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Abstract

Purpose To improve detection of pulmonary and pleural
abnormalities caused by pneumonia or tuberculosis (TB) in
digital chest X-rays (CXRs).

Methods A method was developed and tested by combin-
ing shape and texture features to classify CXRs into two
categories: TB and non-TB cases. Based on observation that
radiologist interpretation is typically comparative: between
left and right lung fields, the algorithm uses shape features
to describe the overall geometrical characteristics of the lung
fields and texture features to represent image characteristics
inside them.

Results Our algorithm was evaluated on two different
datasets containing tuberculosis and pneumonia cases.
Conclusions Using our proposed algorithm, we were able
to increase the overall performance, measured as area under
the (ROC) curve (AUC) by 2.4 % over our previous work.
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Introduction

According to the World Health Organization (WHO), tuber-
culosis (TB) is one of the world’s deadliest communicable
diseases [1]. In 2013 alone, roughly 9 million people acquired
TB and 1.5 million died from the disease, 360,000 of whom
were HIV positive [1]. Despite considerable progress in diag-
nosis and treatment to eradicate the disease, TB remains a
major health threat due to the following factors:

e Opportunistic coinfection with HIV-positive populations
e Emergence of multidrug resistance strains

Screening for TB is critical to fight disease spread and help
with early treatment. There are several established guide-
lines for determining active TB infection (Centers for Disease
Control [2]). These can be summarized as follows:

e The TB skin test (also called the Mantoux tuberculin skin
test) is a common test to detect whether someone has been
exposed to TB. It is a highly sensitive test and does not
confirm active disease.

e A more reliable method is the sputum test where cultured
sputum samples are microscopically analyzed. Though
definitive in its determination, it is slow and depends on
the ability of the patient to produce sputum—which may
be a challenge when coinfected with other disease, or in
certain age groups.

e Finally the most reliable method is blood testing (also
called interferon-gamma release assays or IGRAs). How-
ever, due to high cost, this method is used as a last resort
when all other methods fail. Further, high cost makes it
difficult for population screening applications.

e Chest x-ray analysis has long been accepted as definitive
indicator of disease. It is relatively inexpensive, fast, and
also a good indicator severity [3].

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-015-1242-x&domain=pdf

Int ] CARS

Digital CXRs enable a radiologist interpretation, while the
patient is still on-site. This offers a unique opportunity for the
radiologist to immediately assess the situation and refer the
patient for further consultation and limit disease exposure.
However, in many under-resourced locations, having a radi-
ologist on-site is not an option, and teleradiology is limited
in remote areas. Commonly, an operator/technician manages
care of all tasks, including acquisition of the image, and
patient instructions. To address such limitation the National
Library of Medicine (NLM) is developing an automatic
CXR screening system. As an initial test, the system has
been deployed in rural western Kenya due to high HIV and
TB prevalence in the region. The deployment is in collab-
oration with the Indiana University School of Medicine,
AMPATH (Academic Model Providing Access to Health-
care), the largest AIDS treatment program in the third world
and Moi University in Eldoret, Kenya.

Building a robust automated screening software is a diffi-
cult task since TB detection is still an open research problem.
The reason lies on the likely variable image quality of CXR
and the diversity in size, shape, and texture of image patterns
indicative of pulmonary abnormality. While texture infor-
mation is one critical resource for image classification, it
alone is not sufficient to screen for the presence of pulmonary
anomalies, in particular those presented by TB infection, and
overall geometrical shape characteristics of lung give con-
text, normalizing to the patient anatomy significantly aiding
in classification performance.

The paper is organized as follows: in “Materials and
methods” section, we first introduce the reader to our pro-
posed screening system, by briefly describing the research
so far, along with the system components and underlying
algorithms. We present and discuss our research motivation.
Furthermore, we describe the main focus of this paper, which
is the improvement of our system by incorporating shape fea-
tures along with the texture descriptors. In “Experiments”
section, we provide extensive results on system evaluation.
Finally, in “Discussion” section, we discuss new ideas and
challenges on our research. The reader is advised to review
the following survey papers [4] and [5] on related research.

Materials and methods
Previous work

We have developed a screening software system based on a
multistage framework (Fig. 1). The first stage is described
in detail in [6-8] and [9], and it consists of methods that
extract lung anatomy. Specifically, in [6] we discussed a
method to automatically segment anatomic structures in
CXRs, and Log-Gabor filter banks were used to segment
lung fields and ribs by adjusting orientation and frequency.

@ Springer

CXRs

Atlas-based Lung
Segmentation

Stage 1

Texture Feature Extraction
(e.g. Intensity histogram, Gradient magnitude
histograms, Histogram of oriented gradients,
Local binary patterns, etc.)

Stage 2

Support Vector Machine
Classifier

Stage 3

non-TB B

¥ X

Fig. 1 Overview of our current screening system with its processing
stages

In [7] we presented an improved method for segment-
ing lung fields. This method consists of three steps: (i) a
content-based image retrieval approach for identifying train-
ing images (with binary masks) most similar to the patient
CXR using a partial Radon transform [10] and Bhattacharyya
shape similarity measure [11], (ii) creating the initial patient-
specific anatomic model of lung shape using SIFT-flow for
deformable registration of training masks to the patient CXR,
and (iii) extracting refined lung boundaries using a graph
cut optimization approach with a customized energy func-
tion. The next stages in the system are feature extraction
and classification. In [8] we used texture features to describe
the extracted lungs from the first stage. A histogram that
shows the distribution of the different descriptor values is
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Fig. 2 Two different segmentation approaches: a air cavity segmenta-
tion shown in green and b expected lung anatomy segmentation shown
in red

measured across the lung field. Each histogram bin is a fea-
ture, and features from all descriptors are concatenated to
form a 192-dimensional feature vector that is the input to
the classifier (i.e., support vector machine). We obtained an
AUC of 88.5% in identifying a CXR as TB or non-TB on
the Shenzhen dataset (see “Appendix”). Figure 1 illustrates
each stage of our system.

Motivation

Our goal is to build a system that can perform population
screening in resource-constrained regions in which use of
CXR for diagnosis purposes is prominent. This requires us
to build a robust CXR screening system with high sensitivity
(~100 %) to avoid missing any TB cases out in the field as this
can have devastating consequences to the local community.

The study proposed in this paper was conducted to
determine whether accurate segmentation of anatomic lung
boundaries is needed for disease detection, even when they
are not clearly visible—possibly due to manifestation of dis-
ease or other radiological occlusions. Figure 2 presents this
notion where a TB manifestation (pleural effusion) causes
the CXR impression to not exhibit a clear anatomic lung
boundary.

More specifically, in the previous paragraph we discussed
that the current implementation of our segmentation module
extracts only the air cavity within the lung in a CXR (green
outline in Fig. 2). It does not consider the expected anatomy
of lungs (i.e., surrounding lung area), which could be useful
for disease detection. That is because our current image fea-
tures are extracted within the air cavity segmented part and

not the whole anatomic lung boundary. Note, however, that
for healthy lungs the two outlines, i.e., the air cavity and the
anatomic lung boundary, can be considered as overlapping.

Assumption 1 We hypothesized that by adjusting our seg-
mentation module to follow the anatomy of lungs (red outline
in Fig. 2) instead of air cavities, overall classification perfor-
mance would increase.

When collaborating with radiologists, we witnessed that
during examination, they consider geometrical features (i.e.,
lung shape) and they perform a comparative reading between
left/right lung fields.

Assumption 2 We hypothesized that geometric differences
between lung fields (given normal anatomic asymmetry such
as cardiac silhouette) as depicted in CXRs can be useful for
TB identification by an algorithm as it is for the human reader.

In an effort to improve the overall classification accuracy
of our system (Fig. 1), we wanted to expand the CXR atlas
model set of the segmentation module [7] (stage 1 in Fig. 1)
because until now we used only CXR models from non-TB
cases.

Assumption 3 We hypothesized that adding CXR models
of TB cases would improve the overall classification perfor-
mance.

To address “Assumption 1,” we invited human observers
to provide their input and expertise into helping us identify
an appropriate segmentation approach. That is whether to use
segmentation based on air cavity or lung anatomy. Since we
do not have a clear medical definition of lung segmentation,
we sought medical expertise from the radiologists.

We selected 48 CXRs exhibiting TB manifestations from
the Shenzhen dataset (see “Appendix”), and we asked two
experts with long experience in radiology reading to mark
their perceived boundaries of the lung fields manually. Their
manual segmentation would be used as guidance for our seg-
mentation module. In this way, we would also acquire new
CXR models that would be used for “Assumption 3.” For
clarification reasons, the question toward the two radiolo-
gists was formulated as follows:

For the provided CXR dataset, please mark the bound-
aries of left and right lung fields excluding the area of
the diaphragm, heart, and aorta.

Our collaborating radiologists used Firefly software [12]
to mark the lung field boundaries.!

We calculated the inter-observer agreement between the
two radiologists by measuring the overlap of their markings.

! Firefly was developed by University of Missouri, and it is an online
annotating toolbox.
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Fig. 3 Left: abnormal cases, right: radiologists’ markings (purple:
reviewer A, green: reviewer B, white: overlapping area between review-
ers). aRight lung field: 69.0 %, left lung field: 91.9 %. b Right lung field:
59.8 %, left lung field: 89.9 %. ¢ Right lung field: 80.7 %, left lung field:
222 %

We noticed that although the radiologists had an excellent
inter-observer agreement on normal lung fields ((¢, o) =
(86 %, 13.6)), they scored significantly lower on abnormal
lung fields ((u,0) = (73 %, 18.1)). Figure 3 shows sam-
ple cases of abnormal lung fields along with radiologists’
annotations.

This high disagreement in radiologists’ markings in abnor-
mal lung fields prompted us to investigate further.

Each radiologist was interviewed and asked to describe
how they produced their markings. Their responses were
clear and well defined: reviewer A simply mentioned that
they only included air cavities in their markings because
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they wanted to have these markings as defined as possible.
Reviewer B mentioned that they included air cavities as well
as areas covered in fluid in their marking because: (a) the
abnormal lung field is still present even with fluids cover-
ing its cavity (i.e., summation shadow); (b) they followed a
comparative approach to “mirror” the normal lung field onto
the abnormal one. Finally they both agreed that marking the
boundaries of abnormal lung fields was a very tedious and
subjective task because they were not visible.

We derived two interesting conclusions from these dis-
cussions. First, reviewer A represented one approach, and
that was to segment only the air cavity part of the lung field.
Reviewer B represented a different approach, and that was
to segment the lung field following its expected anatomy.
These two approaches counter each other and as such they
inevitably do not provide a clear definition of lung segmen-
tation, which in turn plays an important role in designing
an automated segmentation module (i.e., “Assumption 17).
The second point came from reviewer B who examined the
anatomy of both lung fields before marking the boundary.
It shows that there is an underlying comparative review-
ing when human experts examine a CXR. This approach is
directly related to comparative diagnosis, which is a very
common process during CXR reading [13]. Interestingly
enough this point comes as a support to the original “Assump-
tion 2” in our motivation.

Experiments

From the evaluation above, we were able to conclude that dur-
ing reading process, radiologists do not focus on anatomic
lung boundaries. It seems that they have accumulated an
intuitive interpretation experience that disregards strict lung
anatomies and focuses on identifying diseases. However, this
ambiguity in a clear definition of lung segmentation is an
obstacle in developing a final version of the lung segmenta-
tion method.

To address this, we performed a series of experiments.
Specifically, we performed four experiments and we used
the error of the classification module (i.e., Decision Stage
in Fig. 1) as the overall evaluation to our system. In the
first experiment, we tried to incorporate the segmentation
behavior of the two experts. More specifically, we modified
parameters in the segmentation module such that its output
matched the annotated lung boundaries, and we evaluated
the performance of the classification module. In the second
experiment, we adapted the algorithm to include the notion
of comparative diagnosis (i.e., “Assumption 2”). For this we
extracted shape features to describe lung field differences in
addition to our existing texture features. In the third exper-
iment, we tested whether adding binary masks of abnormal
CXRs would improve classification accuracy (i.e., “Assump-
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tion 3”). Finally in the fourth experiment, we split the shape
and texture features and we classified them separately using
two classifiers because we wanted to identify whether a paral-
lel versus a serial configuration of classifiers would improve
the overall performance.

First experiment: effect of segmentation module
on overall classification error

Asdescribed in [7], our segmentation methodology uses non-
rigid registration. By adjusting the number of iterations, we
can effectively modify the elasticity of the registration and
match our segmentation results to the experts’ annotations.
By assigning a large number of iterations (>60), our segmen-
tation (Air Cavity Segmentation) results matched reviewer A
(see green outline in Fig. 2), while for a small number of iter-
ations (>3) our segmentation (Lung Anatomy Segmentation)
achieved similar results with reviewer B (see red outline in
Fig. 2). We evaluated the two setups on Shenzhen dataset (see
“Appendix’’) using our current texture feature descriptors and
classification module. Table 1 shows results.

Examining Table 1 Air Cavity Segmentation seems to
have an overall better performance in ROC area than Lung
Anatomy Segmentation by a small margin. However, when
reviewing recall and F-measure, Lung Anatomy Segmenta-
tion performed better in TB classification. That means that
if we wanted to focus more on TB detection (i.e., increase
sensitivity for TB cases), then Lung Anatomy Segmentation
is a better candidate.

Second experiment: effect of combining shape features
and texture features on overall classification error

In the second experiment, we aimed at incorporating com-
parative analysis process as reviewer B suggested. More
specifically, the notion of anatomy to help mark lung bound-
aries brought up by review B was translated to geometry
characteristics. So we extracted shape features from each seg-
mented lung field and then we calculated their differences to
mimic the expert’s comparative analysis process. We used
standard shape features [14]: size, orientation, eccentric-
ity, extent, centroid coordinates, bounding box coordinates.
While these geometry characteristics are basic, they are pow-
erful enough to capture expert’s intuition when comparing
left and right lung fields. For this round of experiments, we
used the previous segmentation setups (Round 1) and we
extracted texture and shape features from the lung masks.
Table 2 synopsizes this round experiments.

This time Air Cavity Segmentation performed signifi-
cantly better than Lung Anatomy Segmentation in all metrics.
What is more interesting is comparing Table 2 with Table 1:
Air Cavity Segmentation of the second experiment was over-
all better for both setups of the first experiment. When it

Table 1 Evaluation of our system using the two segmentations

Recall F-measure ROC area

Precision

False positive rate

True positive rate

Class

091
0.91

0.84
0.82

0.896
0.766
0.885

0.234 0.791

0.896
0.766

0.885

Normal
TB

Setup A—Auir cavity segmentation

0.882

0.104
0.208

0.907

0.845
0.831

0.809
0.874

Normal
TB

Setup B—Lung anatomy segmentation

0.907

0.792

0.115

0.792

@ Springer



Int ] CARS

<
(5]
—
A [
Q|
S| @
| o
L
=
%
S
£l =
- | o
'_m‘—t
N
8| =
| o
=
R
= )
a |l o
Q
1}
<
S
o
=
3=l
7
o)
Q@
21
= | =
| <
(o]
2
<
-
o
=
2|2
[72]
—
2| &
=] —
ol 2| x
= 2|
LlIEH| o
2
=
[0}
i)
=)
=]
<
& =
<
212 E
P =
c|lO | Z
=
5)
g=1
<
=
g
el
g
]
Q
2
‘8 g
5 =
72}
@ 8
e 5
s &
=] O
8 z
£ z
Q
= z
= Q
2 o
2 g
= <
© |
N ®]
@ o
2 2
= %51

@ Springer

0.934

0.801 0.852

0.9

091

0.079

0.801
0.9

TB

0.908

0.844
0.823

0.794
0.886

0.231
0.1

Normal
TB

Setup D—Lung anatomy segmentation

0.908

0.769

0.769

comes to comparing individual metrics between Air Cavity
Segmentation of the second experiment and Lung Anatomy
Segmentation of the first experiment Air Cavity Segmenta-
tion behaved almost the same in the case of TB recall (0.801
vs. 0.792, respectively), while it behaved much better in all
other metrics (e.g., precision). This is an important finding
because it shows that either the texture information from the
whole lung anatomy (Lung Anatomy Segmentation) or the
combined shape and texture information from the air cavities
(Air Cavity Segmentation) leads to the same detection com-
pleteness of TB cases. However, combined shape and texture
information offers a more accurate detection of TB cases.

Third experiment: evaluation of binary masks from
abnormal CXRs

The previous rounds of experiments showed that Air Cavity
Segmentation is a better segmentation approach than Lung
Anatomy Segmentation when combined with shape and tex-
ture features. In this round of experiments, we tested whether
adding binary masks of abnormal CXRs would improve the
overall segmentation process. So we included the binary
masks annotated by reviewer A into our atlas and we re-
evaluated the accuracy of our segmentation on the JSRT
dataset (see “Appendix”). The reason we used the JSRT
dataset is because it contained manual annotations of lung
fields. We did not measure any significant increase when
adding these new masks.

Fourth experiment: performance comparison of
two-stage classifier and one-stage classifier

At this point, we have to mention that our screening software
will be configured to operate at 100 % sensitivity in detecting
TB cases because it is going to be deployed in a real environ-
ment where no TB case should be missed. With the previous
experiments, we confirmed that shape and texture features
using Air Cavity Segmentation give the best results. In this
last experiment, we evaluated two classifier configurations
while maintaining based on their specificity scores while
maintaining 100 % sensitivity. More specifically instead of
having one classifier (Fig. 4 top) to process the whole input
feature set, we used two classifiers in a sequential setup (Fig.
4 bottom). First, the shape features are fed into “Classifier
A,” and if the output is “Abnormal,” then the process stops
here: The input image is labeled as TB case. If the output is
“Normal,” then the process continues to “Classifier B” into
which just the texture features are fed. For single setup speci-
ficity was at 65 %, while for cascade setup specificity was at
84 %. Therefore, with this two-stage classifier configuration,
we achieved 19 % accuracy increase compared to one clas-
sifier while maintaining zero true negatives (i.e., TB cases
classified as normal).
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A Shape Features + Texture Features
(e.g. size, orientation, eccentricity, extent, intensity histogram, gradient magnitude
histograms, histogram of oriented gradients, local binary patterns, etc.)

4

Classifier
Non-TB ™
Shape Features
(e.g. size, orientation, eccentricity, extent, etc.)
Classifier A
Non-TB
Texture Features
™ (e.g. Intensity histogram, Gradient magnitude histograms, Histogram of oriented

gradients, Local binary patterns, etc.)

‘ Classifier B

Non-TB B

Fig. 4 Top: single classifier configuration. Bottom: two-stage classifier configuration

Discussion

This paper describes an elaborate evaluation of a current
state-of-the-art segmentation algorithm applied to CXRs
with TB findings [7,8]. To the best of our knowledge, this is
the first attempt to assess various segmentation approaches

using abnormal CXR cases. More specifically, through this
study, we acquired experience and knowledge, which can
act as useful lessons to the rest of the research community.
The key points in this paper are synopsized in the following
paragraphs.

@ Springer
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First, preliminary study with two experts indicated that
there is no reliable agreement in identifying lung boundaries
in abnormal cases. In contrast, there is a stronger agreement
for normal cases. This has to do with the fact that normal
cases have clearly defined lung boundaries, while abnormal
manifestations like pleural effusion, silhouette and miliary
pattern affect how these boundaries are depicted in CXRs
making it hard to detect them. Without a clear definition of
lung segmentation, we had to identify the best automated
segmentation approach to increase TB detection.

Second, there is an underlying comparative process when
a human expert performs manual lung segmentation. It is
derived from the fact that left and right lung fields are sym-
metric around the vertical-axis. This comparative notion was
utilized in our segmentation module by changing it to per-
form a more rigid registration and therefore has the output
masks be symmetric. We tested this modified segmentation
module on the TB classification and recall increased by 2.6 %,
proving that a comparative process improves texture classi-
fication (see Table 1, row 4).

Third, with the help of the aforementioned comparative
process, we incorporated shape features to describe differ-
ences in the geometry of lung fields in addition to their texture
information. When combining shape and texture features, the
area under the curve (ROC) in detecting TB cases increased
by 2.4 % (see Table 2, row 2) compared to using only texture
features.

Fourth, splitting shape and texture features significantly
improves accuracy. Also, because shape classifier (Classifier
A, bottom, Fig. 4) acts as a pre-filtering module, it leads
to faster CXR processing which is a major priority in low-
resourced settings like in Kenya.

Finally, adding abnormal masks to our atlas does not help
with segmentation performance regardless of our motiva-
tion’s assumption.
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Appendix
There are two datasets that are used in this paper:

1. Shenzhen dataset [11]: It was acquired from Shenzhen
Hospital in China. It has a good variety of TB cases. They
were captured over a month period as part of the daily
routine at Shenzhen Hospital, using a Philips DR Digital
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Diagnost system. The set contains 340 normal CXRs and
275 abnormal CXRs with TB along with radiologist read-
ings. The dataset is publicly available here: http://archive.
nlm.nih.gov/repos/chestlmages.php.

2. JSRT dataset [15]: This is a popular publicly available

dataset from the Japanese Society of Radiological Tech-
nology (JSRT). This dataset contains 154 nodule and 93
non-nodule CXRs along with manual annotations of the
lung fields.
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