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Abstract: The unity of body and mind is an important concept in Chinese
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1 Introduction

The unity, or oneness, of body and mind is an important concept in Asian philosophy.
Seeing body and mind as two separate entities is usually considered as a symptom of
illness, as in traditional medicine, or weakness, as in martial arts for example. This paper
approaches the elusive body-mind concept in a more mathematical fashion. Elaborating
on earlier work in Jaeger (2012a, 2012b), this paper presents a model that can explain
phenomena both in our mind and in the physical world. Chinese medicine is an area in
which traditional philosophical concepts go along with practical healing methods. This
makes traditional Chinese medicine an ideal test bed for studies investigating the unity
of body and mind. Acupuncture in particular is well suited to these studies because it
is widely accepted and has a strong philosophical basis. On the other hand, the way
it physically affects the nerves is not well understood yet. The traditional explanation
for its efficacy is that acupuncture can correct imbalances and congestions in meridians,
which are channels through which energy flows through the body. However, we are
still lacking a deeper understanding of the neural processes underlying acupuncture.
Modern approaches can only partly explain acupuncture so far (Mclzack and Wall, 1965;
James, 1977). Especially, the explanation of long-lasting memory effects is difficult. This
paper will show that Yin and Yang, which are the two fundamental forces in Chinese
philosophy, can be explained with the proposed information-theoretical model. Both
forces play an important role in traditional Chinese medicine. The paper argues that the
energy flowing through the meridians is nothing else but information in the mathematical
sense (Shannon, 1948). Long-lasting effects can be achieved by learning the parameters
of the proposed model, which describes the behaviour of a synapse. When the incoming
information at a synapse matches the outgoing information, which is the central learning
concepts put forward in this paper, harmony between Yin and Yang is achieved in the
sense that the flow of information is neither congested nor empty.

The paper is divided into the following sections: Section 2 gives a brief overview
of the biology underlying the neurological model proposed here, explaining neurons
and synapses in more detail. Section 3 introduces the linear information-theoretical
model based on molecular concentrations measured at the presynaptic and postsynaptic
terminal of a synapse. Section 4 first explains the fundamental forces of Yin and Yang
before it shows that both forces can be described with an information-theoretical model.
Section 5 presents several observations for the proposed model, indicating that many
natural phenomena have a correspondence in our mind and in the way it works. Finally,
the paper concludes with a summary of the main results.

2 Neural signal transmission

The human nervous system is composed of neurons, or nerve cells, which can
communicate with each other via synapses. A synapse is a membrane-to-membrane
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junction that allows either chemical or electrical signal transmission. In the case
of chemical synapses, which will be in the focus here, signals are transmitted via
neurotransmitters that can bridge the synaptic cleft, a small gap between the membranes
of two nerve cells. As an illustration, the diagram in Figure 1 shows two neurons
communicating with each other. In this figure, one neuron sends a signal to another
neuron through its axon, which is a protrusion with potentially thousands of synapses
and which can extend to other neurons in distant parts of the body. The other neuron
typically receives the signal via its soma or so-called dendrites that conduct the received
signal to the cell body (see Figure 1). In both cases, the signal needs to pass a synapse
that transmits the signal by molecular means, via neurotransmitters, through the synaptic
cleft, from the presynaptic terminal to the postsynaptic terminal. The small volume
of the synaptic cleft allows neurotransmitter concentration to increase and decrease
rapidly. Prior to any signal transmission, the neurotransmitters are enclosed in small
spheres, synaptic vesicles, at the presynaptic terminal. On the other side, the postsynaptic
terminal provides receptors for neurotransmitters travelling through the synaptic cleft.
The lower right corner of Figure 1 shows a close-up of a synapse. The adult human
brain contains between 1014 and 5× 1014 of these synapses. Synapses, and the way
they transmit information, are crucial to the biological computations that underlie
perception and thought. The common understanding is that synapses, and changes in
their behaviour, are responsible for memorisation and human learning. To get insight
into these processes, it is essential to study the molecular processes underlying signal
transmission.

Figure 1 A signal propagating down an axon to the cell body and dendrites of the next cell
(see online version for colours)

Source: NIA/NIH
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The signal transmission at a (chemical) synapse happens in several steps (see Figure 2).
Except for the last step, each step takes no more than a fraction of a millisecond.

The transmission is triggered by an electrochemical excitation (action potential) at the
presynaptic terminal. The excitation causes calcium channels to open, allowing calcium
ions to flow into the presynaptic terminal. The increased concentration of calcium ions
in the presynaptic terminal causes the vesicles to release their neurotransmitters into the
synaptic cleft. Some of these neurotransmitters bind to the receptors of the postsynaptic
terminal, which opens ion channels in the postsynaptic membrane, allowing ions to
flow into or out of the postsynaptic cell. This changes the transmembrane potential,
leading to an excitation or inhibition of the postsynaptic cell. The action potential
from the presynaptic terminal has thus created a postsynaptic potential by molecular
means. Eventually, the docked neurotransmitters will break away from the postsynaptic
receptors. Some of them will be reabsorbed by the presynaptic cell to initiate another
transmission cycle.

Figure 2 Signal transmission at a chemical synapse (see online version for colours)

Source: Julien (2005), Wikipedia – Surachit, Nrets

3 Neurological model

This section derives a linear model for the information processing performed by a
synapse. The starting point is a well-known relationship for the sodium conductance
at the cell membrane of a nerve cell. This is the same relationship that served as the
starting point for the seminal paper by Hodgkin and Huxley (1952). In this paper,
Hodgkin and Huxley proposed a set of equations explaining the electrical characteristics
of nerve cells, and their underlying ionic mechanisms. Their model has been very
successful, and has been used to simulate biological processes by computational means.
Most notably are perhaps the different types of artificial neural networks that have
been successfully applied to pattern recognition problems (Bishop, 1996; Hecht-Nielsen,
1990; McCulloch and Pitts, 1943; Minsky and Papert, 1972).
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Sodium ions are largely responsible for generating action potentials in nerve cells.
A nerve cell membrane has voltage-gated ion channels that are shut when the membrane
is close to the resting potential. Once the membrane potential increases to a critical
value, these ion channels open and allow sodium ions to pass the cell membrane and
travel into the cell. The influx of sodium ions increases the membrane potential even
more, causing more ion channels to open and thus allowing more sodium ions to move
into the cell. This reinforcing process stops once the membrane potential has reversed
and the nerve cell has reached its action potential. After reaching the action potential,
the sodium channels close rapidly, preventing any more sodium ions to enter the cell.
The sodium ions are then transported out of the nerve cell and the cell again returns to
its resting potential. Understanding the temporal change of the sodium concentration is
therefore important to understand the generation and transportation of action potentials.

In their mathematical model, Hodgkin and Huxley assume that the sodium
conductance is proportional to the number of certain molecules on the inside of
the membrane, but that the conductance is independent of the number of molecules
on the outside. These molecules and their specific role are not important for the
understanding of the subsequent text, so they will not be discussed further here. The
paper confines itself to the important relationship between the inside and outside
molecule concentrations, as stated in Hodgkin and Huxley (1952). According to
Boltzmann’s principle the proportion Pi of the molecules on the inside of the membrane
is related to the proportion Po on the outside by

Pi

Po
= exp[(w + zeE)/kT ], (1)

where E is the potential difference between the outside and the inside of the membrane,
w is the work required to move a molecule from the inside to the outside of the
membrane when E = 0, e is the absolute value of the electronic charge, z is the
valency of the molecule (i.e., the number of positive electronic charges on it), k is
Boltzmann’s constant, and T is the absolute temperature (Hodgkin and Huxley, 1952).
With Pi + Po = 1, the expression for Pi becomes

Pi =
1

1 + exp
(
−w+zeE

kT

) . (2)

The concentration of the molecules on the inside of the membrane thus follows a
sigmoid function S(x), which has the following general mathematical form:

S(x) =
1

1 + e−λx
, (3)

where input x is unbound and parameter λ controls the steepness of the function.
Figure 3 shows S(x) for λ = 1, λ = 2, and λ = 0.5. This relationship between
sigmoid function and neural signal transduction has led to a widespread use of
transfer functions with sigmoidal shapes in artificial neural networks, such as in
feedforward/backpropagation networks for example (Bishop, 1996; Hecht-Nielsen,
1990).
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3.1 Linear information model

Concentrations will also play an important role in the model proposed in this paper.
Instead of using sodium concentrations at the cell membrane, this paper uses calcium
concentrations in the synaptic cleft and in the presynaptic terminal, as described in
Section 2 and shown in Figure 2. The assumption is that the calcium concentration
is directly correlated with the strength of the stimulus at the presynaptic terminal.
In particular, the paper assumes that the ratio of the calcium concentration in the
presynaptic terminal to the calcium concentration in the synaptic cleft determines the
stimulus. Now, let pi be the calcium concentration in the synaptic cleft. Then, the
stimulus is given by the ratio (1− pi)/pi. Furthermore, let po be the stimulus measured
at the postsynaptic terminal. Obviously, we want po to be equal with the actual
stimulus because this guarantees that we measure the correct stimulus at the postsynaptic
terminal. When we resolve this requirement for pi, we get the following result:

po =
1− pi
pi

(4)

⇐⇒ pi =
1

1 + po
(5)

Figure 3 Sigmoid function for λ = 1, λ = 2, and λ = 0.5

If the change of po follows an exponential function, then equation (5) describes a similar
sigmoid function as given by Hodgkin and Huxley for the concentration of sodium
in equation (2). For po = pi = p, which guarantees that the measured stimulus at the
postsynaptic terminal equals the calcium concentration in the synaptic cleft, we can
write the requirement in equation (4) as

p =
1− p

p
. (6)
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For the learning process at the postsynaptic terminal, which is not understood well by
the literature yet, the following learning mechanism is proposed: The information in
the stimulus (1− p)/p at the presynaptic terminal is the input to a linear model, which
measures information using the negative binary logarithm according to Shannon (1948).
Mathematically, the proposed model can be written as follows:

I = −m · log2
(
1− p

p

)
+ c, (7)

where m and c are the slope and intercept of the linear model, respectively; and I is
the learned information at the postsynaptic terminal. Learning is the process of aligning
this information with the information in the measured concentration p by adjusting the
parameters of the linear model, slope and intercept, so that the following requirement is
met:

I = −p · log2(p). (8)

Thus, for c = 0, learning of the stimulus involves adjusting the slope m, so that
m = p = (1− p)/p. For m = p and c = 0, the learned information I is then

I = −p · log2
(
1− p

p

)
. (9)

The main idea is that a neuron integrates over all outputs of its synapses, with each of
its synapses processing information according to equation (7). Then, it sends the result
to other neurons via its axon. The neuron thus essentially computes the entropy of its
composite input.

3.2 Golden ratio

As outlined in the previous section, the calcium concentration p needs to satisfy the
requirement in equation (6) so that the transmitted stimulus is equal to the measured
concentration. In this case the information at the postsynaptic terminal, which is
measured as −p · log2(p), is equal to the information in the input stimulus, which
is −(1− p)/p · log2((1− p)/p). This happens when the concentration p satisfies the
following requirement:

p =
1− p

p
(10)

=⇒ p =

√
5− 1

2
or p =

−
√
5− 1

2
(11)

=⇒ p ≈ 0.618 or p ≈ −1.618. (12)

According to equation (12), the measured concentration p equals the stimulus (1− p)/p
for p ≈ 0.618. This is the golden ratio, or strictly speaking the reciprocal Φ of the golden
ratio, which is typically symbolised by φ ≈ 1.618 (Livio, 2002; Huntley, 1970). For
m = p = Φ the intercept c in equation (7) is equal to zero. Therefore, learning of the
intercept c is not necessary in this case. This could potentially explain why the golden
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ratio is often preferred over other ratios in cognitive processes (Livio, 2002). According
to the proposed linear model, the golden ratio can be perceived faster as it requires less
learning. Interestingly, experiments in recent literature have confirmed that the golden
ratio indeed plays a role in neural signal processing, thus supporting the proposed model
(Weiss and Weiss, 2003; Pletzer et al., 2010).

4 Yin and Yang

According to Chinese philosophy, there are two opposing forces in the world, Yin
and Yang (Miller, 2003; Watts, 1999). Yin and Yang are not only believed to be the
foundation of our universe, but also to flow through and affect every being. Typical
Yin-Yang opposites are for example night/day, cold/hot, rest/activity. Figure 4 shows the
well-known black-and-white symbol of Yin and Yang.

Figure 4 The common Yin-Yang symbol
k-and-white symbol of Yin and Yang. We

We can see two intertwining spiral-like curves in Figure 4, which are actually
semicircles in this simplified graphics, separating the Yin and Yang area. The small
spots of different colour in each area symbolise that both Yin and Yang carry the seed
of their opposites; Yin cannot exist without Yang, and Yang cannot exist without Yin.
These spots will play no role in the following text. Neither will the assignment of black
and white to Yin and Yang have any significance here, though Yin is typically associated
with black and Yang with white. Contemporary literature has been mostly neglecting
the graphical aspects of the Yin-Yang symbol, paying more attention to philosophical
questions. It turns out that the original Yin-Yang symbol is more complex than its
modern representation as two semicircles suggests (Browne, 2007; Graf, 1994). The
Yin-Yang symbol has its origin in the I-Ching; one of the oldest and most fundamental
books in Chinese philosophy (Tian and Tian, 2004; Hardaker, 2001). The symbol is
tightly connected with the annual cycle of the earth around the sun, and the four seasons
resulting from it. To investigate this cycle, the ancient Chinese used a pole that they put
up orthogonally to the ground, as shown in Figure 5. With this setup, the ancient Chinese
were able to record precisely the positions of the sun’s shadow and divide the year into
different sections. They measured the shortest shadow during the summer solstice, and
measured the longest shadow during the winter solstice. After connecting the measured
points and dimming the part that reaches from summer solstice to winter solstice (Yin),
they arrived at a chart like the one in Figure 6. The resemblance between this chart and
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the modern Yin-Yang symbol in Figure 4 is striking. Figure 6 provides visual evidence
that the original Yin-Yang symbol describes the change of a pole’s shadow length during
a year. In fact, by rotating the chart and positioning the winter solstice at the bottom, the
Yin-Yang chart of the ancient Chinese becomes very similar to the modern Yin-Yang
symbol depicted in Figure 4. The white area of the Yin-Yang symbol is typically called
Yang. It begins at the winter solstice and indicates a beginning dominance of daylight
over darkness, which is the reason why the ancient Chinese associated it with the sun
(or male). Accordingly, the dark area of the Yin-Yang symbol represents Yin, which
begins with the summer solstice. Yin indicates a beginning dominance of darkness over
daylight. The ancient Chinese therefore associated it with the moon (or female).

Figure 5 Shadow model (see online version for colours)

Figure 6 Yin-Yang symbol for latitude L = 68◦ (near polar circle) with equinoxes and
solstices

4.1 Daylight model

The rendering method for the Yin-Yang symbol presented here is based on daylight
hours, which are connected with shadow lengths (Jaeger, 2012a). A long day has the
sun standing high on the horizon at noon, casting a short shadow. On the other hand, a
short day is the result of the sun standing low on the horizon at noon, producing a long
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shadow. For computing the daylight time for a given day in the year, this section uses
the formula given in Forsythe et al. (1995) and Jaeger (2012a). The formula takes many
different factors into account, most notably the refraction of the earth’s atmosphere. The
daylight model presented here is therefore an accurate description of the actual daylight
measurement of an observer on the ground. A detailed investigation of the formula is
beyond the scope of this paper, though. The formula requires two input parameters,
namely the day J of the year and the latitude L of the observer’s location. It consists of
three parts. The first part computes an intermediate result P , which is the input to the
second part D′, which in turn is input to the third part D that provides the final result.
The equation for the first part is:

P = arcsin[0.39795 ∗ cos(0.2163108 + 2 ∗ arctan{...
... 0.9671396 ∗ tan[0.00860(J − 186)]})]. (13)

Given P , the second and third part compute the actual day length D in terms of sunshine
hours as follows:

D′ = arccos

{
sin

(
0.8333∗π

180

)
+ sin

(
L∗π
180

)
∗ sin(P )

cos
(
L∗π
180

)
∗ cos(P )

}
(14)

D = 24−
(
24

π

)
∗D′. (15)

Using these equations, Figure 7 shows the daylight time for each day of the year and
for a latitude of 68◦. This latitude is close to the polar circle, or Arctic Circle, in the
northern hemisphere. The equivalent latitude in the southern hemisphere is the Antarctic
Circle. The Arctic Circle marks the southernmost latitude in the northern hemisphere
where the sun shines for 24 hours at least once per year (midnight sun) and does not
shine at all at least once per year. Theoretically, the Arctic Circle marks the area where
these events occur exactly once per year, namely during the summer and winter solstices.
However, due to atmospheric refractions and because the sun is a disk rather than a
point, the actual observation at the Arctic Circle is different. For example, the midnight
sun can be seen south of the Arctic Circle during the summer solstice. According to
Figure 7, the midnight sun shines for about 50 days at latitudes around 68◦. Figure 8
shows the daylight hours in Figure 7 as a polar plot. In this polar plot, the distance to
the origin stands for the daily sunshine hours. One full turn of 360◦ corresponds to one
year. There is one important difference to Figure 7, though. For the second half of the
year, Figure 8 shows the hours of darkness instead of the daylight hours. The number
of hours with darkness is simply the full day length of 24 hours minus the number
of daylight hours. Drawing the daylight hours in such a way produces the two spirals
depicted in Figure 8. Coloring the areas delimited by both spirals and the outer circle
in black and white then produces a rotated version of the Yin-Yang symbol in Figure 6.
For latitudes around the polar circle, the spirals in Figure 8 originate either directly in
the origin of the polar plot or in a point close to it. This is because there will be at least
one day with no sunshine.

Figure 9 shows a Yin-Yang symbol generated with the daylight model for L = 68◦

(same symbol as in Figure 6). The symbol is rotated counter-clockwise so that the x-axis
is vertical. Both spots lie on the now vertical x-axis, plotted halfway between the polar
plot’s origin and the outer circle.
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4.2 Information-theoretical Yin-Yang model

The mathematical formulation of the Yin-Yang symbol given in equations (13)–(15)
is clumsy. This section presents a more concise description of the Yin-Yang symbol.
It shows that a linear information-theoretical model can approximate the Yin-Yang
symbol with an average error of less than 1% with respect to the day length. In order
to do so, the paper measures the Shannon information, which is the negative binary
logarithm (− log2(p)) of a probability value p (Shannon, 1948). The model proposed
here has the following form:

Θ(p) = −π × log2(p) (16)
r(p) = −24× log2(p), (17)

Figure 7 Daylight hours for latitude L = 68◦ (near polar circle) (see online version for
colours)

Figure 8 Polar daylight plot for latitude L = 68◦ (near polar circle) (see online version
for colours)
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Figure 9 Yin-Yang symbol generated with the daylight model for L = 68◦

where Θ(p) and r(p) are the angular and radial coordinates, respectively, and p ∈ [0.5, 1]
is the model’s input. Both equations can be summarised in one equation:

Θ(p) =
π

24
× r(p). (18)

Note that the model’s input range is the output range of the sigmoid function for positive
input. In the neural context of Section 3, the model input would be the measured calcium
concentration in the synaptic cleft (see equation (5)).

Figure 10 shows the approximation of one branch of the Yin-Yang symbol for L=68◦

(red curve), obtained when applying equation (18).
The figure also shows the original branch computed with equations (13)–(15) (blue

curve). We see that this approximation of the Yin-Yang symbol already provides a very
close model for the symbol. The model given by equation (18) can be further improved
by using a linear regression, exploiting the linear relationship between the angular and
the radial coordinate. Let

Θ(p) = mr(p) + c (19)

Figure 10 Approximation of one branch of the Yin-Yang symbol for L=68◦ (close to polar
circle) with a linear information model (red) (see online version for colours)
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be the general form of the linear information model for the Yin-Yang symbol, where
m is the slope, c is the offset or intercept, and r(p) is a logarithmic function of
the input. Accordingly, the linear approximation has the form Θ′ = m′r + c′, where
m′ and c′ are the slope and intercept of the regression line, respectively. Figure 11
shows the optimal regression line (red) obtained for the Yin-Yang branch (blue) shown
in Figure 10. Note that the range of the angular coordinate is [π, 2π] and the radial
coordinate has been normalised to [0, 1], showing the normalised day length with the
daylight hours of each day divided by 24. As we can see in Figure 11, the red regression
line provides an almost perfect fit. Only toward the limits of the angular range does the
linear information model differ from the original Yin-Yang model. This is largely due
to numerical problems of the function approximation. With m′ ≈ 0.134 and c′ ≈ 3, the
mathematical equation for the regression line is

Figure 11 Linear regression line (red) for a branch (blue) of the Yin-Yang symbol at L = 68◦

(close to polar circle) (see online version for colours)

Θ′(p) = 0.134r(p) + 3, (20)

or, in another form stressing that Θ′ is indeed a linear function of information:

Θ′(p) = 3− 3.2 · log2(p). (21)

The median error of this model is 0.23, which is less than 1% with respect to a day
length of 24 hours. Figure 12 shows a close-up of all approximations in one figure.

The original Yin-Yang branch is again shown in blue. The first rough approximation
of equation (18) is shown in green, and the optimal linear regression model is shown in
red. We can see that the linear regression model lies between the rough approximation
(green) and the Yin-Yang branch (blue), and we can see that it is much closer to the
Yin-Yang branch.

The equations derived in this section for Yin and Yang are based on the same linear
information-theoretical model presented in Section 3. The same model can thus describe
neurological as well as physical phenomena. Moreover, learning the parameters of the
model has a geometrical interpretation. According to equations (18) and (21), changing
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the slope m is equivalent to changing the radius of the Yin-Yang symbol, which is
24 hours in the daylight model. Furthermore, changing the intercept c translates to a
rotation of the Yin-Yang symbol.

Figure 12 Approximation of one branch of the Yin-Yang symbol for L = 68◦ (close to polar
circle) with a linear model (green) and a linear regression model (red) (see online
version for colours)

5 Neurological principle

This section presents several theoretical observations that support the main thesis of this
paper, namely that several fundamental principles in nature are actually instantiations
of an even more fundamental principle. For lack of a better name, the principle is
called neurological principle in this paper. The main claim of the neurological principle
is that all natural principles are related to neural signal processing. Physical objects
thus become the result of our thinking, a product of our mind and its cognitive
activities. Furthermore, natural laws become expressions of the operation and limitations
of neural signal processing, in particular the signal transmission at synapses, as
explained above. The following subsections will show that many well-known natural
principles are consistent with the neural model explained in Section 3. In fact, the
proposed neural model subsumes these principles, supporting the argument of a more
fundamental principle. In particular, this section will show that the relativistic principle,
the uncertainty principle, and the anthropic principle are all different expressions of the
neurological principle.

5.1 Relativistic principle

The relativistic principle goes back to the seminal work of Einstein, in particular to his
theory of relativity (Einstein, 1995). Einstein, starting with his famous assumption that
the speed of light is constant, derived several fundamental results. The most well-known
claim is that it is not possible to travel faster than the speed of light. Another related
claim of his theory of relativity is the so-called time dilation. According to Einstein’s
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theory of relativity, every system moving relative to an observer will show a slower
lapse of time compared to the observer. The faster the system moves, the slower the
observer will see the time pass within the system. In his general theory of relativity,
Einstein extended time-dilation to objects experiencing acceleration and gravitation. The
observed time in the frame of references of these objects will also pass slower. Einstein’s
theory of relativity has stood the test of time so far, and has been confirmed by numerous
practical experiments.

Mathematically, time dilation can be described using the Lorentz factor, or actually
the inverse Lorentz Factor, in equation (22):

t′ =

√
1−

(v
c

)2

× t, (22)

where t is the time measured by an observer, i.e., elapsed time intervals in the observer’s
own frame of reference, and t′ is the elapsed time measured by the observer for a system
moving relative to him. The constant c denotes light speed and the parameter v is the
speed of the moving system. The ratio v/c is thus the relative velocity of the moving
system with respect to light speed. We can see that t′ approaches zero for increasing
speed. The observer thus sees a dilation of time for systems approaching light speed,
and measures no lapse of time for a system moving at the exact speed of light. The
Lorentz factor plays an important role in Einstein’s theory of relativity, and is important
not only for explaining time dilation. It also describes how mass and length change for a
system whose velocity approaches the speed of light. With increasing speed, an observer
will also measure a shorter length and a larger mass for the moving object. According
to the Lorentz factor, these relativistic effects become more pronounced as the moving
object approaches the speed of light. At the speed of light, the observer would measure
no time lapse, no length, and an infinite mass for the moving object.

When we look again at the neural model proposed above, we can see similarities.
According to Section 3, the stimulus and the measured concentration p are identical
when p satisfies the following requirement (see also equation (6)):

p =
1− p

p
(23)

⇐⇒ p = 1− p2. (24)

Using the basic linear equation of the proposed model, K = −E · log2(p), with
E = p = (1− p)/p, we obtain the following derivation for K:

K = −(1− p)× log2(p)/p (25)
(24)⇐⇒ K = −p× log2

(
1− p2

)
(26)

⇐⇒ K = −p× log2

(√
1− p2

)
· 2. (27)

Note the Pythagorean relationship between the measured value
√
1− p2, which is the

argument of the logarithm, and the slope p. Due to this Pythagorean relationship,
the perceived stimulus (1− p)/p and the measured concentration p become now
mathematically indistinguishable, and thus replaceable. According to the biological
motivation in Section 2 and the neurological model in Section 3, the measured stimulus
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depends on the concentration of calcium ions in the presynaptic terminal. The larger
the concentration, the larger the stimulus. However, the larger the stimulus, the more
time needs to pass in order to allow more calcium ions to flow through the open ion
channels of the nerve cell. Thus, the measured stimulus is directly correlated with time,
and

√
1− p2 indeed represents time. Moreover, for p = 1, the calcium concentration

in the synaptic cleft will be the highest and the calcium ions will flow quickly into
the presynaptic terminal due to the large concentration difference. Thus, p can be
considered as the relative speed of the calcium ions, with p = 1 being the maximum
speed corresponding to light speed in the physical world. It is interesting to note here
that physicists sometimes normalise the light speed c, which is about 300, 000, 000 meter
per second, so that the maximum speed becomes one. They do this by using so-called
Planck units. If we look at equation (27), we can see that speed p is one if the measured
time is zero (

√
1− p2 = 0). Conversely, if the measured time is one, which means one

unit of time has elapsed, then the corresponding speed p is zero. This is in accordance
with the time dilation predicted by Einstein’s theory of relativity. Furthermore, in the
case of

√
1− p2 = 0 and p = 1, the information or energy K will be infinite, which is

again in accordance with the theory of relativity.

5.2 Uncertainty principle

The second principle investigated here is the uncertainty principle introduced by
Heisenberg. In contrast to Einstein’s theory of relativity, which deals with large-scale
phenomena, Heisenberg’s uncertainty principle pertains to quantum physics. In the
quantum mechanical world, the idea that we can locate objects exactly breaks down.
Heisenberg’s uncertainty principle states that locating a particle in a small region of
space makes the momentum of the particle uncertain; and conversely, that measuring the
momentum of a particle precisely makes the position uncertain. For instance, let ∆x be
the uncertainty about the exact location of an electron, and let ∆p be the dispersion of
its momentum. Then, Heisenberg’s uncertainty principle can be formulated as follows:

~
2
≤ ∆x×∆p, (28)

where ~ is the reduced Planck constant. This means that the combination of the error in
position times the error in momentum is always greater than a positive constant. From
this it follows that we cannot simultaneously find both the position and momentum of
an electron to arbitrary accuracy. The more precisely we determine the position of the
electron, the less we will know about its momentum; conversely, the more we know
about the momentum, the less we will know about the position of the electron. This
uncertainty of an electron’s position and momentum is established the moment it is
observed, resulting in the measured values being dispersed.

Now, let us again compare the uncertainty principle with the equations derived in
the previous subsection, in particular with equation (27). The following derivation of
equation (27) into an inequality produces a result similar to the uncertainty principle in
equation (28):

K = −p× log2

(√
1− p2

)
· 2 (29)

=⇒ K ≤ − log2

(√
1− p2

)
· 2 (30)
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=⇒ 1

2
≤ − log2

(√
1− p2

)
·K−1. (31)

Equation (31) states that the product of our observed information − log2

(√
1− p2

)
and the inverse information K is always equal to or greater than 1/2. This imposes
a severe limitation to what we can measure. On one hand, we want the uncertainty
in our measured value − log2

(√
1− p2

)
to be zero, which means we have a strong

unambiguous stimulus. On the other hand, we want K to be as large as possible
because this effectively means that p = 1 and that the uncertainty we measure,
− log2

(√
1− p2

)
, is equal to the uncertainty K that we learn by means of the linear

model. However, equation (31) tells us that having both is not possible.
We can even observe a connection with location and momentum, as in Heisenberg’s

original uncertainty principle. The information K is the product of velocity and energy
(see Section 5.1) and can thus be considered as momentum. For

√
1− p2 = 1, the

uncertainty − log2

(√
1− p2

)
will be zero. This is related to location because if the

measured stimulus is maximum, all calcium ions will be evenly distributed in the
synaptic cleft and in the presynaptic terminal, so there will be no uncertainty regarding
their location. Consequently, analogous to Heisenberg’s original uncertainty principle,
equation (31) tells us that we cannot measure both location and momentum without
uncertainty.

5.3 Anthropic principle

The last principle in this paper brings us back to the Yin-Yang model derived in
Section 4.2. The anthropic principle states that the physical universe must be compatible
with the life observing it in the sense that the universe provides the right parameters
for life to thrive. Otherwise, life could not emerge and no observer could perceive
the surrounding universe. As a direct consequence, the anthropic principle claims
that natural constants must be compatible with life, and that finding constants to be
compatible with life is not surprising at all. A typical example is the fine-structure
constant, which is a measure of the strength of the electromagnetic force, controlling
the interaction between electrically charged elementary particles, such as electrons and
light photons. The fine-structure constant is thus directly related to light emission. It
has no dimension, which means that it is a constant that keeps its numerical value
under different units. According to the latest measurements, the current value of the
fine-structure constant alpha is about 7.2973525698× (10−3), which is approximately
1/137. Following the reasoning of the anthropic principle, the next paragraph argues
why the fine-structure constant has exactly this value (The paragraph is a quote
from Barrow (2001)).

“The anthropic principle is a controversial argument of why the fine-structure constant
has the value it does: stable matter, and therefore life and intelligent beings, could not
exist if its value were much different. For instance, were α to change by 4%, stellar
fusion would not produce carbon, so that carbon-based life would be impossible. If α

were > 0.1, stellar fusion would be impossible and no place in the universe would be
warm enough for life as we know it.”
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Given that the fine-structure constant α is related to light emission, it is perhaps not
so surprising that it emerges in the Yin-Yang daylight model, which was presented in
Section 4 and linearly approximated in Section 4.2. When we compute the slope m in
equations (19) and (20) for L = 67◦, which is near the polar circle, then we can observe
the following relationship between m and the fine-structure constant α:

m ≈ 1

α · 1024
. (32)

In this case, the absolute error between m and 1/(α× 1024) is less than 3× 10−4,
which is very small compared to the uncertainty of the approximation model
used. Therefore, we could replace the slope m given by the model with the new
value 1/(α× 1024) without introducing too much error. The multiplying scalar of 1024
would then essentially mean that we measure information in kilobits (kibits).

6 Conclusion

This paper proposes a linear information-theoretical model for neural signal processing.
Based on this model, the paper offers new explanations for several natural phenomena
and principles, including Einstein’s theory of relativity and Heisenberg’s uncertainty
principle. In the context of Chinese medicine, the proposed model provides the forces
of Yin and Yang with a formal definition, thus confirming the importance of seemingly
informal concepts in this discipline. Moreover, under the given formalisation of Yin
and Yang, statements claiming that traditional healing methods affect Yin and Yang
become meaningful. In fact, the paper claims that acupuncture directly affects these
forces, and that it is mathematically equivalent to a rotation and/or resising of the
Yin-Yang symbol. This is the first acupuncture model that refers directly to the proper
formal definition of Yin and Yang. The proposed model is based on the idea that
neural learning processes happen mainly at synapses. Learning is achieved when the
information in the input stimulus equals the information measured at the postsynaptic
terminal. However, learning has theoretical limitations, as manifested in a relationship
similar to Heisenberg’s uncertainty principle for example. The paper subsumes these
learning phenomena in the neurological principle, which claims that all natural laws
have a direct correspondence in the human cognitive processes and mind. The paper
thus assigns the human mind a prominent place. This is in contrast to the anthropologic
principle, which rather claims that human rational thinking is the result of nature. In
fact, the paper claims that body and mind are essentially the same because the natural
phenomena are the result of our cognitive processes and their limitations. In summary,
the paper has brought forward model observations supporting this thesis, in particular
a time dilation as in Einstein’s theory of relativity, and an uncertainty principle similar
to Heisenberg’s uncertainty principle. Furthermore, the paper claims that Yin and Yang
can describe neurological as well as physical phenomena. In addition, the paper shows
that the fine-structure constant, or at least a constant very close to the fine-structure
constant, plays an important role in the model presented. Given these observations, the
hope is that the proposed model helps to get a better understanding of traditional healing
methods.
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