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Abstract— Chest x-ray (CXR) analysis is a common part of 

the protocol for confirming active pulmonary Tuberculosis 

(TB). However, many TB endemic regions are severely 

resource constrained in radiological services impairing timely 

detection and treatment. Computer-aided diagnosis (CADx) 

tools can supplement decision-making while simultaneously 

addressing the gap in expert radiological interpretation during 

mobile field screening. These tools use hand-engineered and/or 

convolutional neural networks (CNN) computed image 

features. CNN, a class of deep learning (DL) models, has gained 

research prominence in visual recognition. It has been shown 

that Ensemble learning has an inherent advantage of 

constructing non-linear decision making functions and improve 

visual recognition. We create a stacking of classifiers with 

hand-engineered and CNN features toward improving TB 

detection in CXRs. The results obtained are highly promising 

and superior to the state-of-the-art. 

I. INTRODUCTION 

Tuberculosis (TB) is an infectious disease caused by the 
rod-shaped bacterium called Mycobacterium tuberculosis. 
According to the 2015 World Health Organization (WHO) 
report, TB is the most common cause of infectious disease-
related mortality across the world with more than 10 million 
people infected and 1.8 million reported deaths that year [1]. 
Postero-anterior (PA) or lateral chest X-ray (CXR) [2] is the 
most common imaging modality used to diagnose conditions 
affecting the chest [3], particularly pulmonary TB. Fig. 1 
shows two examples of abnormal and a normal CXR. Lack 
of expertise in interpreting radiology reports adversely 
impacts TB endemic regions, severely impairing screening 
efficacy [4]. Thus, there is current research interest in 
developing cost-effective computer-aided diagnosis (CADx) 
systems that could aid in that effort [5], [6]. Advancing use 
of CADx systems could help greatly improve the detection 
accuracy and alleviate human burden in screening and 
diagnosis, particularly in disease-endemic regions that lack 
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sufficient radiology resources. Most CADx methods use 
hand-engineered features combined with a supervised 
learning algorithm for decision-making. Of interest is work 
by [5] where the authors proposed a combination of standard 
computer vision algorithms for extracting features from 
CXR images. The study segmented the lung region of 
interest (ROI) [7], extracted the features using a combination 
of algorithms that included histogram of oriented gradients 
(HOG), local binary patterns (LBP), Tamura feature 
descriptors among others. A binary support vector machine 
(SVM) classifier was trained on these features to classify 
normal and TB-positive cases. HOG descriptors together 
with other commonly known image descriptors, viz., GIST, 
Pyramidal HOG (PHOG), are also used in another study on 
automated TB detection [8]. Unlike algorithms using hand-
engineered features, deep learning (DL) offers a hierarchical 
analysis of the image using a cascade of layers of non-linear 
processing units for “end-to-end” feature extraction and 
classification [9]. There are three commonly used 
approaches to applying DL for a visual recognition task: (i) 
training a model from scratch [10], [11] (ii) fine-tuning a 
pre-trained model (also known as, transfer learning (TL)) 
[12], and, (iii) using pre-trained models as feature extractors 
followed by training a supervised machine learning 
algorithm of choice [13]. Improving results from these 
approaches could take advantage of ensemble learning (EL) 
[14]. 

 
Figure 1. CXR images showing 2 examples of pulmonary abnormalities 

(left: pleural effusion, middle: cavitary lung lesion right lung), and normal 

lung image (right). 

A pioneering work on EL proved that multiple, diverse and 
accurate base-learners could asymptotically fuse results to 
build a strong-learner [15]. Different fusing strategies were 
used to combine the decision made by the base-learners, e.g., 
in majority voting the base-learners vote to predict the 
outcome. Stacking, otherwise called stacked generalization, 
is an optimal fusing technique that highlights each base-
learner that performs best and discredits others [14]. A 
second-level meta-learner optimizes the combination of 
individual base-learners. In [12], the authors evaluated the 
efficacy of an ensemble of various untrained and pre-trained 
deep CNNs toward TB detection in chest radiographs. As 
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reported in [16], pre-trained CNNs obtained better results 
than custom models on the publicly available datasets [5] 
also used in our study. These pre-trained models learned a 
comprehensive feature set, making them capable to serve as 
feature extractors in an extensive range of visual recognition 
applications. Since both DL and EL have their inherent 
advantages in constructing non-linear decision-making 
functions, the combination of the two could efficiently handle 
visual recognition tasks.  

Our study evaluated the performance of a stacked 
ensemble that optimally combined classifiers using hand-
engineered features with those extracted from pre-trained 
CNNs through two different proposals for improving the 
accuracy of TB detection in PA CXR images.  In the first 
proposal, we used commonly known GIST, HOG, and SURF 
features extracted from CXRs and trained an SVM classifier 
to classify them into normal and abnormal classes. In the 
second proposal, we used four different pre-trained CNN 
models, viz., AlexNet [17], VGG-16[10], GoogLeNet [18], 
and ResNet-50 [19], to extract features from the CXR images 
and similarly trained an SVM classifier on them to detect 
abnormal images that exhibit “TB-like” manifestations. 
Finally, we performed a stacked ensemble of models from 
these proposals to improve the accuracy of TB detection. For 
this study, we used a Windows

®
 system with Intel

®
 ® Xeon

®
 

CPU E5-2640v3 2.60-GHz processor, 1 TB of Hard Disk 
space, 16 GB RAM, a CUDA-enabled Nvidia GTX 1080 Ti 
11GB graphical processing unit (GPU), Matlab

®
 R2017b, 

Weka
®
 3, and CUDA 8.0/cuDNN 5.1 dependencies for GPU 

acceleration. The remainder of the paper is organized as 
follows: Section II discusses the materials and methods, 
Section III discusses the results, and Section IV concludes 
this paper. 

II. MATERIALS AND METHODS 

A. Datasets 

This study was evaluated on four CXR datasets including two 
publicly available datasets provided by the U.S. National 
Library of Medicine (NLM), National Institutes of Health 
(NIH) described in [5], viz, Shenzhen and Montgomery. The 
third data set was a private collection of CXRs, obtained with 
the assistance of Indiana University School of Medicine and 
Academic Model Providing Access to Healthcare 
(AMPATH), a Kenyan NGO, and made available de-
identified CXRs from rural western Kenya as a part of the 
mobile truck-based screening. This dataset contained 238 
abnormal CXRs and 729 healthy controls. Expert radiologist 
annotated the images and generated zone-based clinical 
readings. These CXRs had pixel resolutions of either 
2004×2432 or 1932×2348. The fourth dataset (India) was 
made available in [8]. Table 1 presents the information 
pertaining to the datasets and their characteristics. The 
acquisition and sharing of these datasets and all experimental 
procedures described here were approved by the NIH 
Institutional Review Board (IRB) (#5357).  

B. Preprocessing 

To enable algorithms to train on task-specific image ROI, 
the lungs were automatically segmented from the CXRs 
using method described in [7]. As shown in Fig. 2, after lung 
segmentation, the resulting images were cropped to the size 

of a bounding box that contains all the lung pixels. The 
cropped images were contrast-enhanced by applying Contrast 
Limited Adaptive Histogram Equalization (CLAHE) 
algorithm. For Proposal 1, the images were down-sampled to 
3072×3072, 4096×4096, 2048×2048, and 1024×1024 pixel 
resolutions to obtain images with identical dimensionality for 
Shenzhen, Montgomery, Kenya, and India collections 
respectively.  

TABLE I. DATASETS AND THEIR CHARACTERISTICS. DATASETS CODE: S: 
SHENZEN, M: MONTGOMERY, K: KENYA, I: INDIA. 

 # TB 

positive 
# 

Normal 

File 

Type 

Bit 

Depth 

Resolution 

S 336 326 PNG 8-bit 948-3001×1130-3001 

M 58 80 PNG 8-bit 4020-4892×4020-4892 

K 238 729 PNG 8-bit 1312-1852×1094-1838 

I 153 153 JPG 8-bit 1024-2480×1024-2480 

  

For Proposal 2, the images were down-sampled to 224×224 
and 227×227 pixel resolutions to suit the input requirements 
for the different pre-trained CNNs, across all the datasets.  

 

 

Figure 2. PA CXR lung ROI segmentation process: (a) original image, (b) 

computed lung mask, (c) segmented lung ROI with the bounding box. 

C. Proposal 1 – Feature extraction using local and global 

feature descriptors and classification using SVM  

Since pre-trained CNNs demand down-sampling of the 
underlying data to fit the specific requirements of the input 
layer, a lot of potentially viable information pertaining to the 
signs of TB infection may be lost. The best way to overcome 
this issue is to use the local and global feature descriptors that 
extract discriminative information from the entire CXR 
image without the need for down-sampling, a serious 
constraint with the usage of DL models. For this reason, local 
and global feature descriptors were used in this proposal (P1). 
We evaluated the performance of global image descriptors 
including GIST, HOG and local descriptors including SURF 
toward identifying TB manifestations. We performed nested 
cross-validation where in the outer loop, we performed 5-fold 
cross-validation for all the datasets. In the inner loop, we 
performed Bayesian optimization [20] to minimize 5-fold 
cross-validation error by varying the parameters for the SVM 
classifier that included the box constraint, kernel scale, kernel 
function, and order of the polynomial. The chosen ranges 
included [1e-3 1e3], [1e-3 1e3], and [2 4] for box constraint, 
kernel scale and order of the polynomial respectively. For the 
kernel function, the optimization process searched among 
linear, Gaussian, RBF and Polynomial kernels.   
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D. Proposal 2 – Feature extraction using pre-trained 

CNNs and classification using SVM 

In the second proposal (P2), we evaluated the performance 
of CNN models pre-trained on the large-scale ImageNet 
dataset (listed earlier) in extracting the features from the CXR 
images across the normal and TB-positive categories. The 
segmented ROI constituting the lungs were down-sampled to 
match the input dimensions of the pre-trained CNNs. 
Literature study revealed that the features were typically 
extracted from the one, right before the classification layer 
[21] to train a classifier. The validation was conducted as in 
P1.  

E. Stacked generalization of models  

Finally, we created a stacked generalization of models from 
the proposals above to improve the accuracy of TB detection. 
Stacked ensembles were created for the models in P1 labeled 
(E [P1]), and P1 and P2, labeled (E [P1P2]) in the result 
tables below. The meta-learner used was a Logistic 
regression (LR) classifier that estimated the probability for a 
binary response. Fig. 3 shows the block diagram of the 
proposed stacked ensemble. 

 

Figure 3. The stacked ensemble of models from the proposals. 

III. RESULTS AND DISCUSSION 

Table 2 shows the results obtained with different feature 

descriptors used in P1 in terms of accuracy and area under 

ROC curve (AUC). For the Shenzhen dataset (“S”), best 

results were obtained with the GIST features and SVM/RBF 

classifier with an accuracy of 0.845 and AUC of 0.921. For 

the Montgomery dataset (“M”), BOW model using SURF 

and SVM/RBF classifier demonstrated superior performance 

with an accuracy of 0.775 and AUC of 0.845. For Kenya 

dataset (“K”), HOG features and SVM/Gaussian classifier 

showed better performance in terms of accuracy but GIST 

features and SVM/RBF classifier gave the best AUC of 

0.748. For India dataset (“I”), GIST features and SVM/RBF 

classifier demonstrated superior performance with an 

accuracy of 0.882 and AUC of 0.961. We observed that no 

feature descriptor performed equally well. The CXR images 

varied across the datasets in source machinery and pixel 

resolutions. The local and global feature descriptors were 

rule-based feature extraction mechanisms that were built and 

optimized to improve performance with the individual 

datasets. It may be for this reason that they did not perform 

equally well across the datasets. It can be noted here that the 

results obtained with the India dataset were superior to those 

obtained on the other datasets. A similar pattern was 

observed in the result tables for different proposals. Though 

the India collection is sparse, TB manifestations were 

obvious and distributed throughout the lungs that gave the 

feature descriptors the opportunity to capture highly 

discriminative features across the normal and abnormal 

categories. Least performance was observed with the Kenya 

dataset, the reason being the dataset had a highly imbalanced 

distribution of instances across the classes with 238 

abnormal CXRs in comparison to 729 healthy controls. The 

patients were all HIV+ with a low-immune response. The 

expression of the disease even for severe cases was 

significantly weaker than ordinary TB. They were cassette-

based radiographic images obtained as a result of mobile 

truck-based screening and hence the image resolution was 

not commendable that further impaired the performance of 

feature extraction and classification. 

TABLE II. SVM-BASED CLASSIFICATION OF HAND-ENGINEERED FEATURES 

(ACC = ACCURACY, AUC = AREA UNDER ROC CURVE). CODES SAME AS 

TABLE I. 

 HOG GIST SURF 

Acc AUC Acc AUC Acc AUC 

S 0.841 0.917 0.845 0.921 0.816 0.890 

M 0.708 0.772 0.750 0.817 0.775 0.845 

K 0.683 0.741 0.667 0.748 0.672 0.747 

I 0.880 0.947 0.882 0.961 0.864 0.938 

 
With Montgomery dataset, performance limitation may be 
attributed to the limited size of the dataset and the degree of 
imbalance across the classes where 40% of the samples were 
TB-positive as compared to 60% of healthy controls. Table 3 
presents the results of the second proposal using pre-trained 
CNNs for feature extraction and SVM for the classification 
task. For Shenzhen dataset, AlexNet obtained the best 
accuracy of 0.859 and AUC of 0.924. The same pattern was 
observed across Montgomery, Kenya and India datasets. For 
Montgomery dataset, AlexNet obtained the best accuracy of 
0.725 and AUC of 0.817. For India dataset, AlexNet 
outperformed the other pre-trained CNNs with an accuracy 
of 0.872 and AUC of 0.950. For the Kenya dataset, we 
observed that the AUC of VGG-16 was slightly better than 
that of AlexNet, however, the accuracy of AlexNet was 
higher than that of the other pre-trained CNNs. The results 
obtained with the India dataset were superior to the results 
obtained with the other datasets for the reasons discussed 
earlier.  

TABLE III. PRE-TRAINED CNNS BASED FEATURE EXTRACTION AND SVM 

BASED CLASSIFICATION. CODES SAME AS TABLE I. 

 AlexNet VGG-16 GoogLeNet ResNet-50 

Acc AUC Acc AUC Acc AUC Acc AUC 

S 0.859 0.924 0.829 0.901 0.768 0.870 0.819 0.893 

M 0.725 0.817 0.717 0.757 0.678 0.648 0.676 0.616 

K 0.693 0.776 0.691 0.777 0.674 0.750 0.678 0.753 

I 0.872 0.950 0.812 0.892 0.796 0.888 0.812 0.902 

  
Among pre-trained CNNs evaluated in this study, a 

shallow model like AlexNet outperformed other models 
across the datasets. It was surprising that deep models like 
ResNet-50 and GoogLeNet did not perform better than 
shallow models. The architecture depth of ResNet-50 and 
GoogLeNet seemed adverse to this task of binary medical 
image classification. For ImageNet data, deeper networks 
outperformed shallow counterparts for the reason that the 
data was diverse and the models learned abstractions for a 
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huge selection of classes [22]. In our case, for the binary task 
of TB detection from CXR datasets, the variability in data 
was several orders of magnitude smaller where deeper 
networks did not seem to be a fitting tool. Also, the top 
layers of the pre-trained CNNs like GoogLeNet and ResNet-
50 were probably too specialized, progressively more 
complex and not the best candidate to re-use for the task of 
our interest. Table 4 demonstrates the advantage of using a 
stacked ensemble of models where the ensemble of all 
proposals (E [P1P2]) had the highest AUC across all 
datasets. Table 5 compares the results obtained across the 
ensembles of different proposals presented in this study and 
top ranking relevant literature on TB detection [5], [8], [13], 
and [16]. In terms of accuracy, the stacked ensemble E 
[P1P2] outperformed the results presented in the literature. 
The proposed ensemble demonstrated the highest accuracy 
of 0.960 for India, followed by 0.934 for Shenzhen, 0.875 
for Montgomery, and 0.776 for the Kenya dataset. Accuracy 
across different ensembles remained the same with the value 
of 0.875 and 0.960 for Montgomery and India datasets 
respectively. We observed similar patterns with AUC values 
where E [P1P2] demonstrated high AUC values than the 
state-of-the-art. The results for Shenzhen dataset were 
superior with an AUC of 0.991, followed by 0.965 for India, 
0.962 for Montgomery and 0.826 for Kenya dataset. As 
observed from these results, E [P1P2] achieved promising 
results across the datasets than the state-of-the-art. 

TABLE IV. THE ENSEMBLE OF MODELS FROM DIFFERENT PROPOSALS. 
CODES SAME AS TABLE I. 

 E[P1] E[P1P2] 

Acc AUC Acc AUC 

S 0.934 0.955 0.934 0.991 

M 0.875 0.875 0.875 0.962 

K 0.733 0.825 0.776 0.826 

I 0.960 0.960 0.960 0.965 

TABLE V. COMPARISON OF THE PROPOSED ENSEMBLES WITH RESULTS FROM 

THE LITERATURE. CODES SAME AS TABLE I. 

 Literature Proposed 

approaches 

[5] [16]  [13] [8] E[P1] E[P1P2] 

S 
Acc 0.840 0.837  0.847   - 0.934   0.934  

AUC 0.900 0.926 0.926 - 0.955 0.991 

M 
Acc 0.783   0.674  0.826   - 0.875   0.875  

AUC 0.869 0.884 0.926 - 0.875 0.962 

K 
Acc - - - - 0.733  0.776  

AUC - - - - 0.825 0.826 

I 
Acc - - - 0.943 0.960  0.960 

AUC - - - 0.960 0.960 0.965 

IV. CONCLUSION 

We have discussed different proposals for improving the 

performance of TB detection. The goal of the proposed 

method is not to develop the most computationally efficient 

system. However, one can estimate the computation time as 

a combination of individual proposals. Based on the results 

obtained in the present work, we believe that the stacked 

ensemble of models using local and global feature 

descriptors and pre-trained CNNs could be a promising 

option for improving the detection accuracy. An appealing 

use case is to apply this method in applications with sparse 

data, particularly in biomedical imagery. 
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