Automatic White Blood Cell Detection and Segmentation in Microscopy Images of Thin Blood Smears

Golnaz Moallem¹, Mahdieh Poostchi², Hang Yu², Nila Palaniappan³, Kamolrat Silamut⁴, Richard J. Maude⁴, Md Amir Hossain⁵, Stefan Jaeger², Sameer Antani², George Thoma²

¹Department of Electrical and Computer Engineering, Texas Tech University, United States
²Lister Hill National Center for Biomedical Communications, U.S. National Library of Medicine, United States
³University of Missouri, Kansas City, United States
⁴Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
⁵Chittagong Medical College Hospital, Chittagong, Bangladesh

METHOD

The proposed algorithm includes three main steps:

- Pre-processing
 - To extract regions of interest (ROI) and perform illumination correction and color enhancement

- White Blood Cell Detection
 - To specify the location of any white blood cell present in an image using a range filtered version of the image

- White Blood Cell Segmentation
 - To segment the detected cells employing an accurate level-set algorithm

DATASET & ANNOTATION

- More than 1300 slide images containing about 1350 WBCs were acquired at Chittagong Medical College Hospital in Bangladesh

RESULTS

- We evaluate the two processing steps of our algorithm, cell detection and cell segmentation, separately:
 - WBC Detection Step
 - Measure: Value
 - Precision: 96.37
 - Recall: 98.57
 - F1 Score: 97.36
 - WBC Segmentation Step
 - Measure: Value
 - Jaccard Index: 82.28
 - Dice Index: 78.33

CONCLUSIONS

- The outcome of the proposed method for sample images from our dataset is demonstrated below.

ACKNOWLEDGMENT

This research is supported by the Intramural Research Program of NIH, NLM, and Lister Hill National Center for Biomedical Communications. Mahidol-Oxford Tropical Medicine Research Unit is funded by the Wellcome Trust of Great Britain.

REFERENCES