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A new template-

free, geometric 

signature-based 

technique detects 

arrow annotations 

on biomedical 

images. Segmented 

image regions 

(fuzzy binarization) 

are checked for 

geometric properties 

and validated with 

theoretical ones. 

representations of colors, shapes, and tex-
tures. A key step, therefore, is to automat-
ically identify such ROIs and annotate 
them according to concepts from biomedi-
cal text.1 Because medical images tend to 
be complex, researchers often use pointers 
(that is, arrows and symbols) to highlight 
meaningful ROIs (see Figure 1) while mini-
mizing distractions from other, less relevant 
regions. Additionally, ROIs are often re-
ferred to in figure captions and mentioned 
in the text of biomedical articles. Detecting 
arrows—a core theme of this article—could 
help identify meaningful ROIs and improve 
CBIR performance (see the “Related Work 
in Arrow Detection” sidebar).1,2

Our Proposed Method
As Figure 2 shows, our concept can be sum-
marized as follows, which is a thorough  

extension of previous work.3 It relies on a 
fuzzy binarization process to extract can-
didate regions. For this, we employ an 
adaptive tool to produce four different lev-
els of binarized images, to solve the prob-
lem that regular binarization techniques 
miss with overlaid arrows. We take con-
nected components (CCs) from every level 
of binarization and compute key points 
representing arrowheads by using the geo-
metrical convex properties of an arrow. 
For each key point, we compute two ma-
jor criteria, symmetry and overlap, to se-
lect potential candidates. This step helps 
prune noisy CCs. We then select triplet 
points that characterize the arrowhead. 
To make a decision, we then estimate the 
sets of triplets from the comparison of 
theoretical and discrete signature mod-
els (which we discuss more later in this  

Applications that use biomedical images are valuable not only in medi-

cal research and education but also in clinical decision support systems. 

In applying content-based image retrieval (CBIR) technology, the term content 

refers to encoding meaningful regions of interest (ROIs) with visual feature 
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In the content-based image retrieval literature, there are 
few techniques to detect overlaid arrows. Beibei Cheng 
and colleagues separate arrow-like objects from text-like 

ones, assuming that arrows are shown in either black or white 
(depending on the background color).1 From the binary im-
age, arrow-like object separation employs a fixed-sized mask, 
which is then used to compute features such as major and mi-
nor axis lengths, axis ratio, area, solidity, and Euler number. 

Another study uses a pointer region and boundary detec-
tion to handle distorted arrows,2 which is followed by edge-
detection techniques and fixed thresholding.  Fundamentally, 
edge-based arrow-detection techniques are limited by the 
weak-edge problem1,2 due to manual thresholding (either 
global or local). A hard threshold cue often weakens the 
decision in pointer detection. For edge  detection in binary or 
grayscale images, most methods use classical algorithms like 
Roberts, Sobel, and Canny edge  detection.3

Template-based methods are limited because they  
require new templates to train new images. Also, it could 
be necessary to re-evaluate the threshold values when new 
images are used. Edge-based techniques are still considered 
because sampling points can be much more compact than 
solid regions. However, broken boundaries (due to  

nonhomogeneous intensity distribution, where pointers 
overlap with content) are sometimes not fully recovered. 
In this context, techniques that use key points from solid 
objects hold promise and form the basis of our proposed 
method. Following the basic concept presented by Laurent 
Wendling and Salvatore Tabbone,4 in this article, we use 
the geometrical definition of an arrow. To detect arrows, 
we compare discrete signatures that are computed from key 
points with theoretical signatures. 
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Related Work in Arrow Detection 

Figure 1. Examples of arrows in biomedical images: (a)–(h) sample 1 through 8. Biomedical publications use a variety of arrow 
styles to make arrows visible, including filled and nonfilled (black and white) arrows against different background colors.

(a) (b) (d) (e)Sample 1 Sample 2 Sample 3 Sample 5

(c) (f) (g) (h)Sample 4 Sample 6 Sample 7 Sample 8
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article). In our assessment, the cor-
responding candidates are said to 
be detected as arrows if their simi-
larity ratio crosses the empirically 
set threshold. 

Geometric Properties of the 
arrow
As Figure 3 shows, an arrow is mod-
eled as an isosceles triangle T linked 
to a rectangle R:

A B CT , ,x y x y x y( , ) ( , ) ( , )a a b b c c( )=  and

E F G HR x y x y x y x y( , ) ( , ) ( , ) ( , )e e h h g g f f( )= ,

where we set c = d(A, B) and a = d(A, C) 
= d(B, C), and d refers to a Euclidean dis-
tance metric. The aim is to model both 
discrete and theoretical arrow signatures4 
and to integrate them into a broad (scal-
able) arrow-recognition model. 

Discrete signature. Let sec(a, c) be the 
sector defined from the segments [A, 
C] and [A, B], which includes T from 
A. We can then set the angle between 
(A, B) and (O, x) as

a
y y
x x

mtanB
A B A

B A
θ π=

−
−





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+ ,

where xB − xA ≠ 0 and m ∈ N, as well as 
the angle C

Aθ  between (A, C) and (O, x). 
A triangle is, by definition, a con-

vex polygon. For any segment join-
ing two points in T, every point on 
the segment must also lie within T. 
From A, take the pencil of lines L and 
the corresponding set V defined by T 
from A, in the sector sec(a, c):

D and
A A

0,
L { }= θ θ π∈ 

 

V IA A ,B
A

C
A{ }= θ

θ θ θ∈


,

where DA
θ  is the set of lines at angle q, 

and IA
θ  is the segment made by the pen-

cil of lines contained in that sector. Note 
that CA on the circle centered in A of ra-
dius r = max(a, c) and all the segments 
IA

θ  are belonging to CA. We repeat the 
same process to define VB. In addition, 
VC includes the definition of R (using CC 
centered in C of radius r = max(a, d(C, 
F))). In this case, T and R are completely  
processed (scanned), and CEFGH is 
convex. For efficiency reasons, we used 
Bresenham’s algorithm5 to quickly min-
imize errors in drawing lines on integer 
grid points. 
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Figure 2. The overall workflow of our system in block format. It first illustrates 
candidates (that is, connected components) extracted by using fuzzy binarization at 
four different levels. These candidates are then processed to determine whether they’re 
arrows via a series of steps, including key points detection and signature comparison.

Figure 3. An example illustrating (a) a discrete arrow and (b) a signature from point 
C (that is, SC (J ) of an arrow using pencil of lines in that particular sector). Note 
that to(Sc) is the translated signature by π; the angles are the opposite (a mirrored 
image) of the image frame.
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Theoretical signature. We define the 
theoretical signature, SX, corresponds 
to the discrete ones, VX. In other 
words, we consider any triangle, T′, 
that consists of three unaligned points 
X1, X2, and X3. We assume X1 to be 
the origin of the orthogonal frame and 
q ′ and q ′′ to be the angles described by 
the segments [X1, X2] and [X1, X3] in 
the frame. We also set x = d(X1, X2) 
and y = d(X1, X3). Let f be the function 
that defines the new representation of 
[X2, X3] from X1:

θ θ θ

θ θ θ

θ θ
θ θ θ θ

( )( )
′ + ′′ →

′ ′′

= ′ + ′′
+ ′ − − ′′

+S

f x y

x y
x y

( ):[ ] :

, , ,

. .sin( )
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.

x *
1

 (1)

Based on Equation 1, for the points 
A, B, and C associated with the tri-
angle T, we have 
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A
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Cθ θ θ≤ ≤  for R = ∅ in the case 

of SC(q). This doesn’t hold true when R 
≠ ∅, and therefore, five different trian-
gles are processed (see Figure 3):
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where a′ = d(C, E) = d(C, H) and a′′ 
= d(C, F) = d(C, G). Overall, two dif-
ferent cases defined in the context 
of R must be used to compute SC(q). 
More details about the arrow signa-
ture are available elsewhere.4 

Fuzzy Binarization 
Overlaid arrows appear at either 
high or low intensity to enhance their  
visibility in biomedical images. In many 
cases, arrows are blurred, overlapped, 
or surrounded by textured areas. 
In such contexts, typical binariza-
tion tools based on manual threshold  

values are unable to extract candidates 
of interest. Therefore, we use an adap-
tive binarization tool, which is based 
on a fuzzy partition of a 2D histogram 
of the image by taking gray-level inten-
sities and local variations into account.6 
We then compute 2D Z-function cri-
teria from the histogram to automati-
cally set the threshold. This is based on 
the optimization of fuzzy entropy. The 
Z-function employs two kernels: low- 
and high-level cuts. But in our case, we 
also use their inversions as  illustrated 
in Figure 4. 

Image inversion takes opposite im-
age intensities into account: arrow 
candidates are encircled in both red 
and black (according to the back-
ground color). The main idea of using 
four different levels of binarization is 
not to miss the overlaid arrows. Fur-
thermore, deformed arrows can be 
avoided because the arrows are re-
peated in other levels of binarization. 
For example, in Figure 4b, arrow 2 
is fully surrounded as well as over-
lapped by noisy textures at the first 
two levels but is visible at the other 
two levels. 

Figure 4. Fuzzy binarization at four different levels using two samples from Figure 1: (a) sample 1 and (b) sample 2. The segmented 
arrows are circled in red or black, depending on the background color.
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While checking with the ground 
truth, we can segment 95.1 percent 
(recall value) of arrows from our 
complete dataset. To detect the ar-
row-like candidates from the com-
plete set, we perform the major tasks 
of key points selection (representing 
arrowhead points) and arrow assess-
ment based on symmetry and overlap 
computation, and signature compari-
son with the theoretical one. 

Key Points Selection 
Our aim is to collect key points (see 
Figure 3) by studying four scans over 
the orthogonal frame. It includes 
two corners (top-left and right-bot-
tom) of the image. From each corner, 
we perform column- and row-wise 
scanning. 

Consider a set of candidates {Gk}k = 1,  

... , K. For any kth candidate, we perform 
scanning for all pixels Iij of the studied 
image I. For a scan s, points are added 
to the list Ls

k of k candidate, as follows: 

 { }( ) ( )= ∧ ∀IiffL L i j k s i j L, , ,s
k

s
k

ij s
k .

In other words, Ls
k is the list of points 

associated with kth candidate (see 
Figure 5).

Candidate Selection: arrow 
assessment 
For any candidate k, as described pre-
viously, the discrete signature relies 

on the location of the arrowhead key 
points A, B, and C. During the recog-
nition process, we compute geometric 
properties of an arrow considering all 
combinations of points.

Symmetry and Overlap 
From a list of key points Ls

k for any 
kth candidate, we select point C by 
using the straightforward convex 
property of the arrowhead (see Figure 
3a). If several points are selected, we 
confirm C by estimating the symmet-
ric axis of the arrow, sym(C). 

Consider the set of n points Xi in-
cluded in the list. We compute discrete 
distribution Vxi

 for p number of bins 
(each bin corresponds to a specific di-
rection in the specified frame):
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We then select a unique point, 
Sym C Sym X( ) arg max ( )

i n
i

1,...,
{ }=

=
. Note that 

sym is maximum when angle t corre-
sponds to the signature’s axis of sym-
metry. The symmetry axis Δ(C)t at 
angle t is computed to split the remain-
ing points. From point C, our aim is to 
find two other points, A and B. Because 
the base of the triangle largely covers 
the rectangle, we can consider the far-

thest points A and B as belonging to the 
list, such that Δ(C)t ⊥ (A, B) with 

Cardinality

V V
V V

V V t V
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C
i

{ }= π ,

where VX refers to the area of the 
signature, and tπ(VX) (see Figure 3b) 
is the translated signature by π be-
cause angles are opposite to the im-
age frame. 

Additionally, we consider area as-
sessment (an overlapping criterion),

Area

l l a l b l c

K H
H

H

1 ,

( ( )( )( )),

= − −






= − − −

where K is the common area identified 
from the scans performed from 
A, B, and C, and l a b c1/2 ( )= + +   
is the semiperimeter to check the 
well-defined isosceles triangle. By 
definition, if the triplet describes a 
triangle in the image, the value of K 
must be close to the calculation of the 
Heron’s formula, H. 

Signature Comparison 
In our test, we calculate a basic sim-
ilarity ratio (SR) based on the Tani-
moto index (the minimum over 
maximum) between the global the-
oretical and discrete signatures. 
To compute a global signature, we   

(a) (b)Sample 1 Sample 2

Figure 5. Two examples illustrating the candidates and their corresponding key points that result from orthogonal scanning 
(from Figure 4): (a) level 4 of sample 1 and (b) level 2 of sample 2. Several regions of interest are magnified to make key 
points visible.

p ∉
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superimpose VA, VB, and VC be-
cause the pixel distributions are com-
puted in the specified frame: [0,π). 
In doing so, unlike in the theoreti-
cal signatures, some of the elements 
in the discrete signatures overlap. 
This occurs primarily due to noise 
or from other objects connected with  
background and image regions. There-
fore, SR is weighted by an overlap- 
ping assessment in order to  compute   
recognition rate:

SR

V V V t V

V t V

V V t V
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sup
min , ,min , ,

min ,

sup , ,

A
i

B
i

A
i

C
i

B
i

C
i

i

p

i
p

A
i

B
i

C
i

1

1

Reco

∑
( )

( )
{ }

( )
( )

( )

( )

= × −















Σ





















π

π

π

=

=

.

 (2)

The more overlap there is, the lower 
the recognition rate. To avoid noisy 
or distorted candidates, we employ 
a threshold l (empirically designed) 

to support the decision as to whether 
the shape (that is, any labeled candi-
date from binarization) is recognized 
as an arrow. 

For visual illustration, we demon-
strate in Figure 6 how similar discrete 
and theoretical signatures are. These 
are concatenated signatures, which are 
different from our superimposed im-
ages, as described earlier. This shows 
the corresponding magnitude differ-
ences between signatures (due to the 
size of the arrowhead and the rectan-
gle): VX versus SX, and X = A, B, or C. 

Candidate Redundancy 
elimination 
Because we have four different levels 
of binarization, there are four pos-
sibilities for detecting the same ar-
row. To eliminate this redundancy, 
we use two criteria: arrow location 
and recognition rate. We select the 

option that produces the best recog-
nition rate for the specific location,

arg max
r

r
loc

1 4
Reco

≤ ≤
,

where reco refers to the recognition 
rate of the studied arrow in any fixed 
location, loc. 

Experiments 
We performed a series of experiments 
and compared our algorithm with 
state-of-the-art methods. 

Dataset and Ground Truths 
We used a well-known 2010 dataset, 
imageCLEFmed, which is composed 
of 298 chest CT images. It contains 
1,049 pointers total. For all images in 
the dataset, we created ground truths 
of the pointers, and each ground truth 
includes information such as arrow 
type, color, location, and direction. 

Figure 6. Discrete and theoretical, blue and red lines, respectively, where (a)–(e) signatures are compared after separate 
concatenation of their sets VA, VB, VC and SA, SB, SC. This shows the corresponding magnitude differences between signatures 
(due to the size of the arrowhead and the rectangle): VX versus SX, and X = A, B, or C.
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Evaluation Protocol 
For validation, for any given image in 
the dataset, our performance evalua-
tion criteria are precision, recall, and 
F1 score. In general, these metrics can 
be expressed as follows: 

m
M

m
N

m M m N
m M m N

precison
1
,

recall
1
, and

F score 2
1/ 1/

1/ 1/
,

1

=

=

= ×
+








 (3)

where m1 is the number of correct 
matches from the detected set M, 
and N is the total number of point-
ers (in the ground truth) that are 
expected to be detected. Precision 
defines whether the retrieved candi-
date is relevant (that is, if it is an ar-
row), and recall defines how relevant 
the search is. 

Results and Analysis 
For our algorithm, we start with 
visual illustrations, aiming to pro-

vide an idea about the usefulness 
of  different binarization levels and 
scores in arrow detection. In Figure 7,  
we provide arrow-detection out-
put based on the decision defined by  
l = 0.85. Taking signature matching 
into consideration, we also provide 
individual arrow-detection scores. 
To detect all arrows in Figure 7a, we 
used a single binarization level. But, 
in Figure 7b, we used two  different 
binarization levels. Figure 7b shows 
the importance of using multiple lev-
els in detecting arrows. If not, one 
arrow per image will be missed. 

As we have already stated, we have 
white- and black-filled arrows, and 
therefore we performed category-wise 
performance evaluation. The accu-
racies are 88.43 percent and 84.51 
percent for white- and black-filled ar-
rows, respectively. When we use the 
whole dataset and evaluation proto-
col defined in Equation 3, precision, 
recall, and F1 score are 93.14 percent, 
86.92 percent, and 89.94 percent, 
respectively. 

Comparative Study 
In our comparative study, our bench-
marking methods are categorized 
into two groups: state-of-the-art 
methods designed for arrow detec-
tion and a template-based method 
that uses well-known state-of-the-art 
shape descriptors. 

Recent arrow-detection methods. We 
used two state-of-the-art methods de-
signed for arrow detection: a global 
thresholding-based method (method 
1)7 and an edge-based method (method 
2).8 The results are provided in Table 
1. Method 2 performed best, with pre-
cision and recall values at 84.20 per-
cent and 81.60 percent, respectively. 

Our template-based method. In the 
case of our template-based method, we 
created 11 templates (arrows) having 
different shapes (including different 
sizes). The template size can further be 
extended in accordance with the data-
set. Figure 8 shows a few of the arrow 
templates. To extract shape features, 

Arrow1

Arrow2
Arrow5

Arrow3 Arrow4

score (%)
Arrow1 0.94
Arrow2 0.87
Arrow3 0.94
Arrow4 0.96
Arrow5 0.89

score (%)
Arrow1 0.94
Arrow2 0.87
Arrow3 0.88

⊗

Arrow1

Arrow2

Arrow3

(a)

(b)

Figure 7. Examples showing (a) and (b) different binarization levels used to detect arrows. This demonstrates the idea of image 
inversion used in binarization because arrows are not filled with black only.
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we took the most frequently used 
shape descriptors in computer vision. 
They are the generic Fourier descriptor 
(GFD),9 shape context (SC),10 Zernike 
moment (ZM),11 and Radon transform 
(RT).12

For these descriptors, it’s important 
to fit the best parameters. The GFD, 
for example, requires us to tune the 
radial (4:12) and angular (6:20) fre-
quency parameters to get the best 
combinations. Note that such a best 
combination of radial and angular 
frequencies can be different from one 
dataset to another. For SC, we used 
the 100 sample points (as reported 
elsewhere10) by omitting smaller CCs. 
In the case of ZM, we applied 36 
Zernike functions of order less than 
or equal to 7. For RT, the projecting 
range is [0,π). These shape descrip-
tors are rotation-, scale-and transla-
tion-invariant, and thus are useful in 
our application because CCs are ob-
served at different sizes, scales, and 
directions. After extracting features, 
the aim is to rank the CCs from any 
studied image based on the order of 
shape similarity. In our test, we im-
plemented top-10 ranking. Using this 
framework, results (precision, recall, 
and F1 score) are provided in Table 1.  
Among all shape descriptors, GFD 
provides the best performance. 

For an immediate comparison, we 
selected the best results from two 
different groups (see the boldface 
scores in Table 1): both method 1 and 
method 2 supercede GFD. Our algo-
rithm outperforms the best of the two, 
method 2, by more than 9 percent in 
precision and 5 percent in recall.

Extension 
We extended our evaluation on a dif-
ferent dataset (composed of 120 ra-
diographs and available for research 
purposes by request) that are collected 
using the Open-i (the NLM’s open ac-
cess biomedical search engine; openi.

nlm.nih.gov), which is completely dif-
ferent from the imageCLEFmed data-
set (see Figures 10d–10f).  Following 
the evaluation protocol (as described 
earlier), our results are precision = 
87.35 percent, recall = 89.09 percent, 
and F1 score = 88.21 percent. The re-
sults attest to the fact that the pro-
posed method can be extended and/or 
generalized. 

Discussion 
Based on the reported results from Ta-
ble 1, we observed that our method 
provides higher precision than the 
benchmarking methods. This reflects 

the robustness of our arrow-detection 
algorithm and, of course, the appropri-
ate use of the fuzzy binarization tool. 
Furthermore, considering recall mea-
sure of the binarization tool (95.10 
percent), our arrow-detection algo-
rithm misses only 2 percent of arrows, 
which isn’t a significant loss. One of 
the primary reasons for such misses is 
that the binarization tool still carries 
some artifacts resembling arrow-like 
objects, including noise overlapping 
with the arrows (see Figure 9a). Simi-
larly, degraded arrows affect the al-
gorithm’s performance. Furthermore, 
theoretically speaking, our algorithm 

Figure 8. Arrow templates used in our template-based method.

Table 1. Performance comparison.*

Methods Precision (%) Recall (%) F1 score (%) 

State-of-the-art arrow- 
detection methods

Method 17 81.10 74.10 77.00 

Method 28 84.20 81.60 83.00 

Template-based methods Generic Fourier 
descriptor9

75.10 78.33 76.68 

Shape context10 68.30 71.40 69.82

Zernike moment11 55.20 57.70 56.40

Radon transform12 59.50 63.60 61.48 

Template-free method Our algorithm 93.14 86.92 89.94 

*Boldface numbers indicate the best scores for each group.

Figure 9. (a) Artifacts that resemble arrow-like objects, including noise overlapping 
with arrows. This helps increase false positives. (b) Triangle-shaped connected 
components, which are similar to arrow without tail.

(a) (b)
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can’t reject triangle-shaped CCs (see 
Figure 9b), and therefore, triangular 
CCs segmented from the corners of the 
image are detected as false positives. 

For better understanding, Fig-
ure 10 shows more output samples, 
where detected arrows are placed to 
the right of the original sample im-
ages. Our current work does not con-
sider curved arrows or fixed graphical 
shaped pointers such as star or aster-
isk (see Figure 10c, as an example). In 
Figures 10d–10f, arrow detection on 
radiology images are shown. In this 
illustration, bigger arrows provide 
higher recognition rates because their 
signatures are more robust to noise 
than smaller ones. Smaller ones do 
not offer clear arrowheads (see Fig-
ures 10d, and 10f). 

In contrast, template-based arrow-
detection methods achieved high recall. 

Note that recall can be increased by 
extending the retrieval scope. But, for 
a system to be precise and accurate, it 
needs a list of all detected arrows in the 
first few ranks without having false pos-
itives (see Equation 3). Moreover, unlike 
other methods, our method can detect 
degraded and deformed arrows using 
shape descriptors because they are ro-
bust. However, such robustness affects 
overall performance because it might 
also detect several artifacts. Shape-
based descriptors can handle curved ar-
rows as well if templates are provided. 

In future work, some cases of oc-
culted arrows can be improved by 

considering the impact of junction 
points as arrowhead candidates. We 
also plan to extend our arrow signatures  
to take curved arrows into account by 

processing arrowhead regions regardless 
of whether tails are curved or straight. 
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