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Modern appearance-based object recognition systems typically involve feature/descriptor extraction and
matching stages. The extracted descriptors are expected to be robust to illumination changes and to reasonable
(rigid or affine) image/object transformations. Some descriptors work well for general object matching, but
gray-scale key-point-based methods may be suboptimal for matching line-rich color scenes/objects such as
cars, buildings, and faces. We present a Rotation- and Scale-Invariant, Line-based Color-aware descriptor
(RSILC), which allowsmatching of objects/scenes in terms of their key-lines, line-region properties, and line spa-
tial arrangements. An important special application is face matching, since face characteristics are best captured
by lines/curves.We tested RSILC performance on publicly available datasets and compared it with other descrip-
tors. Our experiments show that RSILC is more accurate in line-rich object description than other well-known
generic object descriptors.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Feature matching is an essential component of many modern com-
puter vision applications, including near-duplicate detection [1], stereo
correspondence [2], 3Dmodeling [3], image stitching [4], as well as face
alignment and matching [5–7]. Scene and object matching methods in
digital images can be roughly divided in the following major groups
by the density of the image features they extract and use:

dense descriptormethods [8–10] tend to use all image information and
often assume that all pixels in the image are equally important.
Hence, they may be computationally expensive and require a
high degree of correlation between the probe and gallery im-
ages. Typically, such methods are not very accurate given large
variations in object pose, scale, and illumination.

sparse descriptor methods use non-dense image features (e.g., edges
[11]) and/or various key-spots [12–14]. They are relatively ro-
bust to variations in pose, size, orientation, and lighting of the
query image with respect to the objects in the gallery. They pro-
vide a sparse representation for objects and high-speed
matching on the key locations that need to be automatically de-
termined, which calls for some sort of a saliency map [15].

This implicitmethodology division prompted somewell-performing
hybrid techniques that include features from both categories and
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typically fuse them in a weighted features ensemble [16–18], optimized
for a particular application [19].

In content-based image retrieval, object detection, and face recogni-
tion (FR) in an unconstrained environment (typically outside of the
studio), sparse descriptors are generally preferred because they are
often more robust to deformations and lighting variations than dense
feature methods. Key-spot-based matching involves detecting the
key-spots, building local descriptors for each key-spot, and finding an
aggregate distance of best matches. For pose- and lighting-robust
matching, the descriptors should be robust to geometrical variations
such as translation, rotation, scaling (and if possible to affine/projective
transformations and photometric variations such as illumination direc-
tion, intensity, colors, and highlights. The selection of a robust key-spot
(e.g., a point, a line, or a corner) depends on the image collection and the
application.

In generic object matching, the coarse features from key-points may
be adequate to find suitable matches. However, in line-rich scenes,
some dominant lines on objects may provide more stable and discrimi-
native features than key-points. Such line-rich scenes and objects are
omnipresent and can be natural (e.g., landscapes, plants, animals,
humans) or artificial (e.g., cities, cars, house exteriors and interiors,
office spaces). Stable (but not necessarily rigid) characteristic lines in
them can be used as good key-spot candidates, promising amore stable
object matching ability than key-points can.

Human face matching/recognition (FM/FR) is an important special
case of object matching that has been an active research and develop-
ment area in academia and industry because of the wide variety of
real-world applications, such as surveillance, visual authentication,
human–machine interface, criminal identification, and commercial
applications. It identifies individuals from face images or video sequences
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using computer vision and machine learning algorithms. The general
procedure for the appearance-based face image retrieval (FIR) systems
consists of detecting the faces, extracting the facial information, and
comparing a query face descriptor with those in a database [7,20–24].

To deal with the variation in face appearance (e.g., unknown head
poses, unexpected facial expressions, and unpredictable lighting), the
extracted features are expected to be robust to illumination changes,
distortion, and scaling. One can certainly use key-point-based descrip-
tors (e.g., SIFT [12], SURF [13], ORB [14], but because faces are line-rich
objects, it may be beneficial to introduce the notion of key-lines and
their descriptors for better matching.

According to psychophysics and neuroscience studies, line-rich fea-
tures, such as face outline, eyes, mouth, and hair, are most important
for perceiving and remembering faces [25] by humans. Another study
has investigated the importance of facial features for automatic face
recognition [26] by extracting facial landmarks. Experimental results in-
dicate that these facial features are indeed important for face identifica-
tion. Several other studies [6,11,27] showed that the most informative
face characteristics appear to come from the face lines that can model
face features in a very intuitive, human-perceptible form.

Consider the face images shown in Fig. 1.a–b. The prominent charac-
teristic parts are marked by lines/curves, whose local regions and their
spatial arrangements on a face can be used for robust matching. The
human-perceptible important face lines overlap very well with the
machine-computed edge maps of the faces on the CalTech set [28],
whose cumulative distribution is also shown. The lines aremostly locat-
ed on theprominent face characteristics (landmarks such as eye,mouth,
nose, and face shape), which are the discriminative locations of a face
(Fig. 1.c.). All these studies and illustrations indicate that lines with
their descriptors can provide more stable recognition features for face
matching.

We propose a general-purpose key-line descriptor that is color
aware, invariant to rotation/scale, and is robust to illumination changes.
To increase the discriminative power of the descriptor, we combined
color/texture information of the local regions and added the relational
information of the other key-lines. We tested our descriptor matching
power on publicly available datasets containing unconstrained images
of faces and general objects. We compared the new descriptor to well-
knowndescriptors (in the same test-bed system), and our experimental
results show that the RSILC descriptor is robust to rotation, scale, reflec-
tion and illumination and produces more accurate matches in face and
object retrieval applications.

2. Relevant publications

Many different techniques for modeling local image regions have
been developed. Scale-Invariant Feature Transform (SIFT) [12,29] is
one of the most robust key-point descriptors among the local feature
descriptors with respect to different geometrical changes [30]. It detects
notable and stable key-points for images at different resolutions and
Fig. 1. Line/curve features thatmaybe characteristic of a specific face: (a) human-perceptible,
(b) line edge map (LEM) [11], (c) average line map of faces in the CalTech set [28].
produces scale- and rotation-invariant descriptors for robust matching.
Several papers have been published on SIFT-based face recognition
[31–33]. Although SIFT originally was designed for gray-scale images,
there are several extensions to make use of the color information in
the descriptors [34–36]. One of the successful attempts is colored SIFT
(CSIFT) [36] which embeds the color information through the gradient
of color invariants instead of using gray-scale gradients as in conven-
tional SIFT. Defining the descriptor in color space makes the descriptor
more robust with respect to color variations.

Another well-known key-point descriptor is Speeded Up Robust
Features (SURF), which provides a quicker way to detect key-points
and compute descriptors that are rotation and scale invariant as well
as robust to illumination changes [37]. SURF is less accurate than SIFT,
but it has been successfully used in many practical applications, includ-
ing face/components matching [38,39].

The mentioned key-point descriptors (e.g. SIFT and SURF), being
robust to various affine transformations and lighting, are widely used
for object detection and recognition. However, they typically contain in-
formation that is local to their key-points, which prompts some false-
positive correspondences when performing many-to-many matches.
This problem could be remedied by considering key-point spatial rela-
tionships, (e.g., having each descriptor record other key-points' azimuth
angles much like shape context [40]), hence capturing not only local
context of each key-spot but also their global spatial relationships.
Knowing the usefulness of spatial relations in image understanding
[41,42], several state-of-the-art methods have been reported together
with the use of application-dependent local features. For example, the
authors in [43,44] integrate spatial distribution of key-points by using
shape context with texture features for food classification. In a similar
fashion, spatial relations between the visual primitives (such as circles
and corners) are integrated with statistical shape features for graphics
recognition [45].

The Pyramid of Histograms of Orientation Gradients (PHOG) de-
scriptor represents an image by its local shape and the spatial layout
of shape information [46]. The local shape is modeled by a histogram
of edge orientations. The spatial layout is represented by tiling the
image into the regions at multiple resolutions. The final descriptor vec-
tor is the concatenation of histograms at each resolution. The descriptor
is robust to scaling as long as the object position and orientation remain
the same, but it is rotation dependent and color-blind.

As an alternative to key-points, another important set of features for
object matching can be collected from edges, which provide the advan-
tages of a lesser demand on the storage space and a lower sensitivity to
illumination changes. Gao and Leung [11] describe a face recognition
method using line edge maps (LEMs). The system extracts the lines
from the edge map of face images and compares their similarity using
the Hausdorff distance. LEM produces fast and reliable matching on
aligned faces but does not use the region around the lines, which
contains intensity information that helps to discriminate the lines and
reduce mismatches. Gao and Qi [47] extend the LEM approach by con-
sidering corner points along the edge lines and show their method's ro-
bustness to scale aswell as the superior one-image-per-person retrieval
capability compared to the eigenfaces [48]. Deboeverie et al. [6] com-
bined the curve edge map with the relative positions and intensity
information around the curves. This system uses the orientation of the
main axis of the curve segments for the first match. Then, it considers
the histograms of inner and outer sides of the curve and relative
positions of curve segments to refine the matching stage. However,
this method lacks color information for the local regions.

Liu et al. [16] propose SIFT flow to align an image to its nearest
neighbors in a photo gallery. This hybrid methodmatches densely sam-
pled, pixel-wise SIFT features between two images while preserving
(sparse) spatial discontinuities, matching a query object located at dif-
ferent parts of the scene. Experiments show that the proposed approach
robustly aligns complex scene pairs containing significant spatial differ-
ences. The applications include single image motion field prediction/
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synthesis via object transfer, satellite image registration, and face
recognition.

Motivated by the discriminative ability of (sparse) shape informa-
tion and (dense) local patterns in object recognition, Nguyen et al.
[17] propose a window-based (hybrid) object descriptor that integrates
both cues: contour templates representing object shape are used to de-
rive a set of key-points atwhich local appearance features are extracted.
The key-points are located via template matching that uses both spatial
and orientation information. An object descriptor is formed by
concatenating the non-redundant local binary pattern (NR-LBP) fea-
tures from all key-points to encode the shape as well as the appearance
of the object. The experimental results suggest that the proposed
descriptor can effectively describe non-rigid articulated objects and
improve the detection rate compared to other state-of-the-art object
descriptors.

Satpathy et al. [18] propose two sets of edge-texture features for
object recognition: Discriminative Robust Local Binary Pattern (DRLBP)
and Ternary Pattern (DRLTP). These hybrid features fuse edge (sparse)
and texture (dense) information in a single representation, and they
appear to be robust to image variations caused by intensity inversion
and discriminative to the image structures within the histogram block,
as demonstrated by experiments on seven datasets.

Some recent papers present an interesting approach to line-rich
scene matching [49,50]. This approach works with gray-scale images
and uses rotation- and scale-invariant key-lines and log-polar descrip-
tors. The authors described their promising methodology, giving a few
exampleswith line-rich scenes but showing no large-scale experiments.
The approach is quite similar to ours. Therefore, we highlight the major
differences, as RSILC: 1) uses color information in the chroma bands of
YCbCr color space, 2) uses local gradients histogram from the equalized
intensity band, and 3) uses spatial information across all key-lines to
make descriptor matching more accurate.

3. RSILC descriptor

Computing our key-line descriptor involves: 1) extracting key-lines
by applying oriented line filters to the image edgemaps, and 2) sampling
the line direction oriented circular histograms around each key-line,
including both local (texture, color) and global (inter-line spatial)
information.

3.1. Key-lines

To extract key-lines from the studied image, we use convolution
of line filters with an edge image, as reported in [49,50]. Formally, the
whole process is composed of constructing line filters in different
orientations and their convolution with an edge image. A set of line
filters in a normal Gaussian 1D distribution are defined, which are ori-
ented in different directions in the range [0, π). In generic form, we
can express such a set as F ¼ fFθg; θk ¼ kπ

6 and k ¼ 0; 1;…;5 ,
where θk represents an orientation value associatedwith a specific filter
F. In Fig. 2, line filters that are oriented in six different directions are
shown. These line filters Fθ are then convolved with an edge image IE
obtained via Canny edge detector [51]. The convolution results in a set
(a) 0 (b)
6

(c)
3

(d)
2

(e) 2
3

(f)
6

Fig. 2. Line filters that are defined as an angle oriented 1D Gaussian distribution. These
filters are derived in the range [0, π) with the step of π6.
of key-lines from each line filter. Considering a set F of line filters, the
complete set L of extracted key-lines can be expressed as

L ¼ Fθ � IE ∀ θ ∈ ½0; πÞ ¼ b lineθ;l N
� �

l¼1;…;L; ð1Þ

where each extracted key-line carries its orientation value θ (that is
associated with its line filter) and the total number of key-lines L that
varies from one image to another. Note that small lines can be consid-
ered as noise and omitted. Fig. 3 shows key-lines that are extracted
from a face image.

3.2. Key-line features

In this section, we describe how key-line features are computed to
include both local and relational features. Local features are computed
independently while relational features take other key-lines into
account. We model each key-line with a circle of radius r. Fig. 4 shows
the circles corresponding to key-lines from face images with different
poses. Because the size of the radius uses the length of the key-line,
circle sizes vary. Given a complete circle,we sub-divide it into equal sec-
tors si∈S. For each sector, local and relational features are computed and
concatenated to build a key-line descriptor.

3.2.1. Local features
Each key-line is represented by gradient and color features that

characterize the local texture and intensity distribution in every sector
of the associated circle. For intensity information, YCbCr color space is
used, which is robust to illumination changes and perceptually uniform
compared to other color spaces [52]. The normalized Y-band is used to
compute the gradient direction and gradient magnitude at each pixel.
The color information is calculated from each color band (CB) separately.
For each sector si, feature histograms are computed as follows,

h ∇Ij j
si

¼ hist j∇Ijpsi
� �

; ∀ p ∈ si;

hψ ∇Ið Þ
si

¼ hist ψ ∇Ið Þpsi
� �

; ∀ p ∈ si;

hCBsi ¼ hist I pð Þð Þ; ∀ p ∈ si;

ð2Þ

where hist(★) is the histogram function and populates the values ★ into

bins; j∇Ijpsi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂IðpÞ∂x Þ2 þ ð∂IðpÞ∂y Þ2

r
is the gradient magnitude;ψð∇IÞpsi ¼

atanð∂IðpÞ∂y = ∂IðpÞ
∂x Þ is the gradient direction;∂IðpÞ∂★ is the gradient component in

★ direction; and p = {x, y} is the image pixel. To maintain the rotation

invariance of hψð∇IÞsi , the gradient angles are normalized with respect to
the key-line orientation before the histogram computation. With the
Fig. 3. An example face image from the CalTech dataset [28] and its key-lines. The key-
lines are extracted from the convolution of line filters at different orientations illustrated
in Fig. 1. The color indicates the orientation of key-lines: blue, 0; green, π6; red,

π
3; cyan,

π
2;

magenta, 2π3 ; yellow, 5π6 .



Fig. 4. Examples illustrating the detected key-lines along with their circles on a face of same person in several different poses. The color indicates the orientation of each key-line.
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three separate histograms for color bands viz. Y, Cb, and Cr, the complete
feature histogram in any particular sector can be expressed by

concatenating them, Hlocsi
¼ ½hj∇Ijsi khψð∇IÞsi khYsikh

Cb
si kh

Cr
si � . Considering all

sectors in the specified circle for any key-line l, the complete local feature
histogram can be expressed by concatenating them,

Flloc ¼ Hlocs1

���Hlocs2

���…‖HlocsN

i
:

h
ð3Þ

Such a concatenation of local feature histograms is more discrimi-
nant than the feature histogram computed from the whole circle at
once [49,50].

To satisfy the rotation-invariant property, we follow counterclock-
wise histogram concatenation, which starts from the reference key-
line orientation defined in Eq. (1). Fig. 5 shows a graphical illustration
of rotation-invariance property of the descriptor. In this example, we
have eight sectors where concatenation starts from the orientation
angle of that particular reference key-line. Starting from the orientation
angle of the key-line provides dynamic change in the sector indexing.
As a consequence, the feature vector after concatenation remains the
same for all key-lines in Fig. 5.a. In Section 3.3, real-world examples
are considered to confirm the rotation-invariant property.

3.2.2. Relational features
Alone, local features for each key-line do not offer information

about spatial organization of the remaining key-lines. This may cause
some false matches. As an example, a key-line associated with the
right eye of the query image could bematchedwith the key-line associ-
ated with the left eye of the database image. Therefore, relational
(a)

(b)

Fig. 5.An illustration of how local histograms are computed in each sector (where sector: {si}i =
0; π

4 and π
2 radians, we provide color in each sector, and (b) concatenation of all local histogram

key-line to preserve the rotation invariance.
information is incorporated to the local feature histograms in each
sector. Consider a sector s of a reference key-line l. We define two
features to compute the relationships between the key-lines: orienta-
tion angle differences between l and the other key-lines l′ ∈ si, and the
presence of key-lines in that sector si with respect to l.

The orientation angle difference Δθ between l and l′ can be
computed as Δθ = |θ − θ′| ∀ l′ ∈ s. Based on this, a histogram can be
computed as

hΔθ
si ¼ hist θ−θ0

�� ��	 
Þ: ð4Þ

where hist(★) is the histogram function and populates the values★ into
bins; the number of bins is defined as kπ

6 and k = [0, …, 5].
Additionally, the presence of key-lines is computed by taking

the proportion of key-lines l′ that are visible from l in si. To make the
descriptor more discriminant, we further sub-divide si into annular
sectors a ∈ si and compute the histogram,

h#l0

si
¼ hist #l0

	 
Þ∀ l0 ∈ si; ð5Þ

where hist(★) is the histogram function and populates the values★ into
bins; the number of bins is {aj}j = 1,…,4 and the size of the annular sector
depends on the radius r of the circle belonging to the reference key-line.

In both relational features, histograms are normalized by using the
total number of key-lines that appear in that sector. To graphically
illustrate the relational feature histograms, we refer to Fig. 6. In one par-
ticular sector si, both histograms are concatenated to build the relational

histogram Hrelsi
¼ ½hΔθsi kh

#l0

si
�. Considering all sectors for a single key-
1,…,N andN=8) using local features. (a) For an encircled key-line at three different angles:
s to produce the feature vector.While concatenating,we consider the orientation angle of



(a) Key lines in sector (b) Relational histograms (c) Concatenate both

Fig. 6. An illustration of how relational histograms are computed in each sector. For an encircled key-line at 0 radians, we provide (a) the first sector where (b) relational histograms are
computed. For simplicity, few key-lines are shown and four annular sectors are provided.
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line l, the complete relational feature can be computed by concatenating
all histograms,

Flrel ¼ Hrels1

���Hrels2

���…‖HrelsN

i
:

h
ð6Þ

Like the local histograms, to satisfy the property of rotation
invariance, concatenation follows exactly similar sector indexing.
3.3. Rotation and scale invariance

RSILC descriptor is designed to be rotation and scale invariant. To
show these properties, we take example images as shown in Fig. 7. Ex-
ample key-line locations are shown on straight, rotated, and re-scaled
faces. For illustration purposes, we use a single key-line to build an
RSILC descriptor (cf. Section 3.2). Histograms (both local and relational)
from all sectors inside the circle are concatenated in a counterclockwise
fashion, where the starting point is indexed by the reference key-line
orientation angle. To maintain the scale invariance property, the refer-
ence key-line is modeled with a circle (cf. Fig. 5). The radius of circle is
computed by using key-line length that varies with image size. Fig. 8
shows the corresponding 1D feature vector of example images. The
overlapping of feature vectors (histogram distributions) from the
mouth regions of up-right and rotated faces as well as from the eye re-
gions of up-right and scaled faces show that RSILC is rotation and scale
invariant.
(a) (b)

Fig. 7. a) An example straight face image from the CalTech set. b) A π/6 -rotated image
4. Descriptor matching

Following our feature description in Sections 3.2.1 and 3.2.2, a line-
rich image I can be described with a descriptor of line features

dsc ¼ Fl
n o

l¼1;…;L
ð7Þ

where F l = [Flocl , Frell ], as in Eqs. (3) and (6), and L is the number of key-
lines in the descriptor. To match descriptors from two different images
dsc1 and dsc2, a symmetric distance function is defined as the average
norm of left and right best match scores vectors (BMSV) mij

dist dsc1; dsc2ð Þ ¼ m12jj þ jjm21j jj jð Þ=2 ð8Þ

mij ¼ min
l¼1;…;L j

diff Fki ; Flj
� �( )

k¼1;…;Li

ð9Þ

diff Fki ; Flj
� �

¼ jjFki −Fljjj ð10Þ

where i, j ∈ {1, 2},mij are the BMSV and Li = 1, 2 is the number of indi-
vidual line features in each descriptor. Note that one has to compute
two BMSV (left and right) to satisfy the distance symmetry require-
ment. In our experiments, we found that in some applications
(e.g., matching faces), it may be sufficient to compute just one half of
the match (e.g., left BMSV) without much loss in the accuracy. This
makes our distance non-symmetric but cuts matching time by
(c) (d)

of (a). c) Another face image from the CalTech set. d) A 1/2 re-sized image of (c).



Fig. 8. a) Histogram distributions of region in Fig. 7.a–b. The red line belongs to themouth
region in the straight face image; the blue dotted line belongs to the mouth region in the
rotated face image. b) Histogram distributions of regions in Fig. 7.c–d. The red line belongs
to the eyebrow region of the face image in Fig. 7.c; the blue dotted line belongs to the eye-
brow region of the 1/2-resized face image.
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approximately half. These time savings can be used for ensuring RSILC
invariance to image reflection (a feature thatmost key-point descriptors
lack, e.g., SIFT and SURF) by redefining

diff Fk1; Fl2
� �

¼ min Fk1−Fl2‖; ‖Fk1− F̂
l
2

��� ������ ���� �
ð11Þ

F̂ ¼ Fi¼ n
2þ1ð Þ;…;n; F j¼1;…;n2

h i
ð12Þ

where F̂ is a half-swapped feature vector (of even length n) computed to
ensure the mirror flip matching invariance of the key-line descriptor;
this effectively rotates the histogram sectors by the angle of π about
the center of the key-line. One can skip the extra half-swap histogram
match if the key-line orientation span is extended to the [0, 2π] range
(e.g., by computing the major intensity gradient direction at the line
center), then diff can again be computed as in Eq. (10).

Although there certainly may be other descriptor matching
methods, ours is consistent with most matching methods in the litera-
ture. Given a relatively small number of key-lines (compared to number
of key-points) in a typical image and a good discriminative power of
RSILC, we did not need to remove any outliers or perform descriptors
cross-check.

5. Experiments

We design a set of experiments to evaluate the proposed descriptor.
We first measure the retrieval performance of the descriptor on several
face and generic datasets. We compare its performance with several
other well-known descriptors on the same test-bed system. We
also measure the performance change of descriptors to illumination
variations and geometric transformations.

5.1. Test-bed system

We test the performance of the descriptors on a test-bed system that
extracts the descriptor of the query image and compares it with the
descriptors of database images. For this task, we follow a leave-one-
out approach by selecting one face as a query image and comparing it
with the remaining images. According to the similarity measure,
the top-k most similar images are listed as candidate matches. A
hit-match is counted if the candidate object belongs to the same class
of the query image. We define the hit rate for the top-k matches as

HitRate kð Þ ¼ HitCount k; Qð Þ
Qj j ; ð13Þ

where Q represents a set of query image, HitCount(,) is a function that
counts the successful top-k matches using the query set of size jQ j.

5.2. Datasets

Descriptor performances are measured using the following public
datasets. Fig. 9 shows examples from these datasets.

The CalTech Faces set [28] consists of 450 frontal views of 29 people
which are taken under varying lighting, expressions and complex
background conditions.
The Indian Faces set [53] consists of frontal and left/right profile
faces with varying facial expressions of 61 individuals under varying
lighting conditions.
The ColorFERET set [54] consists of 2,413 facial images from 856
individuals with frontal and left/right profile faces, with/without
glasses and with various facial expressions. In our experiment, a
subset of the ColorFERET dataset is created with 500 images from
101 individuals.
The Labeled Faces in Wild (LFW) set [55] consists of celebrity faces
collected from the Internet. The faces are captured in completely
uncontrolled environments. Therefore, faces have large pose,
illumination, expression, and facial hair variations. Some of them
contain partial occlusions by glasses, mustaches, or hats.
The Amsterdam Library of Object Images (ALOI) set [56] is a generic
object set that contains a large number of objects under different
illumination directions and different viewpoints.

5.3. Parameter selection

Before measuring the retrieval performance of the descriptor, we
investigate the effects of descriptor parameters to the matching perfor-
mance. Our goal is to select parameters that yield optimal performances
for both hit rate and execution time. We vary the parameters and
conduct the matching experiments on the CalTech and Indian faces
datasets.

5.3.1. Line filter size
The line filters are convolved with edge image to extract the key-

lines (cf. Section 3.1). Increasing the filter size increases the computa-
tion time of the key-line extraction stage because of the convolution op-
eration. To measure the performance of the descriptor with different
line filter sizes, we set the size as k × k where k = 9, 11, 13, 15. We
found that larger filters do not have a significant impact on hit rate.
Therefore, in the experiments, we use 9 × 9 filters, which is also
adequate to model all key-line orientations.

5.3.2. Radius of the circle
Each key-line ismodeledwith a circle of radius r (cf. Section 3.2).We

set the radius as r= k × L, where k=1/2, 2/3, 3/4, 1, and L is the length
of the key-line. We found that r= 2 L/3 is adequate to characterize the
local texture and intensity information around the key-line.

5.3.3. Number of sectors
To model the spatial information, we sub-divide the key-line circle

into equal sectors and build the descriptor by concatenating the histo-
grams of each sector. The number of sectors inside the circle is set to s,



(a)

(b)

(c)

(d)

(e)

(f)

Fig. 9. Example images from the datasets used in our experiments. a) ColorFERET, b) Indian Faces, c) CalTech Faces, d) LWF set, e) ALOI illumination variance, f) ALOI view change.

Fig. 10. The effects of the parameters of RSILC to the matching performance.
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Table 1
Parameters used in the experiments.

Parameters for key-line descriptor Value

Filter size 9 × 9 pixels
Radius of circle 2/3 of line length
No. of sector inside the circle 8
No. of bins for each sector (Eq. (2)) 8

Parameters for Canny edge detection Value

Gaussian filter σ
ffiffiffi
2

p

Low hysteresis threshold 0.14
High hysteresis threshold 0.35

Average image size Value

CalTech face dataset 220 × 185 × 3
Indian face dataset 265 × 265 × 3
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where s = 4, 8, 12, 16. We found that s = 8 is adequate to model the
spatial layout for the reported size of image.

5.3.4. Number of bins
In Eq. (2), the values inside the key-line circle are populated into

bins. To observe the effect of the number of bins to descriptor discrimi-
nability, we set the bin size as b= 4, 8, 12, 16 and repeat the matching
test. We found that b = 8 is best for the CalTech set, because retrieval
performance decreases with a higher number of bins. However, for
the Indian set (slightly larger images), we observed a higher hit rate
with b = 16.

The graphs in Fig. 10 show the hit rates with respect to different
parameter values. The parameter values used in the experiments are
summarized in Table 1. Some of these parameters (e.g., Gaussian filter
σ for Canny edge detection) vary with image size. Therefore, we also
reported the average size of the test images.

5.4. Repeatability

One of the important stability measurements for a descriptor is its
repeatability in terms of detected key-spot locations. Tomeasure the re-
peatability, we follow similar test manner as in [29]. Each test image is
(i) rotated in the range [π/6) in π/6 intervals; (ii) re-scaled 1/2, 3/2,
and 2 times the original size; and (iii) flipped in mirror-side or
upside-down. Then, we extract the key-lines on the test image and on
the transformed image.We expect that the key-lines are located at sim-
ilar positions in the transformed image. Therefore, we compute where
each key-line in the test image should appear in the transformed
image by applying the same transformation to the key-lines in the test
image. If the transformed key-line on the test image is LT and the
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(a) Repeatability for rotation transformations (b) Repeatability

Fig. 11. The percentage of key-lines in each image that is repeatably detected at the same locat
color code shows the transformation cases. The average repeatability is indicated as line. The x-
of correctly repeated lines.
extracted key-line on the transformed image is LE, then the location ac-
curacy of key-lines is computed with the Euclidean distance of the cen-
ter coordinates of each LT and LE with the following equation:

d ¼ kCLE−CLT

�� ð14Þ

whereCLE is the center coordinates of LE andCLT is the center coordinates
of LT. d b ∈ means that LE and LT are ∈-close, and their regions overlap.
The repeatability is the percentage of overlapped key-lines.Wemeasure
the repeatability on the CalTech set with several different transforma-
tions. The graphs in Fig. 11 show the repeatability of the key-line loca-
tions. Each point in the graph corresponds to repeatability score of
one image. The color of the points indicates the applied transformation.
The x-axis is the image number on the CalTech set in which there are
450 face images. The y-axis shows the repeatability score. The median
repeatability levels for the CalTech set are shown as color-coded solid
lines. Experiment results show that RSILC is most invariant to mirror
flip transformation, followed by rotation and scale transformation.

5.5. Baseline state-of-the-art descriptors

We compare the proposed descriptor with well-known baseline de-
scriptors.Wemeasure the performance of all descriptors with their best
parameters on the same dataset and test-bed system (cf. Section 5.1).
The baseline descriptors we compare ours to are as follows:

SIFT [12,29] is a well-known key-point descriptor that extracts
the key-point in scale-space and models the region around the
key-point with the statistics of gradient information. It is invariant
to scale and rotation transformations and partially robust to illumina-
tion. The conventional SIFT descriptor does not use color information.
SURF [37], similar to SIFT, uses the distribution of gradient informa-
tion for each key-point. The descriptor has smaller dimensions than
SIFT, therefore, has relatively faster computation. It is invariant to
scale and rotation and robust to lighting variations. It does not
contain color information.
CSIFT [36] embeds the color information in conventional SIFT
descriptor [29] through the gradient of color invariants instead of
gray-scale gradients. Our experiments indicate that CSIFT is more
successful than other descriptors at matching due to addition of
color information.
PHOG [46] descriptor represents the image by its local and the spa-
tial layout of the shape information. The local shape is represented
by histogram of edge orientations; and spatial layout is represented
by tiling the image into regions at multiple resolutions. The final
descriptor vector is concatenation of histograms at each resolution.
It is robust to scaling as long as the object position and orientation
300 400
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ion in the transformed image. Each point corresponds to one image in the CalTech set. The
axis shows the image number, and the y-axis shows the repeatability score as a percentage
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Fig. 12. Query performance of descriptors on generic and face datasets. Note that minimum scale values of the vertical axis are set different for illustration purpose.
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remain the same. However, it is not rotation invariant and does not
use color information.
LEM [11] is the only key-line descriptor among the comparison de-
scriptors. Modeling with lines reduces the storage requirement and
sensitivity to illumination change. However, ignoring the texture
information of objects could decrease the matching performance.
In the experiments, we use face matching system with LEMs [11],
which extract the lines from the edge map of faces and compare
the lines using Hausdorff distance. This basic system performs as
well as more advanced face matching techniques, but it is not
designed for geometric transformation variances.
13. Reaction to illumination change of the key-lines vs LEM. a) Objects in RGB space. b) Obje
s computed in YCbCr space. e) Edge maps computed from RGB space.
5.6. Results

5.6.1. Comparison study
The bar graphs in Fig. 12 summarize the hit rate (%) of each descrip-

tor on the test datasets. We found that the retrieval performance of
RSILC is either the first or the second among the other descriptors for
all test datasets. CSIFT is one of the best descriptors except on the
Indian dataset. This descriptor uses color information, therefore it has
better results compared to color-blind descriptors. LEM performance
is higher than the other descriptors on the CalTech set, in which all
images are frontal faces. However, LEM is not designed to deal with
geometric transformations. Therefore, its matching accuracy decreases
cts in YCbCr space. c) Edgemaps computed in YCbCr space. d) Key-lines extracted fromedge



(a)Rotation Transformation (b) Mirror-flip Transformation (c) Scale ( 1
2 x) Transformation6

Fig. 14. An example showing the robustness of the RSILC descriptor to the (a) rotation (π/6), (b) mirror-flip, and (c) scale (12 x) transformations. Extracted key-lines and corresponding
matches are illustrated as color lines.
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on a dataset with large pose variations (e.g., Indian Faces and
ColorFERET) and performance is drastically lower if the query image is
rotated and re-scaled (cf. Fig. 15 and Section 5.6.3). The PHOGdescriptor
produces comparable results on the face datasets and highest scores on
the generic set but is color-blind and rotation variant. Therefore, in
transformation experiments, this descriptor failed to perform accurate
matching (cf. Section 5.6.3). Conventional SIFT and SURF have lower
performance on both the face and generic sets compared to other
descriptors.

In a controlled environment, all descriptors performwell, even with
a basic test-bed system as in our case. However, thematching results on
the LFW dataset show that a simple test-bed system is insufficient for
face recognition in an unconstrained environment. It would be unfair
to compare our scores with full face identification systems, which
often have additional stages, such as the incorporation of age, gender,
or facial expression information to improvematching accuracy. Because
we propose a generic descriptor, we compare it with the other generic
descriptors in the same test-bed system.

5.6.2. Robustness to illumination
All of the face datasets that we used in our experiments have illumi-

nation variances including other variances, such as view and facial
expression. However, in the ALOI set, the illumination direction is sys-
tematically varied for each object in 24 configurations and all other
parameters are held constant. Therefore, we found that this database
is suitable to test the robustness of the descriptor to large illumination
variance. As mentioned in Section 3.2.1, our descriptor uses YCbCr
color space, which is more robust to illumination changes compared
to other color spaces. Fig. 13 shows two example objects with different
illumination directions. The RSILC descriptor computes the key-lines
from the edge map of the objects and the edge boundary is computed
from the Y-band of YCbCr color space. The visibility of objects is affected
by high illumination variance in RGB space. On the other hand, the
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Fig. 15. Retrieval performance (hit rate) of descriptors with transfor
illumination variance seems to be reduced in YCbCr space. Therefore,
the edge maps extracted from the Y-band are less affected by illumina-
tion variance. The other line-based descriptor, LEM, extracts the edges
from the RGB space. Although it is claimed that the LEM is robust to illu-
mination changes because it only uses edge information, the edgemaps
in Fig. 13.e and the poor retrieval performance on the ALOI illumination
set indicate that edges are affected by the high illumination variance.
The retrieval accuracy of the conventional SIFT and SURF on this dataset
are also lower (Fig. 12). It can be interpreted as, these descriptors are
less robust to illumination variance compared to CSIFT, PHOG, and
RSILC, which perform well in this set with a retrieval score (hit rate)
higher than 90%.
5.6.3. Robustness to transformation
We investigate the retrieval performance of the descriptors to the

following transformations: rotation, scaling, and mirror-flipping. We
run experiments on the CalTech set. The query image is rotated by π/6,
rescaled to 50% of its original size, mirror-flipped, and matched with
straight images in the dataset. Fig. 14 shows examples from the experi-
ment. We report the hit rates of descriptors as bar graphs in Fig. 15. Ac-
cording to the scoring, RSILC matching performance is not affected by
rotation, scaling, or flip transformation, but SIFT, SURF, PHOG, and LEM
performance suffered a significant drop when images were transformed.
LEM and PHOG are not designed to cope with rotation transformation.
Thus, their matching performance in the rotation case was less than 50%.

To quantify the degradation of retrieval performance with image
transformation, we compare retrieval performance of RSILC on trans-
formed images with the retrieval performance on non-transformed
images. Table 2 lists the hit rates of the system on the CalTech set.
There is a slight drop due to transformation at the top-1 hit rate. How-
ever, at top-3 and top-5, the hit rate is equal to that obtained with
non-transformed query images.
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Table 2
The effects of transformation on retrieval performance. The test is conducted on the
CalTech set.

Hit rate

Query image Top-1 Top-3 Top-5

Non-transformed 0.9400 0.9511 0.9555
π/6-rotated 0.9299 0.9467 0.9555
1/2-scaled 0.9178 0.9467 0.9578
Mirror-flipped 0.9111 0.9511 0.9777
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5.7. Evaluation in a real-world system

We have successfully integrated RSILC in the face matching module
(FaceMatch) [19] of the People Locator (PL) [57] service developed by
NLM to help families reunite in disaster situations. PL photo collection
is dynamic and large, containing hundreds of thousands of images. It
typically has only one (seldom two) picture per person; therefore,
FaceMatch cannot train any sophisticated person-specific model and is
required to provide single-shot-based face matching capability while
working with fairly low-quality images. Our experiments indicate that
overall, RSILC provides a better top-1 hit rate face image retrieval
accuracy (HitRate.RSILC = 0.96) than any other individual descriptor,
including the rotation- and scale-invariant SIFT (0.94) and SURF (0.92),
on the CalTech Faces, yielding only to the ensemble (an optimally
weighted combination) of descriptors (SIFT, SURF, ORB, LBPH, HAAR)
(HitRate.COMBO= 0.98), thus prompting a safe replacement of some of
them with itself without any expected accuracy loss.

6. Conclusions

We introduced a new Rotation- and Scale-Invariant Line-based
Color-aware descriptor (RSILC), which detects image key-lines and
their circular regions, combining both local (intensity, color, gradient
histograms) and global (line inter-positioning) information. It models
the line-rich objects in a more intuitive and economical way than the
popular key-point descriptors do. Moreover, RSILC has a better
matching efficiency, since it produces more discriminative candidates
to match in line-rich regions of interest. Aside from the mentioned fea-
tures, RSILC is alsomirror-flip invariant via symmetric key-line descrip-
tor matching, something that other key-spot descriptors we tested
cannot claim.

We performed a thorough investigation of the descriptor matching
performance by conducting the following image and face retrieval
experiments involving (i) generic line-rich objects and faces (an
important special case of line-rich objects), (ii) controlled illumination
variation using several direct lights, (iii) geometric transformation, in-
cluding rotation, scale, and mirror-flip transformations. We compared
our descriptor matching performance with well-known descriptors in
the same test-bed system. The results indicated that overall RSILC is
more accurate for line-rich object matching than the key-point descrip-
tors. We successfully integrated RSILC in the real-world face image
retrieval system FaceMatch (FM) and observed that RSILC is more
accurate than any of the FM individual descriptors.

Our future work includes experiments with alternative edge
detection methods (e.g., key-line filtering directly after the Sobel
operator), various optimizations to RSILC computation and matching
(e.g., reducing the individual descriptor size) utilizingmultiple process-
ing cores, and pushing batch matching to GPU. RSILC can be further ex-
panded to piece-wise polynomial and curve-based region matching,
which should expand the possible image matching application pool.
Although RSILC produced good results in our out-of-plane rotation ex-
periments, it was not designed to be invariant to affine or projective
transforms, hence a natural extension would involve the study and
introduction of such an invariance.
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