publications we found are the two patents 
[11, 12], in which the aortic knuckle/arch is extracted based 
on selecting “arc candidates” from the lung boundary. In 
addition, no performance evaluation of their methods is 
provided in these two patents. Compared to the regions of 
lung, heart, clavicle and ribs, aortic knuckle segmentation 
faces several key challenges. These challenges include: 1) the 
size/length of aortic knuckle is much smaller compared to the 
size of the whole image; 2) as aortic knuckle is a thin open 
contour on the boundary of the mediastinum, it is labor-
intensive to delineate it precisely. Therefore the method 
should be robust and not sensitive to the imprecision of 
manual marking; 3) shape and intensity alone are not 
sufficient to identify the aortic knuckle; spatial context 
information is crucial. To address these challenges, we 
propose a new coarse-to-fine deep learning approach to use 
and balance local and global context information. To make 
the method robust, we also employ pre-processing and post-
processing procedures. The proposed method is tested on the 
Japanese Society of Radiological Technology (JSRT) dataset, 
and the results are quite promising. The general framework 
can be applied to extract other contour landmarks, such as 
contours of the hemidiaphragms and costophrenic (CP) 
angles. 

II. METHOD 
As pointed out in Section I, unlike the extraction of large 

organ regions, the aortic knuckle has several intrinsic 
characteristics that require special consideration. The aortic 
knuckle, which shown in chest radiographs as a small part of 
the mediastinum silhouette boundary contour, contains 
significantly fewer pixels than other anatomical landmarks 
and the whole chest image. Although the shape of aortic 
knuckle looks generally like an arch-like curve, the shape 
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alone is not adequate to identify it in the image; this requires 
both global as well as local context information. We propose 
a coarse-to-fine deep learning segmentation method for this 
task. Our method consists of two main steps. In the first step, 
we extract the coarse region that includes the aortic knuckle. 
This step uses additional context information surrounding the 
aortic knuckle which is more recognizable and easier for the 
network to learn. In the second step, we identify the aortic 
knuckle inside that coarse region-of-interest (ROI). Since the 
first step removes unwanted area and reduces the search 
space for the second step significantly, the aortic knuckle 
contour becomes much more prominent in the coarse ROI 
and it is easier for the network to learn to differentiate it from 
other regions based on its shape, intensity and location. The 
convolutional networks that are used for object detection and 
semantic segmentation can be adopted for the coarse and fine 
segmentation steps, respectively. Specifically, in this paper, 
the Faster-RCNN [13], a two-stage object detection CNN 
network, is employed in the coarse segmentation step, and U-
Net [14], a semantic segmentation FCN architecture that has 
been successfully applied to biomedical images, is used in the 
fine segmentation step.  

In the following, we introduce the image data, the 
generation of the ground truth masks especially for the step 
of coarse segmentation, the Faster-RCNN and the U-Net 
architectures, and the pre- and post- processing methods.  

A. Image data 
We use the JSRT dataset [15] for both training and 

testing. The JSRT dataset consists of 247 posterior-anterior 
chest x-ray images. The dataset originally aimed for nodule 
detection and among the 247 images, 154 have nodules, and 
93 do not have a nodule. This dataset has been used to 
evaluate segmentation of left/right lung fields, heart, and 
left/right clavicles. We use this dataset for evaluating our 
method of aortic knuckle contour extraction.  

B. Ground truth masks generation 
For both steps (coarse segmentation and fine 

segmentation), we use convolutional networks to do the 
segmentation. Therefore, ground truth markings are needed 
in both steps to train the network. 

1) AK contour manual drawing 
Since it would be time-consuming and tedious for a 

radiologist to manually draw the AK contours on all the 
images, we adopted the method of “engineer draw with 
expert radiologist guidance”.  We manually drew them, after 
radiologist consultation, then modified them based on 
feedback from the radiologist. We used the path tool in 
GIMP to do the boundary drawing. GIMP output SVG files, 
which we converted to PNG.  

2) Ground truth ROI mask for coarse segmentation 
For coarse segmentation, at the beginning, we manually 

created the ROI boxes using the Matlab Training Image 
Labeler tool. We required that a ROI mask for coarse 
segmentation meets the following criteria: it is a rectangular 
box around the mediastinum that includes the aortic knuckle; 
it should cover part of the right/left lung and there should 
have some gaps between the aortic arch, and the box 
boundaries. These criteria aim to: 1) include the context 
information that are more recognizable and easier for the 

network to learn; 2) be relaxed enough to allow easy 
drawing. Figure 2 (a) and 2(b) show an example of the aortic 
knuckle contour and ROI markings, respectively. We later 
developed a method to automatically generate these ROI 
masks, in order to reduce the cost for ground truth labeling 
especially when a large number of images need to be 
annotated. As illustrated in Figure 3, the method is based on 
the location of the manual markings of the aortic knuckle and 
the location of the mediastinum center line. Specifically, the 
right/upper/lower boundary of the ROI box are decided by 
adding a gap from the corresponding the right/upper/lower 
boundary of the bounding box of the aortic knuckle contour 
respectively; and the left boundary of the ROI box is decided 
by the distance from the center line to the right boundary of 
the ROI box. The mediastinum center line is extracted by 
finding the location on the x-axis that corresponds to the peak 
of the vertical profile of the central part of the image (for 
example, cropped ¼ of the original border length on each 
side, in order to remove the outer area that may also have 
high vertical profile value). Both the manual or automatic 
generated ROI box is made to be a square ROI box (centered 
at the center of the ROI box with the side length equal to the 
maximum of the width and length of the ROI box). 

 
Figure 1. Illustration of 

aortic knuckle. 

  
Figure 2. Examples of manual AK contour 

markings and ROI markings 
 

   
Figure 3. Illustration for aortic knuckle ROI mask generation. 

Please note that there exists imprecision in the ground 
truth data. For the fine segmentation step (i.e., manual 
marking of the AK contour), it is due to the difficulty of 
precise contour drawing. For the coarse segmentation step 
(i.e., manual or automatic generation of the ground truth ROI 
mask), it is due to the relaxed definition of the ROI. The 
techniques we developed for tolerating this imprecision will 
be described in the section of pre-processing and post-
processing. 

C. Segmentation convolutional network 
1) Faster-RCNN 

Faster-RCNN is an object detection algorithm based on a 
unified network of two networks: a Region Proposal Network 
(RPN) and a Fast-RCNN [16] object detection network. The 
RPN is used to output a set of bounding box proposals for an 
input image. The Fast-RCNN is used to classify each of the 
bounding box proposals generated by RPN to be one of the 
objects or the background as well as refining the bounding 
boxes of the objects. The RPN and Fast-RCNN share a 
common set of convolutional layers (base convolutional 
network). The RPN slides a small spatial window on the 
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feature map output by the last convolutional layer and 
estimates the probability of being an object or background 
(objectness score) for each of the bounding boxes predefined 
at each location with different scales and aspect ratios (called 
anchors) as well as adjusting the coordinates of these 
anchors. The bounding box proposals output by RPN are 
ranked based on their objectness scores and are post-
processed to remove highly overlapped ones using non-
maximum suppression (NMS). The top-N ranked region 
proposals are then input to Fast-RCNN. The Fast-RCNN 
contains a ROI pooling layer which extracts a fixed-length 
feature vector from the feature map for each of the input 
region proposal. The feature vector, after going through a 
couple of fully connected layers, is then input to two sibling 
output layers: one outputs the estimates for M +1 classes (M 
object classes plus the background); the other outputs 4 
values representing the bounding-box position for each of the 
object classes.  Faster-RCNN can be trained by training the 
RPN and Fast-RCNN either alternately or jointly. For the 
detailed description on the algorithm and implementation of 
Faster-RCNN, please refer to [13]. For our application, we 
use Faster-RCNN as a single-object detector to identify the 
AK ROI. The software package we use is [17]. We use the 
VGG16 network pre-trained using ImageNet data as the base 
convolutional network. The number of training iterations is 
set to be 10k.  

2) U-Net 
U-Net is a semantic segmentation convolutional network 

proposed by [14] which works with limited training images. 
It has an encoder-decoder architecture which consists of a 
contracting path and a symmetric expanding path. The 
contracting path contains pairs of convolutional layers and 
pooling layers to capture the context, while the expanding 
path recovers the spatial dimension and adds object details by 
merging the extracted features from the contracting path. For 
the details of the U-Net architecture, please refer to [14]. U-
Net has been applied/adapted to segment objects in 
biomedical images such as cells, retina vessels, and lungs and 
has achieved state-of-the-art performance. In this paper, we 
adapt this network to segment the aortic knuckle contour in 
the fine segmentation step. The specific network architecture 
is given in Figure 4 (where ConvK-N indicates a 
convolutional layer with N feature maps of filter size K×K). It 
contains convolutional, drop-out, max pooling and 
upsampling layers. The dropout rate is 0.2 for all the drop-out 
layers. The pooling size is 2×2 for both the max pooling 
layers and the upsampling layers. The exponential linear 
units (ELUs) are used as the activation function for all the 
convolutional layers except the last convolutional layer; the 
binary cross entropy based loss function is used and the 
network is trained using the stochastic gradient descent 
(SGD) optimizer with a learning rate of 10-2.  

 
Figure 4. U-Net architecture 

For both steps, we use the 154 images with nodules as the 
training data and the 93 images without nodules as the test 
data. Data augmentation is not applied in the coarse 
segmentation step, but is applied in the fine segmentation 
step in order to generate more training data for performance 
improvement. 

D. Preprocessing and post-processing 
1) For the step of coarse segmentation 

In this step, no pre-processing is applied to the input 
image to the Faster-RCNN except that the images are resized 
to 600 x 600, zero-centered with mean-subtraction, and 
normalized with the standard deviation. For the test images, 
after getting the output bounding box of AK ROI from the 
trained Faster-RCNN, we also generate the corresponding 
AK ROI square box. Figure 5 shows three examples of the 
Faster-RCNN testing results (the ground truth ROI box, the 
ROI box output by Faster-RCNN, and the corresponding 
square ROI box are indicated in green, blue and red color 
respectively). The test images cropped by using the AK ROI 
square box are then resized to 256 x 256 and fed to the U-Net 
for the fine segmentation.  

   
Figure 5. Faster-RCNN results. 

  

 

(a) Network output (b) step 1   

 
(c) step 2   (d) step 3 

Figure 6. Post-processing of AK contour map in fine segmentation 

2) For the step of fine segmentation 
In this step, the U-Net is trained with the pairs of the 

cropped images and cropped AK contour masks generated 
based on the AK ROI masks. The AK contour masks used by 
the U-Net are first dilated. The reasons for applying dilation 
to make the contour mask thicker are as follows: 1) the 
single-pixel width aortic knuckle contour drawn by hand may 
not be precisely located along the edge of the mediastinum 
silhouette; 2) the dilated contour may cover more area of the 
edge that exhibits intensity transition which makes it easier 
for the network to learn to represent. In this step, we did data 
augmentation in order to improve segmentation performance. 
It was done by shifting the center of the AK ROI mask in 
each of the 4 directions and using different cropping sizes 
when cropping. The cropped images/masks are then contrast 
enhanced using histogram equalization, resampled to 
256x256, zero-centered with mean-subtraction, and 
normalized with the standard deviation. The mean and 
standard deviation are calculated from the whole training set. 



  

These cropped images generated/augmented from the original 
154 images in the training set are used to train the U-Net.  As 
shown in Figure 6, given a test input image, the output 
segmentation probability map of the U-Net is post-processed 
as follows to get the final contour: 1) convert the map to a 
binary image by thresholding and extract the largest 
connected-component as the object of interest; 2) extract the 
center line of the object as the AK contour by thinning; 3) 
resize the segmentation probability map and add the outside 
area (being removed when cropping) back so that the size of 
the map is the same as the original image.  

III. EXPERIMENTAL RESULTS 

For the coarse segmentation, the number of training 
images is 154 and the number of test images is 93. To 
evaluate the coarse segmentation performance, we check that 
the extracted ROI region encloses the whole AK contour. 
This is very important since the goal of the coarse 
segmentation step is to reduce the search space for the next 
step. The subsequent segmentation of AK contour will fail if 
the ROI region output from the coarse segmentation does not 
include it. For each of the test images, the entire ground truth 
AK contour is within the extracted ROI region. We also use 
the Dice coefficient to measure the difference between the 
extracted AK ROI regions and ground truth. The average 
Dice coefficient is 0.88 for the test set.  

For the fine segmentation, we augment the data; the 
number of training images is 13860. The training images are 
then split 90/10% for training/validation sets when training 
the U-Net. The input binary mask to the U-Net is dilated with 
a disk-shaped structuring element of radius being 4 pixels, as 
described in Section II.D.2. For the test set, we use Dice 
coefficient to measure the performance of the segmentation 
result of the U-Net after the first post-processing step. We 
also use the Pratt’s figure of merit (PFOM) to compare the  
extracted contour (after thinning) with the ground truth 
contour, as [18] indicates that PFOM stood out among 
contour detection evaluation criteria. The PFOM is defined 
as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1
max (𝐼𝐼𝑔𝑔𝑔𝑔,𝐼𝐼𝑐𝑐)

∑ 1
1+𝛼𝛼𝛼𝛼2(𝑖𝑖)

𝐼𝐼𝑐𝑐
𝑖𝑖=1                        (1) 

where 𝐼𝐼𝑔𝑔𝑔𝑔  is the number of pixels in the ground truth contour, 
𝐼𝐼𝑐𝑐 is the number of pixels in the segmented contour,α is the 
scaling constant, and 𝑑𝑑(𝑖𝑖) is the distance between the 𝑖𝑖𝑡𝑡ℎ 
pixel belonging to the segmented contour 𝐼𝐼𝑐𝑐 and the nearest 
pixel in the reference contour 𝐼𝐼𝑔𝑔𝑔𝑔 . For the 93 test images, the 
average Dice coefficient is 0.62 and the average value of 
PFOM is 0.59. We also evaluate the performance on the test 
image set that is augmented using the same way as the 
training images and the number of images is 8370. The 
average Dice coefficient is 0.63 and the average value of 
PFOM is 0.60 for the augmented test set. Figure 7 shows 
several examples of AK contour extraction results (blue: 
extracted contour, green: ground truth contour). 

IV. CONCLUSION 
In conclusion, we present a method for extracting the 

aortic knuckle contour in chest radiographs, an anatomical 
structure rarely being targeted in the literature. There are 
three key contributions of our work: 1) we carry out the first 

study on segmenting AK contour with deep learning 
techniques; 2) we propose a coarse-to-fine framework to 
address the distinctive challenges facing aortic knuckle 
segmentation for which simply adopting the deep networks 
used for large organs segmentation is not sufficient; 3) we 
provide techniques to deal with the imprecision of the manual 
markings or relaxed ground truth masks. We tested this 
method on the JSRT dataset; the results are promising. To 
improve the performance, especially for the fine 
segmentation, future work includes exploring other state-of-
the-art deep networks, improving the manual AK contours, 
and collecting more data. The proposed approach is quite 
general and can be easily generalized to segment other curve-
like objects contained in regions which can be coarsely 
characterized by landmark features, for example, the cardio-
diaphragmatic angles.  

     
Figure 7. Examples of AK contour extraction results 
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