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Abstract-—Image modality classification categorizes images
according to their type. It is an important module in the Open-
i*™ multimodal (text+image) search engine that retrieves figures
from biomedical articles. It is a hierarchical classification where
on the top level the input figures are classified into two general
categories: regular images (X-ray, CT, MRI, photographs, etc.)
vs. illustration images (cartoon sketch, charts, graphs, etc.). This
binary classification task is challenged by the vast diversity of
visual material (image type), and the way it is organized (simple
or compound figures). We present two methods for this binary
classification: (i) Support Vector Machines (SVM) with
manually-selected features, including a feature based on semantic
concepts; and, (ii) Deep Learning method which avoids the
process of feature handcrafting. Both methods were tested and
compared on a dataset of 16400 figures. Both methods achieved
good performance (above 95% accuracy). The slightly better
performance of the feature-based method demonstrates the
effectiveness of the features we chose.
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I. INTRODUCTION

The classification of images based on their visual type
(modality) is an important step in medical image retrieval
systems. Modality image classification provides an option to
limit the search space that users are interested in, and also
improves the retrieval performance of the system. Modality
classification has been integrated into Open-i®™ [1], a
multimodal (image + text) search engine for biomedical
literature that has been developed by the U.S. National Library
of Medicine (NLM). Unlike the images in other medical image
retrieval systems, which may operate, for example on clinical
images from PACS systems, the figures that appear in the
biomedical literature are much more diverse and contain many
non-medical images. Figure 1 shows the hierarchy of the
modality classification used by ImageCLEF 2015 [2]
(ImageCLEF is an annual competition aiming to provide an
evaluation forum for image annotation and retrieval). The first
level of the hierarchy is diagnostic images vs. illustrations. The
category of diagnostic images contains images in the
categories of radiology, printed signals, microscopy, visible
light photos and 3D reconstructions. The illustrations include
images of tables, forms, charts, gene sequences, and so forth.
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Regarding this first level of modality classification, Open-i
uses a slightly different arrangement. In Open-i, the gel
chromatography and non-clinical photos subcategories inside
the illustrations category are moved to the diagnostic images
category and the diagnostic images category is renamed as
regular images, based on the observation that the visual
characteristics of images in those two subcategories are more
similar to those of diagnostic images than to those of other
illustrations. Similarly, the subcategory of printed signals
(waves) is moved to the illustrations. In this paper, we will
present our work on classifying figures in two categories:
regular vs. illustration, which is the first level of the modality
classification hierarchy used in Open-i.
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Fig. 1. Modality classification hierarchy used in ImageCLEF 2015

The modalities defined in Figure 1 are for single-panel
figures or subfigures. Very often, the figures in biomedical
literature are compound figures (also called multipanel
figures). A compound figure may consist of subfigures that are
of different modalities in different levels. For example, Figure
2 exemplifies three cases. All the subfigures in Figure 2(a) are
regular images (may be in different subcategories of regular
images). All the subfigures in Figure 2(b) are illustration
images (may be in different subcategories of illustration
images). The subfigures in Figure 2(c) are a combination of
regular images and illustration images. We have developed a



method for splitting the multipanel figures and matching the
available labels (such as A, B, C, ... ) to each of the separated
subfigures [3]. The method is very effective for images in the
regular category, and our results for the compound figure
separation task in ImageCLEF 2015 are the best among all the
participants [4]. However, the method does not produce
sufficiently satisfactory results for illustration compound
figures to allow the subfigures to be integrated into Open-i. At
present, the step of regular/illustration classification is put
before the step of figure panel splitting. Therefore, the dataset
we create to test the proposed methods contains not only
single-panel figures but also compound figures. As a result, the
challenges we face include not only the vast diversity of visual
content presented in the single panel figures but also different
combinations of subfigures in different subcategories.
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Fig. 2. Multipanel figures in which panels belong to different modalities

In this paper, we present two approaches for classifying
figures into two general categories: regular and illustration.
One is based on the traditional approach which contains the
step of extracting specific features. The other is based on a
deep learning approach, which avoids the process of feature
handcrafting and can automatically discover multiple levels of
representations from raw input data. We compared these two
methods on a dataset consisting of 16400 figures. Both
methods achieved good performance levels (above 95%). The
performance of the traditional approach is slightly better (3%
higher), which indicates the high effectiveness of our features
for this application, especially one feature that our group
developed for reducing the semantic gap (a problem low-level
visual features usually suffer from).

The rest of the paper is organized as follows. Section II
describes the two methods. Section 3 presents the experimental
testing results and comparisons. The conclusions and future
work are presented in Section 4.

II.  METHOD

A. Feature based classification

The conventional approach generally consists of two main
components: features and classifier. The goal of the feature
extraction step is to obtain a set of features that represent the
visual characteristics of the original data and capture the
perceptional characteristics that discriminate among the
images in different categories. The effectiveness of the
features is dependent on the specific application at hand.
Therefore, it often requires domain knowledge and
engineering skills, as well as experimental trial and error to
find a good set of features. Given the feature vectors
calculated from the original images and the corresponding
labels of the images, supervised classification algorithms can
learn to associate ground-truth labels with these training data,
and then may be used to predict labels for images whose truth
labels are unknown. A range of such algorithms is available,
including decision trees, support vector machines (SVM),
random forest, and neural networks, each having characteristic
strengths and weaknesses. In the following, we will introduce
the features and classifier we used for this specific
classification task. Based on the experimental results (reported
in Section 3), the features and classifier we employed were
very effective.

1) Features
We applied several types of features, including the
semantic concept feature we developed.

e Semantic concept feature

A major component of any image-based classification
system is the feature representation of images in terms of low-
level features (color, texture, edge, shape, etc.) or the recently
popular “Bag of Visual Words” (BoVW) features [5]. In the
BoVW approach, generally the low-level visual features of
local regions of points, such as color, texture, and so forth, are
vector quantized to generate the visual words. Although it has
proved to be effective for image representation (and is
similarly effective for document representation in text
retrieval), the unsupervised clustering to generate the words or
dictionary largely neglects the semantic contexts of the local
features. As a result, commonly generated visual words are
still not as expressive as keywords in text documents.

In a heterogeneous collection of medical images of
journal articles, it is possible to identify specific local patches
that are perceptually and/or semantically distinguishable, such
as homogeneous texture patterns in grey level radiological
images, or differential color and texture structures in
microscopic pathology and dermoscopic images. For example,
if we consider a computed tomography (CT) image of the lung
or chest, which appears in many radiographic or medical
journals, we observe several image regions with texturally
different visual patterns that are semantically distinguishable
from each other, such as a slightly bright and hazy appearance,
can be mapped to the pattern “Ground Glass” opacity, or
hexagonal structures that can be mapped to a “Honey



Combing” pattern. The variation in these local patches can be
effectively modeled by wusing supervised classification
techniques. A supervised learner can create a model of
different visually interesting patterns as concepts to capture
the variability of the local patches with sufficient training
samples. In this context, an instance (e.g., local patch) in the
training set can be represented by a feature vector along with
its local concept or category-specific label [6].

Therefore, in order to perform concept-based image
representation (e.g. “Bag of Concepts”), we at first manually
annotated a set of training concepts from distinguished local
image patches to perform supervised learning, as done by a
method such as SVM [7]. Our goal is to learn a set C of L
labels, where C = {cl, -- ,ci,”'* ,cL}, and where each ci €C
characterizes a visual concept. The training set of the local
patches are generated by a fixed-partition based approach and
represented by a combination of color and texture moment and
edge frequency related features.
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Fig 3. Example image patches (left) and concept (C;-C) based image
annotation process (right)

We used a multi-class SVM-based classification method
which combines all possible pairwise comparisons of binary
SVM classifiers, known as one-against-one or pairwise
coupling (PWC) [8]. For SVM training, the initial input to the
system was the feature vector set of the patches along with
their corresponding (manually assigned) concept labels.
Images in the data set were annotated with local concept labels
by partitioning each image I; into an equivalent r x r grid of
sub-images, where each sub-image represents a d-dimensional
combined feature vector of color and texture moments. For
each sub-image (region), the local concept category
probabilities are determined by the prediction of the multi-
class SVMs, and finally the category label of the region is
determined as the category with the maximum probability
score. Hence, the entire image is represented as a two-
dimensional index linked to the concept labels as shown in
Fig. 3. Based on this encoding scheme, an image I; can be
represented as a vector in a local semantic concept space as

t-jConcept: [flja”' ,ﬁj,"'ij]T (1)

where each fij corresponds to the normalized frequency of
occurrence of a concept Cj, 1 <1< L in image L.

e  Other features

Besides the semantic concept feature, we also applied four
additional features that have been used in image retrieval. They
are: CEDD (color and edge directivity descriptor), FCTH
(fuzzy color and texture histogram), CLD (color layout
descriptor), and EHD (edge histogram descriptor). CEDD [9]
and FCTH [10] are two descriptors used by the Lucene image
retrieval (LIRE) library for image indexing and retrieval. Both
features incorporate color and texture information in one
histogram which results from the combination of three fuzzy
units. The first and second fuzzy units, the part for color
information representation, are the same for CEDD and FCTH.
They differ in the third fuzzy unit which is for the capture of
texture information. Both features are compact and their sizes
are limited to less than 72 bytes per image. CLD and EHD are
MPEG-7 features [11]. CLD captures the spatial layout of the
dominant colors on an image grid consisting of 8 by 8 blocks
and is represented using DCT (discrete cosine transform)
coefficients. EHD represents the local edge distribution in the
image, i.e., the relative frequency of occurrence of five types of
edges (vertical, horizontal, 45-degree diagonal, 135-degree
diagonal, and non-directional) in the sub-images.

2) Classifier

For the classifier to classify the image, we also use the
support vector machine (SVM). For the SVM used by the
semantic concept feature for classifying local patches, we used
the LibSVM [12] Java package for SVM training and testing.
Specifically, we use the C-support vector classification (C-
SVC) [12] SVM formulation. For the SVM used for
classifying the image, we used the Sequential Minimal
Optimization (SMO) algorithm implemented in the Weka
[13].

B. Convolutional neural networks

Unlike conventional methods which are based on
handcrafted feature extractors, deep learning seeks to
automatically obtain good features through a learning
procedure. Deep learning methods employ architecture with
multiple layers, in which the deeper the layer, the more
abstract representation the learning yields. The convolutional
neural network (CNN) is one particular type of deep neural
network [14]. It was originally proposed in the 1990s [15]. It
reignited a lot of interest after it achieved the best result in the
ImageNet [16] competition in 2012. Since then, it has become
the leading deep learning method used for image classification
and object recognition. Therefore, we applied it to our
application.

CNNs explore spatial relationships of pixels in images to
reduce the number of parameters in the neural network that
must be trained. There are four important ideas used by
CNNs: local connections, shared weights, pooling and many
layers [14]. A typical CNN architecture consists of a number
of convolutional and subsampling layers followed by several
fully connected layers. The convolutional layer contains
several feature maps. Each unit in each of the feature maps is
connected to a local subset of units in the feature maps of the
previous layer. Mathematically speaking, each feature map is
obtained by convolving the input with a linear filter, adding a



bias, and then passing through a non-linear function. The
subsampling layer usually computes the maximal value of a
local subset of units in each feature map in the convolutional
layer. This process not only reduces the computational
complexity for subsequent layers, but also provides a certain
degree of shift-invariance. The fully connected layers are
traditional multilayer perceptron (MLP). The parameters of
CNNs (weights and biases) are trained by using the back
propagation algorithm.

For our application, we use the open-source implementation
named cuda-convnet [17] which uses Graphical Processing
Units (GPUs) to accelerate the computation speed. It was
developed by Krizhevsky et al. [18]. cuda-convnet provides a
number of options, including various types of layers, and
hidden unit nonlinearities. There are some one channel
grayscale images in the dataset so we convert those one
channel grayscale images to three-channel images, and then
resize all the images to 32 x 32. Figure 4 shows the
architecture of the CNN we apply to our dataset. It contains
two convolutional layers (convl and conv2), two pooling
layers (pooll and pool2), two locally-connected layers with
unshared weights (locall and local2), a fully-connected layer
(fc), and a soft max layer (softmax). For all the layers except
the fc layer and the softmax layer, we employ rectified linear
units (ReLUs) as the nonlinear function.

conv2 pool2 locall local2 fc
soft-
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Fig. 4. CNN architecture used
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III. EXPERIMENTAL TEST

A. Data

The images used in the experiment were downloaded from
Open-i. They are figures from articles in the PubMed [19]
database. The images are labeled as either regular images or
illustration images by visual examination. For a compound
figure, if all the subfigures are regular (or illustration) images,
then it is labeled as regular (or illustration). The dataset does
not contain any compound figure which is composed of
subfigures in both categories. The final dataset consists of
8200 regular figures and 8200 illustration figures. The testing
set is made up of 2200 regular images and 2200 illustration
images randomly selected from the dataset. The training set
consists of the rest of the figures, which contains 6000 regular
images and 6000 illustration images.

B. Model for semantic concept feature

For concept model generation based on the SVM learning,
60 local concept categories were manually defined from image
patches. The local concepts were selected to reflect meanings
useful to physicians because of distinct visual appearances,
such as different lung tissue patterns of X-ray and CT images,

microscopic images of different color and texture patterns, and
so on, as shown in Fig. 3. The training set used for this
purpose was created by an engineer and consists of around
19,000 patches to represent the 60 concept categories. To
generate the local patches, each image in the training set was
re-sized to 256 x 256 pixels and partitioned into an 8 x 8§ grid
generating 64 non-overlapping regions of size 32 x 32 pixels.
Only the regions that conform to at least 80% of a particular
concept category were selected and labeled with the
corresponding category label. Color moments, Auto-
Correlation and Edge frequency-based features were extracted
and combined to form a 59-dimensional feature vector for all
training patches.

For the SVM training (for local patch concepts), we
utilized both the radial basis function (RBF) and the
polynomial kernels. There are two tunable parameters for RBF
kernels: C and y, and the best values for C and y cannot be
known a priori, for a particular classification task. We adopted
the standard solution of using a 10-fold cross-validation (CV)
to select these values, where we let C and y vary over a range
of plausible values. (Basically, pairs of (C, y) were used and
the one with the best CV accuracy was picked.) We also
experimented with the polynomial kernel of degree 1 and 2
with € = 100. However, the best accuracies were achieved by
using the RBF kernel as shown in Table 1. After finding the
best values of parameters C and y for the RBF kernel, they
were used for the final training to generate the model file for
the concept learning.

Table 1. CV accuracies of local concept classification (SVM)

Kernel C Y Degree Accuracy
RBF 100 | 0.08 76.03 %
Poly 100 1 74.65 %
Poly 100 2 74.09 %

C. Image classification result

Table 2 lists the classification accuracies for using the
individual feature with the SVM classifier and the combined
features with the SVM classifier. For this classifier, we used
the linear polynomial kernel as the kernel function and the
default values for all other parameters. We first performed 10-
fold cross validation (CV) on the training set. For individual
features, the best performance was obtained by both the
semantic concept feature and the CEDD feature (with
accuracy being around 97%). But the length of the semantic
concept feature (which is 60) is much less than that of the
CEDD feature (which is 144). The performance for classifying
the images in the test set using the SVM model trained by
using images in the training set was similar to that of the 10-
fold CV. Table 3 presents the confusion matrix for the
combined features for the 10-fold cross validation (CV) on the
training set, and Table 4 presents the confusion matrix for the
combined features for the testing set. In both tables, the
corresponding precision and recall were both around 98%.



Table 2. Classification results (Features + SVM)

. . Accuracy
Feature Dimension 6707 CV | Testing set

Semantic concept 60 96.9% 96.8%

CEDD 144 96.4% 96.7%

FCTH 192 95.8% 96.1%

CLD 16 91.9% 92.5%

EHD 80 93.6% 92.4%

CEDD+FCIH - CLD* 432 97.6% 97.8%
Semantic concept + CEDD

+ FCTH + CLIJDD + EHD 492 98.1% 98.0%

Table 3. Confusion matrix (combined features + SVM) for 10-fold CV on the
training set

Classified as — Regular Ilustration
Regular 5894 106
Ilustration 119 5881

Table 4. Confusion matrix (combined features + SVM) for testing set

Classified as — Regular Illustration
Regular 2163 37
Illustration 50 2150

We used the same training and test data to train and test
CNN. Please note the network was not pre-trained with other
data (for example, using ImageNet data). The number of
epochs (one epoch = one pass through the training data) for
CNN training was 150. Figure 5 shows the classification error
rate on the training set and the test set as a function of the
epoch number. The classification error rate for the test set was
around 0.05 (i.e., classification accuracy was 95%) after 100
epochs. Table 5 lists the confusion matrix of the test set at
epoch 150. The corresponding precision and recall were both
around 95%.
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Fig. 5. CNN classification error rate

Table 5. Confusion matrix (CNN) for testing set

Classified as — Regular Illustration
Regular 2104 96
Illustration 93 2107

As demonstrated above, both methods achieved high
performance for our figure modality classification application.
The advantage of CNN is that it can avoid the process of
manually identifying good features for a specific application.
However, the conventional approach, i.e., handcrafting suitable

and effective features, may achieve better performance, as
demonstrated in these experiments. The experiments also
demonstrate that the integration of semantic meanings into
features is a promising way to reduce the semantic gap that
frequently occurs when low-level visual features are used.

IV. CONCLUSION

In this paper, we presented our work on classifying figures
in biomedical literature into two general classes: regular
images and illustration images. This is the top level of the
modality classification hierarchy utilized by Open-i, a
multimodal search system that provides open access to nearly
3.2 million images from approximately 1.2 million Open
Access biomedical research articles obtained from the NLM’s
PubMed Central (PMC) repository. We tested and compared
two methods for this classification task. One is based on the
conventional approach which includes feature extraction, by
specifically identifying/applying (i.e., handcrafting) effective
features. The other is based on deep learning, a relatively new
technique for automatically learning representations of data
from the raw pixel values. For the large dataset we tested
which contains 16400 figures, both methods performed very
well, achieving classification accuracy over 95%. The
conventional method got a slightly better performance, which
demonstrates the effectiveness of the features we chose.
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