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ABSTRACT 

The National Library of Medicine (NLM) has made a collection of over a 1.2 million research articles containing 3.2 
million figure images searchable using the Open-iSM multimodal (text+image) search engine.  Many images are visible 
light photographs, some of which are images containing faces (“face images”). Some of these face images are acquired 
in unconstrained settings, while others are studio photos. To extract the face regions in the images, we first applied one 
of the most widely-used face detectors, a pre-trained Viola-Jones detector implemented in Matlab and OpenCV. The 
Viola-Jones detector was trained for unconstrained face image detection, but the results for the NLM database included 
many false positives, which resulted in a very low precision. To improve this performance, we applied a deep learning 
technique, which reduced the number of false positives and as a result, the detection precision was improved 
significantly. (For example, the classification accuracy for identifying whether the face regions output by this Viola-
Jones detector are true positives or not in a test set is about 96%.) By combining these two techniques (Viola-Jones and 
deep learning) we were able to increase the system precision considerably, while avoiding the need to manually construct 
a large training set by manual delineation of the face regions.  

Keywords: image modality classification, deep learning, convolutional neural networks, face detection, Viola-Jones 
algorithm  
 

1. INTRODUCTION 

The U.S. National Library of Medicine (NLM) has developed a multimodal (text + image) biomedical search engine 
called Open-iSM1. It provides capability to search figures in biomedical scientific publications, using both text query 
and/or image query. Currently, Open-i provides open access to nearly 3.2 million images from approximately 1.2 million 
Open Access biomedical research articles obtained from the NLM’s PubMed Central (PMC) repository. Open-i also 
provides various filters to limit the search space. One such filter is image type (modality). Besides medical modalities, 
such as MRI, CT, X-ray, and ultrasound, there is also a category of photograph (visible light image). The photograph 
category contains many images, clinical and non-clinical, and the content can be very diverse. For further classification 
of the photograph category, we have been developing methods for extracting images from photographs in categories 
such as skin tissue and endoscopic images [1, 2]. In this paper, we report on the extension of our work to extracting face 
images (images containing faces) from photographs.  
 
The goal in face detection is to identify and isolate human faces visible in a photographic image. Reliable face detection 
is one of the most studied research topics in the field of computer vision and precursor to face identification or matching. 
For a good survey paper on this topic, see [3]. The Viola-Jones detector is a multi-stage classification framework that 
was first proposed by Paul Viola and Michael Jones in 2001 [4]. It may be the most commonly used method for face 
detection, although it can also be trained to detect various other objects. An implementation of this algorithm which has 
been trained with another face image dataset is provided in OpenCV (and Matlab) (detailed information on the 
implementation and the face image data used is provided in Section 2.1). We tested the pre-trained detector first on the 
Face Detection Data Set and Benchmark (FDDB) dataset designed for studying the problem of unconstrained face 
detection [5]. This data set contains 2845 images collected from news photographs containing 5171 faces. The Viola-
Jones detector obtained very high precision (approximately 0.94) for the FDDB dataset. (We present the results in detail 
in Section 2). For our application, high precision (which means most of the extracted images are truly images containing 
faces) is more desirable than high recall. We applied the Viola-Jones algorithm to our dataset that contains 115,370 
photographs from Open-i, with the result that the face images extracted include many false positives, and the detection 

                                                 
1 http://Open-i.nlm.nih.gov 
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difference between the sum within two outside rectangles and the sum within the central rectangle, and a four-rectangle 
feature that calculates the difference between the sums within the diagonal pairs of rectangles.  
 
 

 
Figure 3. Haar-like rectangle features Figure 4. Cascade of classifiers 

 
 
The number of rectangle features that need to be calculated for an image (at many scales) is very large. To make the 
computation of rectangle features fast, Viola and Jones applied the integral image. The integral image is a summed area 
table in which the value at the location (x, y) is the sum of all the pixels above and to the left of (x, y). The integral image 
can be computed efficiently in just one pass over the original image. The Haar-like rectangle features, which are based 
on the sum of pixel values in rectangles, can be calculated rapidly by using the computed integral image [4].    
 
Each basic classifier is trained using the AdaBoost learning algorithm [12]. AdaBoost (Adaptive Boosting) is a boosting 
algorithm which combines a set of weak classification functions (weak learners) to produce one stronger classifier. In [4], 
each of the weak learners depends on a single feature and determines the optimal threshold classification function for 
that feature. Therefore, the AdaBoost can also be used as a feature selector by identifying key weak learners.  
 
A cascade of those basic classifiers is then constructed. A positive result from a classifier will be passed to the next 
classifier while a negative outcome is rejected immediately, as illustrated in Figure 4. Each classifier is trained to have a 
very high detection rate (trying to keep all the positives while rejecting a certain amount of negatives) and uses the 
samples that pass through all the previous stages to train. Thus subsequent classifiers face harder tasks and usually have 
more key weak learners (or features) selected. The cascade attempts to make background regions (negatives) to be 
discarded quickly, at the earliest possible stage, based on the observation that the majority of the sub-windows in an 
image are non-face regions.  
 
After training the VJ detector with positive and negative samples of faces, given a test image, the detector scans across 
the image at multiple scales and locations to find the sub-windows that contain a face. The detector also combines 
overlapping multiple detections of one face into a single detection of the face in the post-processing stage. Although the 
training of the VJ detector may be slow, the detection is very fast and can be used for real-time processing.  
 
In follow-up work, researchers have tried to improve the performance of the Viola-Jones face detector with respect to the 
features and learning algorithm. Features such as joint Haar-like features [13], anisotropic Gaussian filters [14], local 
binary patterns (LBP) [15], and histogram of oriented gradients (HOG) [16], have been proposed to address the 
limitations of the original set of rectangle features. The learning algorithms, such as variations of boosting learning 
algorithms, classification and regression tree (CART) [17], support vector machine (SVM) [18], and neural networks 
[19], have been applied to replace the standard AdaBoost algorithm used in [4]. 
 
For our experiments, we applied the implementation provided by the Matlab Computer Vision Toolbox [20] (it calls the 
corresponding OpenCV face detector which were developed by Lienhart et. al [17]). This MATLAB (and OpenCV) 
algorithm is an improved version of the original VJ face detector. Specifically, there are two extensions to the original 
VJ algorithm. One is that a new set of rotated Haar-like features have been added. The other is that Gentle AdaBoost [21] 
with small CART trees are used as base classifiers. The images used to train the detector appear to have been from the 
Facial Recognition Technology Database (FERET), although the relevant publications [22, 23] are not explicit on this 
point. We will refer to this detector/training set as the Viola-Jones (or VJ) FERET-trained detector.  The fully trained 
cascade consisted of 20 stages. Each stage used 5000 positive and 3000 negative face region samples filtered by previous 
stages to train. The 5000 positive samples were generated from 1000 original face regions by random rotation, scaling, 
mirroring and shifting. The classifier at each stage was trained to detect 99.9% of face samples while rejecting half of the 
non-face samples (i.e., with the performance of false positive rate being 0.5 and true positive rate being 0.999). For the 
details of the algorithm and the process of training, please refer to [17]. There are several important parameters in the 
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implementation [20]: 1) the size of the smallest face to detect; 2) the size of the largest face to detect; 3) the scale factor 
that incrementally scales the detection resolution between the minimum and the maximum size of the face object to 
detect; and 4) the threshold for the number of times a target object needed to be detected during the multiscale detection 
phase. We tested the trained VJ face detector on both the FDDB dataset and the Open-i dataset. For both tests, the default 
values of those parameters were used.  
 
2.2 Testing on the FDDB dataset 

The FDDB dataset [5] is a benchmark intended for use in evaluating face-detection algorithms in unconstrained settings. 
It contains 2845 grayscale and color images that are selected from a dataset [24] collected from news articles. Each of 
the 2845 images contains at least one face. The dataset also includes annotations of a total of 5171 face regions identified 
by manual annotation. The FDDB dataset contains a wide range of different faces, including faces with occlusions, low 
resolution, out-of-focus, and difficult poses. The reason we selected the FDDB dataset to test the VJ detector is because 
of the unconstrained settings and wide range of different faces represented, two characteristics that the Open-i dataset 
also exhibits. The ground truth face regions provided by the FDDB dataset are elliptical regions. The matching rule we 
used is: if the center of the extracted box is inside the ground truth elliptical region, it is considered being true positive; 
otherwise it is a false positive. As described previously, we used the Matlab implementation of the detection algorithm; 
for parameter choices, we used default values. The results are listed in Table I. The number of face regions detected by 
the VJ detector was 4131. Among them, 3902 regions are true positive while 299 regions are false positives. Therefore, 
the precision (the ratio of the number of true positives and the number of extracted regions) is 0.945 and the recall (the 
ratio of the number of true positives and the number of ground truth regions) is 0.755. The recall is relatively moderate 
but the precision, very high. As we stated previously, high precision is more desirable for our application if there is a 
trade-off between recall and precision. We then applied the same detector to our Open-i dataset. 
 

Table I. Detection results of the Viola-Jones detector on the FDDB dataset 
Ground 
Truth 

Extracted True Positive False 
Positive 

False 
Negative 

Precision Recall 

5171 4131 3902 299 1269 0.945 0.755 
 

  
2.3 Testing on the Open-i dataset 

Out of 115,370 photographs, the VJ detector extracted 20,400 face images which contain 30,390 face regions. Note that 
face image extraction, which is to identify an image that contains a face, is less strict than face detection. For example, 
for an image having one or multiple faces, the image can be correctly labeled as a face image even if a region is 
incorrectly identified as a true face region. To evaluate the performance of the VJ detector for face region detection, we 
manually labeled each box extracted by the detector as a true positive or a false positive. If an image contains at least one 
true positive, then it is a true face image; otherwise, it is not. Table II lists the results for face region extraction on the 
Open-i dataset. Out of 30,390 extracted face regions, only 9,357 of them are true positives. As a result, the precision for 
face region extraction is very low, around 0.31. The number of images containing those true face regions is 5,208. 
Because we do not have ground truth for the entire Open-i dataset, we cannot calculate the number of false negatives and 
the value of recall. Figure 5 shows some true positives obtained by the VJ detector while Figure 6 shows some false 
positives. The identified face areas are marked by yellow boxes with a label of “Face”. 
 

Table II. Face region detection results of the Viola-Jones detector on the Open-i dataset 
Extracted Regions True Positive False Positive Precision 

30,390 9,357 21,033 0.31 
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3.1 Convolutional Neural Networks 

The convolutional neural network (CNN) was first introduced in the 1990s, by LeCun, et.al. [25], for the task of 
classifying images of handwritten digits. Interest in convolutional neural networks was reignited in the computer vision 
field after a large, deep CNN was used to classify 1.2 million high-resolution images into 1000 classes in the ImageNet 
Large-Scale Visual Recognition Challenge (LSVRC)-2012 contest and achieved considerably better performance than 
other state-of-the-art methods [26]. CNNs are a special kind of multi-layer neural network designed to process images. 
They explore spatial relationships of pixels in images to reduce the number of parameters in the neural network that must 
be trained. There are four important ideas used by CNNs: 

1) Local connections: each unit in one layer is connected to a spatially-connected local subset of units in the 
previous layer; 

2) Shared weights: all units in each of the feature maps in one layer have the same set of weights; 
3) Pooling: a spatial subsampling step is applied to reduce the dimensions of the feature maps;  
4) Many layers: the network may have more than 10 layers.  

 
A typical CNN architecture consists of a number of convolutional and subsampling layers followed by several fully 
connected layers. The convolutional layer contains several feature maps. Each unit in each of the feature maps is 
connected to a local subset of units in the feature maps of the previous layer. Mathematically speaking, each feature map 
is obtained by convolving the input with a linear filter, adding a bias, and then passing through a non-linear function. The 
subsampling layer usually computes the maximal value of a local subset of units in each feature map in the convolutional 
layer. This process not only reduces the computational complexity for subsequent layers, but also provides a certain 
degree of shift-invariance. The fully connected layers are traditional multilayer perceptron (MLP). The parameters of 
CNNs (weights and biases) are trained by using the backpropagation algorithm.   
 
For our application, we used the open-source implementation named cuda-convnet which uses Graphical Processing 
Units (GPUs) to accelerate the computation speed. It was developed by Krizhevsky et al. [26, 27]. cuda-convnet provides 
options of various types of layers, hidden unit nonlinearities, etc. For example, in cuda-convnet, the schemes of local 
normalization and overlapping pooling can be used in a layer to improve generalization. In addition, a regularization 
method called dropout [28], whose key idea is to randomly drop units from the neural network during training, can be 
employed to reduce overfitting in the fully connected MLP layers. For the details of the architecture and the training 
protocol, refer to [26, 27].  
 
3.2 Results on Open-i dataset 
 
Among the 30,390 face regions extracted by the VJ detector, there were 9,357 true positives and 21,033 false positives. 
These face regions were manually labeled by one engineer by visual examination. We converted all the one channel 
grayscale images to three-channel images, and then resized all the images to 32 x 32. Figure 8 shows the architecture of 
the CNN we applied to our dataset. It contains two convolutional layers (conv1 and conv2), two pooling layers (pool1 
and pool2), two locally-connected layers with unshared weights (local1 and local2), a fully-connected layer (fc), and a 
soft max layer (softmax). For all the layers except the fc layer and the softmax layer, we employed rectified linear units 
(ReLUs) as the nonlinear function. For both convolutional layers, 64 filters of size 5 × 5 were applied; the distance 
between successive filter applications was set to be 1 pixel; the biases of every filter in the layer were set to be the same 
amongst all applications of that filter; the biases were initialized to be 0.5; the images were padded with a border of zeros 
of 2 pixels. Other parameters, such as the weights, were initialized from a normal distribution with mean zeros and 
standard deviation of 0.0001 for conv1 and mean zeros and standard deviation of 0.01 for conv2; the parameter 
partialSum which affects the performance of the weight gradient computation was set to be 4 for conv1 and 8 for conv2. 
Both pooling layers (pool1 and pool2) are max-pooling layers; the size of the pooling region in either the x or y 
dimension was defined as 3; and the stride size between successive pooling squares was set to be 2 which means the 
overlapping pooling scheme was used. For both the locally-connected layers (local1 and local2) which are convolutional 
layers but with no weight-sharing, 32 filters of size 3 × 3 were applied, and the standard deviation for the normal 
distribution used for initializing the weights was set as 0.04. The fully-connected layer (fc) has 2 outputs and other 
parameters for this layer were set with the default values. The final layer, a softmax layer, outputs a probability for each 
class. The learning parameters were set as follows: the weight learning rate, bias learning rate, weight momentum, and 
bias momentum for convolutional layers, locally-connected layers and the fully-connected layer were 0.0001, 0.002, 0.9, 



 

and 0.9, resp
and the fully
face region d
positives and
The first 8 ba
the training s
3,433 non-fa
shows the cl
classification
the confusion
(local1), in w
from the test
image, a non
 

   
 

 
 

Tab

 

 

Figure 9. Th

pectively; the L
y-connected lay
data (30,390 r
d 2,200 false p
atches (batch 0
set contains 8,

ace regions. Th
lassification er

n error rate for 
n matrix of the
which there exi
t set. The true 
-face region, w

ble III. Classifi

A
ct

ua
l 

C
la

ss
 Fac

Non-F

e trained filters

L2 weight deca
yer. The netwo
regions) was d
positives, and t
0-7) were used
,000 face regio
he number of e
rror rate on th
the test set is a
e test set at th
ist edge pattern
labels of those

was misclassifie

Figure

fication results 
 

Predic
Clas

Face N

ce 1232 

Face 62 

 
 

s of the first co

conv1 

ay value was 0
ork used multin
divided into 10
the last batch c

d for training an
ons and 17,600
epochs (one pa
he training set
around 0.04 (i.
e epoch 60.  F
ns. Figure 10 s
e images are sh
ed as a face reg

e 7. CNN archit

of CNN 

cted 
ss 
Non-
Face 

125 

3371 

onvolutional la

pool1 co

0 for convoluti
nomial logistic
0 batches, with
containing the 
nd the last 2 ba
0 non-face reg
ass through the
t and the test 
.e., classificatio
Figure 9 shows
shows the class
hown in red. A
gion.  

 
tecture used fo

ayer Figu

onv2 pool2 

ional layers an
c regression as 
h each of the 

reminder of t
atches (batch 8
gions. The test
e training data)

set with the 
on accuracy is
s the trained f
sification resul

All of them we

or Open-i datas

Figure 8. 

ure 10. Classific

local1 loc

nd 0.004 for lo
 the object fun
first 9 batches

the true positiv
8-9) were used
t set contains 1
) for CNN trai
increase of th

s 96%) after 30
filters of the fi
lts of eight ima
ere correctly cl

set 

Classification

cation predicat
images 

fc cal2 

s
m

ocally-connecte
nction to optim
s containing 1
ves and false p
d for testing. Th
1,357 face reg
ining was 60.

he epoch numb
0 epochs. Table
rst convolution
ages randomly 
assified except

 

n error rate 

tions of random

soft-
max face or

nonface

ed layers 
mize. The 

000 true 
positives. 
herefore, 

gions and 
Figure 8 
ber. The 
e III lists 
nal layer 
selected 

t the last 

 

m test 



 

 
 
3.3 Comparison with the re-trained Viola-Jones detector 

We used the same face region data that CNN used to train and test the VJ detector. For the training of the VJ detector, 
there are several important parameters: the number of cascade stages; the object size for training; the false alarm rate; the 
true positive rate; and the feature type. We set the number of cascade stages as 15, the acceptable false alarm rate at each 
stage as 0.2, the minimum true positive rate required at each stage as 0.995, and the feature type as HOG (histogram of 
oriented gradient). The training object size was determined automatically based on the median width-to-height ratio of 
the positive instances. For the description and trade-off of these parameters, please refer to the Mathworks website [29]. 
For training, all the face regions in the batch 0-7 were used as positive samples. Since the Viola-Jones object detector 
provided by Matlab takes negative images as input (it automatically generates negative training samples from the 
negative images by using sliding windows), we used the images from which the non-face regions in the batch 0-7 were 
extracted but do not contain any faces as negative images. For testing, all of the regions in the batch 8 and 9 were used as 
input images. Table IV lists the confusion matrix of the testing results. Comparing to Table III, the number of true 
positives is much lower for the VJ detector while the number of true negatives is almost the same. As a result, the 
classification accuracy of the VJ detector is 84.5% which is lower than that of the CNN (96%).  
 

Table IV. Classification results of the re-trained Viola-Jones detector 
 Predicted Class 

Face Non-Face 

A
ct

ua
l 

C
la

ss
 Face 673 684 

Non-Face 61 3372 

 

4. FACE IMAGE EXTRACTION 

Figure 11 shows the diagram of the whole procedure. Given an input photographic figure image, the first step is to use 
the pre-trained Viola-Jones face detector to extract face region candidates. The second step is to use the CNN to classify 
whether each of the candidates is a face region or not. If there is at least one region in the image classified by CNN as a 
face region, the input image is identified as a face image. 
 
 

  
Figure 11. System diagram 

 

5. CONCLUSIONS  

In this paper, we present our method for extracting face images (image containing faces) from the figures in the 
photograph category included in the Open-i database. Due to the large number of images, it would be very time 
consuming to generate a ground truth dataset of images with face regions being marked. Instead, we applied a Viola-
Jones face detector likely trained using the FERET database (but see Section 2.1) to our dataset and extracted candidate 
face regions. The candidate face regions obtained by this Viola-Jones detector contained many false positives. We then 
used the labeled candidate face regions to train and test a convolutional neural network, a classification method that does 
not require hand-engineered features but just the raw pixel values as input. The convolutional neural network achieved 
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96% classification accuracy for the test set, a significant increase in the precision of the detection. We also used the 
labeled candidate face regions to train a new Viola-Jones detector and compared its performance with that of the 
convolutional neural network. Therefore, for any given photographic figure, the system decides if it is a face image or 
not by applying the pre-trained Viola-Jones face detector first followed by the CNN classifier. By this approach, we 
avoided the intense labor work for manual delineation of face regions in a large dataset but substantially reduced the 
false positive rate of the system. Future work includes using the trained CNN to scan across the input image at different 
scales to identify face regions and comparing the performance of that method with the one presented in this paper.     
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