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ABSTRACT  

Tuberculosis (TB) is a major public health problem worldwide, and highly prevalent in developing countries. 

According to the World Health Organization (WHO), over 95% of TB deaths occur in low- and middle- income 

countries that often have under-resourced health care systems. In an effort to aid population screening in such resource 

challenged settings, the U.S. National Library of Medicine has developed a chest X-ray (CXR) screening system that 

provides a pre-decision on pulmonary abnormalities. When the system is presented with a digital CXR image from the 

Picture Archive and Communication Systems (PACS) or an imaging source, it automatically identifies the lung regions 

in the image, extracts image features, and classifies the image as normal or abnormal using trained machine-learning 

algorithms. The system has been trained on adult CXR images, and this article presents enhancements toward including 

pediatric CXR images. Our adult lung boundary detection algorithm is model-based. We note the lung shape differences 

during pediatric developmental stages, and adulthood, and propose building new lung models suitable for pediatric 

developmental stages. In this study, we quantify changes in lung shape from infancy to adulthood toward enhancing our 

lung segmentation algorithm. Our initial findings suggest pediatric age groupings of 0 - 23 months, 2 - 10 years, and 11 - 

18 years. We present justification for our groupings. We report on the quality of boundary detection algorithm with the 

pediatric lung models. 
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1. INTRODUCTION  

Tuberculosis (TB) is a major public health problem worldwide, and is highly prevalent in developing countries. 

According to the World Health Organization (WHO) estimates, there were 8.6 million new TB cases in 2012, and as 

many as 1 in 10 TB cases globally are among the less than 15 year old age group, but the number may be higher because 

many children are simply undiagnosed [1]. It is estimated that there are around 1 million cases of TB in children younger 

than 15 years living in developing countries, with approximately 74,000 deaths annually [2]. Over 95% of the TB cases 

and deaths occur in low- and middle-income countries that often have under-resourced health care systems. In an effort 

to aid population screening in such resource challenged settings, the U.S. National Library of Medicine (NLM) has 

developed a chest X-ray (CXR) screening system that provides a pre-decision on pulmonary abnormalities and could be 

used to minimize the workload. The system has been trained on adult CXR images, and we published our findings in [3] 

[4]. This article presents enhancements toward including pediatric CXR images.  

 

In our current system, when a digital CXR image is presented from the PACS or an imaging source, it automatically 

identifies the lung regions, extracts image features, and classifies it as normal or abnormal using trained machine-

learning algorithms. In expanding the system capability to include pediatric CXRs, we need to be aware of change in the 

lung shape during the pediatric developmental stages, as shown in Figure 1. For example, in an infant, the lungs are 

smaller, have a triangular shape, and the cardiac contour is relatively large such that the horizontal diameter of the heart 

may approach 60% of thoracic horizontal diameter [5]. 

 

Our lung boundary detection algorithm is model-based [3]; therefore, we built up a pediatric lung model set. A 

schematic of the segmentation stage of the screening system is shown in Figure 2. As background, the segmentation 

algorithm registers the patient CXR to images from an expert-marked atlas by computing a correspondence mapping  
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from the target to the model. Then an inverse transform is applied to the model lung boundary to obtain the patient 

specific lung boundary. In order to decrease the registration error, and increase the boundary accuracy, this process is 

repeated on several models, and we average the lung boundary results. The details of the full system can be found in [3].  

 

    

Figure 1:  Example pediatric XCRs. 

 

 

Figure 2: The segmentation approach for adult and pediatric CXR. 

 

As reported in Table 3, we tested the system on pediatric images and we observed that adult lung models are not 

adequate for the pediatric cases. We note that the algorithm performance is much lower than the peak adult lung 

segmentation Dice score of 95.4 ± 0.015, reported in [3]. We attribute this to changes in the lung shape during the 

pediatric developmental stages. Consequently, in this study, we quantify changes in lung shape from infancy to 

adulthood and propose building new lung models suitable for various pediatric developmental stages to improve 

algorithm performance. Our initial findings suggest pediatric age groupings of 0 - 23 months, 2 - 10 years, and 11 - 18 

years. We present justification for our groupings in the section 2, and report the quality of boundary detection algorithm 

with age group-based pediatric lung models in Section 3. 

 

2. QUANTIFYING VARIATIONS IN THE PEDIATRIC LUNG SHAPE 

In order to develop meaningful pediatric lung shape models, it is necessary to identify age groups within which 

there is minimal change in the overall lung shape. We have 161 pediatric images within a data set containing 397 CXRs 

from India. For comparison, we also randomly select 25 CXRs from our adult CXR image data set from the 

“Montgomery Dataset” maintained by NLM. This set contains 138 CXRs from the Department of Health and Human 

Services, Montgomery County, Maryland. Both data sets were de-identified at source and their use is exempted under 

NIH IRB OHSR # 5357 valid through Dec. 31, 2018. Table 1 summarizes the number of CXRs in each age group. The 

lung boundaries in these images have been manually delineated using the Firefly tool [6] and are used to generate binary 

lung mask images. As shown in Figure 3 and 4 respectively, we compute the average image within each group and the 

average image of the lung masks.  
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Table 1: CXRs groups according to the patient age 

Pediatric Group 1 52 CXRs 1 Day ≤ Age < 2Years 

Pediatric Group 2 67 CXRs 2 Years ≤  Age < 11 Years 

Pediatric Group 3 42 CXRs 11 Years ≤  Age < 18 Years 

Adult 25 CXRs Age  ≥ 18 Years 

 

 

    
Figure 3: Average image of pediatric CXRs according to groups listed in Table 1. 

 

Qualitatively, we note from the images in these figures that the lung shapes within-class are similar, but there are 

noticeable visual differences between the groups. In order to quantify this observation, we compute the mean boundaries 

within each group, shown as colored contours in Figure 5. Next, as reported in Table 3, the average contour distance 

(ACD) of each lung boundary to the mean boundary of each group is computed. ACD is the average distance between 

the mean boundary M and each lung boundary L . Let ia and jb be the points on the boundary L and M , respectively. 

The minimum distance of point ia  to the boundary M  is defined as follows:

 
 ||||min),( iji abMad   (1) 

For ACD, the minimum distance for each point on the boundary L to the contour M is computed. Then, the distances 

are averaged over all points of boundary L . In order to make the similarity measure symmetric, the computation is 

repeated from contour M to contour L . Following is the formulation for ACD,  
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where |.| is the cardinality of the set.  

 

    
Figure 4: Average lung mask images in each pediatric age group. The dashed contours indicate the average contour. 
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Figure 5: Superimposed mean lung boundaries from each pediatric age group demonstrate (i) lung shape development, and (ii) high 

similarity in lung shape between pediatric group 3 and adults (shown in black for clarity) 

 

 

Table 2: Average contour distances of lung boundaries within-class and between classes 
 Average Contour Distance 

Mean Boundary of 

Pediatric Group 1 

Mean Boundary of 

Pediatric Group 2 

Mean Boundary of 

Pediatric Group 3 

Mean Boundary of 

Adult Lungs 

Pediatric Group 1 6.8042 8.9769 11.1652 10.9807 

Pediatric Group 2 8.5739 5.9532 6.7504 6.8543 

Pediatric Group 3 10.5131 5.8211 4.6895 5.2760 

 

As shown in Table 2, the average contour distance of the mean boundary with the lung boundaries within each group is 

minimum. However, we note that the distance is higher across groups, suggesting that the pediatric age groups selected, 

following the initial experiment, are reasonable. Further, we observe that there is a very small difference (ACD = 5.276) 

between the average contour distance of the mean boundary of the adult lung and pediatric group 3. This suggests that 

the lungs for youth older than age 11 are reasonably mature, and very similar to the adult lung shapes. This is can be 

verified visually on the superimposed mean lung shape outlines shown in Figure 5. As a result we expect that it will be 

necessary to develop at least 2 pediatric lung models for ages 0 - 23 months and 2 - 11 years. It may be necessary to 

expand the adult lung model to include lung shapes from pediatric ages 11 years and older.  

 

3. EXPERIMENTAL RESULTS 

In this section, we report the lung boundary detection algorithm performance on pediatric CXRs. As we reported in 

Section 2, we have 161 pediatric images. We grouped them into 3 classes according to the patient age (cf. Table 1), and 

created pediatric models for each age group. Pediatric models are vectors which contain the horizontal and the vertical 

profiles of each chest X-ray.  

 

As a first experiment, we run the segmentation algorithm on each pediatric group to see their response to adult lung 

models. The segmentation quality is measured with the following evaluation metrics: average contour distance (ACD), 

overlap measure (the Jaccard similarity coefficient) and Dice`s similarity. ACD is also used to measure the distance 

between the average lung mask and lung boundaries in each group, and is defined in Section 2. The overlap measure is 

computed with the following formulation,  
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and, Dice`s coefficient is computed with the following formulation,  
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where S is the segmentation mask and GT is the radiologist marking as ground truth boundary. The Table 3 summarizes 

the system performance on each pediatric group.   



 

 
 

 

 

 

Table 3: The performance of the system (which is tuned for adult lungs) on each pediatric group. Average overlap, average 

dice and average contour distance scores between the ground truth boundary and the computed segmentation boundary for 

each pediatric CXR. 

Test Set Age Range Model Set Overlap Ω Dice Score ACD 

Pediatric Group 1  1 Day ≤ Age < 2Years Adult  26.612 36.837 148.365 

Pediatric Group 2 2 Years ≤ Age < 11 Years Adult 74.259 83.232 33.316 

Pediatric Group 3 11 Years ≤ Age < 18 Years Adult 88.460 93.761 15.307 

 

As we observed in Section 2, the lungs for youth older than age 11 years are very similar to the adult lung shape. This 

observation was confirmed by the system performance on Pediatric Group 3 which contains patients older than 11 years 

old. However, it did not perform well on younger patients, especially those younger than 2 years old. This experiment 

showed that, in order to improve the system performance on youths younger than age 11 and infants, it is necessary to 

adapt the system to the pediatric CXRs. Therefore, we modified the module as in Figure 2. When a CXR image is 

presented to the system, it extracts the age information from the metadata and selects the appropriate model set. If patient 

is younger than 2 years old, the model set for the algorithm will be group 1; if the patient age is between 2 and 11, then 

the model set will be Group 2; and if the patient is older than 11, then model set will be Group 3. In order to measure the 

extended system performance, we repeat the first experiment with the new model sets. The Table 4 summarizes the 

expanded system performance on pediatric CXRs groups if lung models are selected according to the patient age.  

 
Table 4: Expanded system performance on pediatric CXRs.  

Test Set Age Range Model Set Overlap Ω Dice Score ACD 

Pediatric Group 1 1 Day ≤ Age < 2Years Selected according to age 76.384 85.966 15.355 

Pediatric Group 2 2 Years ≤  Age < 11 Years Selected according to age 86.190 92.534 11.107 

Pediatric Group 3 11 Years ≤  Age < 18 Years Selected according to age 89.674 94.524 12.276 

 

According to the results, the system performance is slightly increased with the pediatric models for patients older than 

11. The performance increased 10% (according to the overlap measure) for second group (patient age is between 2 to 

11). However the performance is drastically increased for the first group (patients younger than 2), from 26% overlap to 

76% overlap. Figure 6 shows the visual results of the expanded-system. The first column contains example CXRs from 

group 1; the CXRs from group 2 are in column 2; and the CXRs from group 3 (patients older than 11) are in column 3. 

The green contour is the ground truth, the blue contour is the boundary computed with adult models, and the red contour 

is the boundary computed by selecting the model according to patient age. As can be seen from the figures, for Group 1 

and Group 2, age-based pediatric models helped to improve the system performance.  
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Figure 6: Segmentation results on example CXRs. Green contour is the GT, blue is the segmentation boundary with adult models, and 

red contours are the boundaries with pediatric models which are selected according to patient age.    

4. CONCLUSIONS 

Lung boundary segmentation is a key first step toward screening digital CXRs for pulmonary abnormalities. 

Working with an appropriate lung model increases the accuracy of the registration, and hence the accuracy of the lung 

boundary segmentation. Our current CXR screening system is tuned for adult lung images, and we observed that the 

system performed less accurately on pediatric CXRs. We also observed that there are varying lung shapes at different 

pediatric developmental stages. Therefore, we intended to expand the current system to include the pediatric CXRs. We 

modified the system and then observed the system performance with new models. The system boundary detection 

performance increased 10% (according to the overlap measure) for patients whose age is between 2 to 11; and increased 

drastically for patients younger than 2 (overlap score is increased from Ω = 26% to Ω = 76%). 
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