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ABSTRACT 

“Imaging signs” are a critical part of radiology’s language. They not only are important for conveying diagnosis, but may 
also aid in indexing radiology literature and retrieving relevant cases and images. Here we report our work towards 
representing and categorizing imaging signs of abdominal abnormalities in figures in the radiology literature. Given a 
region-of-interest (ROI) from a figure, our goal was to assign a correct imaging sign label to that ROI from the following 
seven: accordion, comb, ring, sandwich, small bowel feces, target, or whirl.  As training and test data, we created our 
own “gold standard” dataset of regions containing imaging signs. We computed 2997 feature attributes to represent 
imaging sign characteristics for each ROI in training and test sets. Following feature selection they were reduced to 70 
attributes and were input to a Support Vector Machine classifier. We applied image-enhancement methods to 
compensate for variable quality of the images in radiology articles. In particular we developed a method for automatic 
detection and removal of pointers/markers (arrows, arrowheads, and asterisk symbols) on the images. These 
pointers/markers are valuable for approximately locating ROIs; however, they degrade the classification because they are 
often (partially) included in the training ROIs. On a test set of 283 ROIs, our method achieved an overall accuracy of 
70% in labeling the seven signs, which we believe is a promising result for using imaging signs to search/retrieve 
radiology literature. This work is also potentially valuable for the creation of a visual ontology of biomedical imaging 
entities.  
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1. INTRODUCTION 
Biomedical images are frequently used in the clinical and medical research literature to explain cases and demonstrate 
findings. These images provide useful information in addition to text that can be explored for enhancing publication 
retrieval. While some research works [1, 2] focus on analyzing the text in figure captions and the text in the article body 
that comments on the figure (“mentions”), a few studies [3, 4] investigate the use of content information extracted from 
images themselves. The latter is a new application of content-based image retrieval (CBIR). Our group has been 
conducting R&D in using both text and image information to search biomedical publications; we have also participated 
in the ImageCLEF medical retrieval track [5, 6]. This work has been incorporated into an online search engine called 
OpenI1 (still under development) which currently provides access to over 600,000 figures from over 250,000 open access 
biomedical journal articles [7]. A screenshot of the system interface is shown in Figure 1.  
 
In addition to this multi-modal retrieval, we are also conducting research to build a visual ontology for biomedical article 
retrieval [8], which is a relatively new research area. Similar to the ontologies used in the field of text, visual ontology 
aims to provide shared vocabulary by describing domain knowledge in terms of its concepts and relations. Specifically, it 
defines a set of visual entities and maps their appearances to text terms. A visual ontology can aid biomedical article 
retrieval in various aspects. For example, given a query image, the system can extract the text concepts that map the 
visual characteristics of the important regions in the query image, and then use the extracted text concepts to search the 
captions or mentions in the articles to retrieve related publications. 
 

                                                
1 http://openi.nlm.nih.gov 



  
(a) Text query (b) Image query 

   Figure 1. Screenshot of the OPENi system 
 
The work presented in this paper is one building block that can be utilized for both multi-modal (visual + text) retrieval 
and visual ontology creation for biomedical information extraction. We focus on abdominal CT figures found in the 
radiology literature. Abdominal imaging remains one of the most complicated sub-specialties of diagnostic radiology. 
Computed tomography (CT) is one of the most important imaging techniques for visualizing and diagnosing 
abnormalities in the abdomen because of its relatively low cost and high image quality. CT imaging uses X-rays to 
generate images. Each pixel of the reconstructed image is assigned a number in Hounsfield units (HU) based on the 
cumulative amount of X-ray energy absorbed by tissue for that pixel location. In medical journals, CT images in figures 
are grayscale images converted from transforming the HU numbers (in the range of negative several thousands to 
positive several thousands) into pixel gray scale values [0, 255].  Major challenges we face for processing images 
obtained from biomedical publications include the large variations which occur with respect to image size, intensity 
illumination, viewing direction, anatomical position, pathology, and graphical annotations.   
 
The present goal of our work is to associate a region-of-interest (ROI) in an abdominal CT image with a radiology 
concept associated with an abnormal finding. To do that, we construct a gold standard set of manually annotated ROIs. 
Specifically, we first identify typical imaging signs used by radiologists for recognizing abnormalities related with 
abdominal organs. Then, we collect image figures that have these imaging signs from online articles using several search 
engines and manually crop ROIs of each imaging sign with the guidance of captions and annotations on the images, such 
as arrows. Using a set of categorized ROIs, we train a supervised classifier which can then be used to label an input ROI 
with no associated text with a radiological imaging sign term. As the performance of the classifier relies significantly on 
the particular feature set used to represent the visual characteristics of ROIs, we first extract a generous number of color, 
texture, and shape descriptors and then employ a feature selection technique to reduce this large set of descriptors to a 
more tractable set of  the “good” features, as determined by the selection technique. We also present a method for the 
automatic detection and removal of pointers/markers (arrows, arrowheads, and asterisk symbols) on the images. While 
these pointers are of great assistance in identifying the approximate locations of ROIs (which are important cues used for 
automatic ROI segmentation in our previous work [9]), they hamper the performance of classification because they are 
often (partially) included in the ROIs used to train the classifier. An image inpainting technique is applied to fill these 
pointer areas in order to alleviate this problem.     
 
The rest of the paper is organized as follows. Section 2 describes the radiology imaging signs we used. Section 3 
presents techniques about how the data is collected and processed, especially how the pointers (such as arrows) on the 
images are detected and removed. Section 4 explains the feature extraction, feature selection and the classifier we used. 
Section 5 presents classification performance and discussion. Section 6 concludes the paper and discusses future work. 

2. IMAGING SIGNS 
Abdominal CT interpretation is a demanding task because several organs, including liver, kidney, pancreas, spleen, 
stomach, colon, and small intestine can appear in the image. To successfully interpret abdominal CT, radiologists rely on 
understanding and recognizing imaging signs that are characteristic of complicated disease processes. Besides being 
important for diagnosis of abnormalities, imaging signs may also augment computer systems for indexing radiology 



literature and retrieving relevant cases and images [10]. Many of these clinically important imaging signs are named with 
common objects that loosely resemble the corresponding imaging features. In this paper, we focus on the classic 
radiologic signs that are associated with intestines (colon and small intestine). Specifically, we identify seven classic 
imaging signs: accordion [11], comb [12], ring [13], sandwich [14], small bowel feces (SBF) [15], target [16], and whirl 
[17]. The characteristics of these signs and related conditions are listed in Table 1. A typical example of each imaging 
sign is also given in Table 1. The IDs of these imaging sign terms (except accordion sign) that are found in RadLex2 are 
provided too. 

Table 1. Imaging signs in abdominal CT 

Imaging Signs Characteristics and Conditions Sample Images 

Accordion sign 
 

• Described as alternating edematous haustral 
folds separated by mucosal ridges filled with 
oral contrast material, simulating appearance of 
an accordion 

• Suggesting colonic edema or inflammation.   
http://radiology.rsna.org/content/211/3/743.full 

Comb sign 
RadLex ID: RID35101 

• Multiple tubular, parallel vessels that are visible 
on the mesenteric side of intestine, resembling 
comb teeth 

• Indicating active Crohn's disease  
http://radiology.rsna.org/content/230/3/783.full 

Ring sign 
RadLex ID: RID35497 

• A thickened hyperattenuating rim around 
periocolonic lesion of higher attenuation than 
normal peritoneal fat  

• Suggesting epiploic appendagitis  
http://radiology.rsna.org/content/237/1/301.full 

Sandwich sign 
RadLex ID: RID35514 

• The appearance of the homogeneous soft-tissue 
masses and the mesenteric fat and tubular 
structures in between resemble the two buns 
and the filling of a sandwich  

• Indicating mesenteric lymphadenopathy  
http://radiology.rsna.org/content/226/3/651.full 

Small bowel feces 
sign 

RadLex ID: RID35552  

• The presence of heterogeneous matter 
intermingled with gas bubbles in the small 
intestine 

• Suggesting small bowel obstruction  
http://radiology.rsna.org/content/225/2/378.full 

Target sign  
RadLex ID: RID35610 

• Thickened bowel wall having hyperattenuating 
inner and outer layers between which is a layer 
of low attenuation 

• Nonspecific, but usually suggesting 
inflammatory process  

http://radiology.rsna.org/content/234/2/549.full 

Whirl sign  
RadLex ID: RID35699 

• Spinning pattern of superior mesenteric vein 
and midgut mesentery around superior 
mesenteric artery 

• Indicating midgut volvulus   
http://radiology.rsna.org/content/240/3/910.full 

                                                
2 http://www.radlex.org/ 



3. METHOD 

Data Collection and Pre-processing  
The data were collected online using search engines: ARRS GoldMiner, Google Image Search, National Library of 
Medicine’s OPENi, and Yale Image Finder. The downloaded images are accompanied with figure captions and 
discussion text from the article that describes it. The collected images have a large variety with respect to size and 
quality, suggesting the need for image resizing and contrast enhancement pre-processing steps. Also, many of the 
collected images contain pointers or text markers. These pointers (together with the texts) are important for identifying 
the locations of radiological signs when we create the labeled region-of-interest dataset. However, they also impede the 
subsequent steps of feature extraction and classification. Several examples are given in Figure 2. As shown in Figure 2, 
the pointers occupy a significant fraction of the ROIs (which are cropped from the original image). Since the features are 
calculated from the entire ROI, the existence of pointers interferes with the calculation of features for the ROI, and hence 
interferes with classification accuracy. To alleviate this hindrance, the pointers are extracted and the areas of pointers are 
filled using neighboring pixel intensities. 
 

   

    
Figure 2. Pointers/markers interfere with feature extraction in the ROIs 

3.1.1 Pointer Extraction  
Pointer extraction is a difficult task due to two main challenges: (i) unconstrained pointing directions (rotation of 
pointers); and (ii) variety in pointer shapes. Figure 3 shows several pointer samples used in biomedical images, 
indicating that the pointer direction can be arbitrary and show large shape variations; note especially the tail shapes in the 
curved arrows. 
 

  
(a) Straight arrow (SA) (b) Curved arrow (CA) 

  

  
(c) Arrowhead (AH) (d) Asterisk symbol (AR) 

 
Figure 3. Various shapes of pointers 

 
To deal with this problem, we developed a pointer recognition algorithm based on Markov Random Fields (MRF) and 
Hidden Markov Models (HMM) [18]. Our algorithm consists of three steps as described below. 

1) Pointer segmentation: This step detects pointer boundaries using edge detection and image binarization. Each 
pointer boundary is then approximated as a set of line segments.  

2) MRF line segment labeling: Each line segment is labeled with a predefined line segment label by the MRF 
labeling method. We analyze a pointer as being a polygon made of seven line segments; these segments and 
their corresponding numeric labels are shown in Figure 4. The result of MRF labeling is a sequence of line 
segment labels (a “labeling configuration”) and is considered a robust representation of the pointer shape.  



3) HMM pointer shape classification: Labeling configurations of pointers in the same class consist of nearly 
identical labels with similar sequence. This step classifies a pointer boundary into one of three pointer classes, 
viz., straight arrow (SA), curved arrow (CA), and arrowhead (AH). Our pointer recognition algorithm provides 
several important properties such as pointing direction, location of pointer tip, coordinates of boundary points, 
pointer color, and boundary length that can be used for additional information extraction (e.g., ROIs).  

 

 
 

Figure 4. Sample line segment (solid line) and its label 
 
In addition to the pointer recognition algorithm, we developed a neural network (NN) based algorithm to recognize 
asterisk symbols. We extracted several shape-based features and used them to train a NN classifier that classifies a 
boundary into one of two classes, viz., asterisk or non-asterisk. 

3.1.2 Pointer Filling  
To fill the pointer areas, we investigated two methods: mean color filling [19] and exemplar-based inpainting [20, 21]. 
For the mean color filling method, each pixel inside the pointer region is assigned the mean color of its non-zero 
neighbors in an iterative process starting from the boundary of the pointer region. The exemplar-based inpainting method 
has been proposed for replacing large objects in digital photographs. It uses an exemplar-based texture synthesis 
technique and a novel algorithm for determining the fill order of the holes. Figure 5 shows results of several region 
filling results obtained using these methods:  mean color filled images tend to have blurs and lack texture, while the 
results of exemplar-based inpainting tend to have more visually plausible appearance. Compare Figures 5(b) and 5(c) to 
observe the capability of the exemplar-based inpainting method to propagate linear structures, such as lines and contours, 
across region holes; the region holes are dilated based on the ratio of pointer size to image size before the filling to 
ensure inclusion of entire pointer region. 
 

(a)  
     

(b) 
     

(c) 
     

Figure 5. Pointer filling. (a) Original images; (b) Mean color filling; (c) Exemplar-based inpainting. 
 

3.1.3 ROI Extraction 
After the pointers are detected and filled, we manually cropped the regions-of-interest and labeled each ROI with one of 
the seven imaging signs. The labeling was done by computer scientists familiar with examples of these signs from the 
radiology literature.  These manually labeled ROIs became our “gold standard” set of ROIs which we used to train a 
classifier. At the present state of our algorithm, given an input abdominal CT image, the user is required to manually 
specify an ROI, which is then classified with an imaging sign. 



 
We have previously investigated the concept of automatic extraction of “ROI of interest” [18], where an automatic ROI 
extraction method was applied to thoracic CT images containing pointers/markers indicating an ROI. Briefly, after 
pointer detection, a square image region of a specified size (set as a system parameter) is cropped. If the pointer is a 
directional marker such as an arrow/arrowhead, the box is placed in the region where the pointer is pointing, and the tip 
of the pointer touches the center of one boundary of the box (illustrated in Figure 6a). If the pointer is a non-directional 
marker such as an asterisk symbol, the box is centered at the pointer (illustrated in Figure 6b). Clearly, the size of the 
ROI box is a critical parameter choice. In [18] for thoracic CT figures, we empirically determined a 200x200 pixel 
region as an appropriate size. Even though this automatic ROI extraction worked well for thoracic CT figures, it is not 
effective for abdominal CT data due to the following reasons: 

1) The objects of imaging signs have significant variance in size even if the image size is the same. For example, 
the object with the sandwich sign (Figure 6(c1)) is much larger than that of the ring sign (Figure 6(c4)).  

2) The directional pointers are not only used to point to an object of interest, but also point within the object (for 
example, a target sign which contains several layers (Figure 6(c2)) and an accordion sign which contains some 
branches (Figure 6(c3))). In addition, several pointers may be utilized to indicate one object.  

3) In thoracic data, the visual characteristics of common abnormalities (such as “ground-glass opacity” or “mosaic 
attenuation patterns”) are texture patterns. Therefore, the size of the box is more elastic as long as the box is big 
enough to capture the texture pattern (which can be a fraction of the object region). This is in contrast to the 
abdominal data in which the size of the box is strict because it needs to capture the whole object (such as the 
ring sign (Figure 6(c4)) and target sign (Figure 6(c2))).  

Notwithstanding the above challenges, the pointers provide significant information on the approximate location of the 
imaging sign. In our planned future work, we will investigate automatically cropping the ROI by utilizing both the 
pointers and the manually created gold standard set of ROIs. 
 
 

 
 

   
 

(1) sandwich sign (2) target sign (3) accordion sign (4) ring sign (white arrow) 
(a) (b) (c) 

Figure 6. Challenges for automatic ROI extraction 

Feature Extraction 
To represent the visual information in ROIs, we calculated 18 feature descriptors. These features are used to characterize 
the color, texture, shape, edge, and spatial layout of pixels in the images. They include MPEG-7 features, Lucene image 
retrieval (LIRE) features, statistical texture features, scale-invariant feature transform (SIFT) features, local binary 
patterns (LBP), pyramid histogram of oriented gradients (PHOG), and Frangi filter-based features. All of the features 
and their corresponding dimensionalities are summarized in Table 2. After all features are extracted, each ROI is 
represented by a feature vector of length 2997.  
 

Table 2. Features used to represent the visual characteristics of ROIs 
 

Feature Dimensionality 
Color and edge directivity descriptor (CEDD) [22] 144 

Fuzzy color and texture histogram (FCTH) [23] 192 
Color layout descriptor (CLD) [24] 16 

Edge histogram descriptor (EHD) [25] 80 
Gabor filter descriptor [26] 60 

Edge frequency  25 
Tamura descriptor [26] 18 



Color moments  3 
Autocorrelation coefficients  25 

Primitive length [27] 5 
Gray-level co-occurrence matrix (GLCM) [27] 20 
Scale Invariant Feature Transform (SIFT) [28] 256 

Local binary patterns (LBP) [29] 256 
Hu moments  5 

Pyramid histogram of oriented gradients (PHOG) [30] 680 
Hierarchical centroid [31]  124 

Franqi filter based features [32, 33] 64 
Local color histogram  1024 

  
Combined feature 2997  

Feature Selection and Classification 
To reduce our extracted features to the most effective set, we used a supervised attribute selection method provided by 
WEKA [34]. This method requires the specification of (i) a feature evaluator which evaluates the utility (worth) of a 
subset of attributes by considering the individual predictive ability of each feature along with the degree of redundancy 
among the features; and (ii) a search method. For the latter we used the best-first algorithm, which searches the space of 
feature subsets by greedy hill-climbing augmented with a backtracking facility. We used a Support Vector Machine 
(SVM) for classification with a radial basis function as the kernel function for mapping the input feature vector into a 
high dimensional feature space. We used the Sequential Minimal Optimization (SMO) algorithm [35] implemented in 
WEKA for training the SVM multi-class classifier. 
 

4. EXPERIMENTAL RESULTS AND DISCUSSION 
Using the imaging sign terms defined in RadLex and radiology journal articles, we collected a total of 335 abdominal CT 
scans and their associated captions/texts from the Web. We pre-processed the images, extracted/filled the pointer areas, 
and manually cropped the ROIs containing the imaging signs. Then we extracted features from the ROIs, applied feature 
selection, and trained and tested an SVM classifier.  
 
Pointer extraction  
Table 3 shows our pointer extraction result. Out of a data set with 705 pointers, our algorithm detected 569 pointers, of 
which 511 were true positives. Our method achieved 89.8% and 72.5% precision and recall, respectively. The failures 
were due to: i) failure in pointer segmentation, and ii) failure in pointer recognition. Segmentation failure was mainly 
responsible for missing (undetected) pointers. Low image quality (e.g., low resolution or low contrast pointer boundary) 
was a major factor that adversely affected the results. In low resolution images, even correctly segmented pointers may 
be considered as noise and removed because their sizes are smaller than the threshold. 
  

Table 3. Pointer extraction result 
 Ground truth Detected Detected true Precision (%) Recall (%) 

# of pointers 705 569 511 89.8 72.5 
 
ROI manual extraction 
After applying the exemplar-based inpainting method to fill the areas of the correctly recognized pointers in the images, 
we manually cropped and obtained a total of 283 ROIs relating to 7 imaging sign terms (accordion: 33, comb: 37, ring: 
60, sandwich: 18, SBF: 38, target: 31, and whirl: 66). These ROIs are then used for multi-class classifier training and 
testing. 
   

Table 4. Collected ROIs 
 Accordion Comb Ring Sandwich SBF Target Whirl 

# of ROIs 33 37 60 18 38 31 66 



 
Feature selection and classification 
We split the data into two sets. We used 2/3 of the data as a training set for feature selection and classifier training. The 
rest of the images were used for classifier testing. Using the training set, 70 out of 2997 feature attributes were selected. 
The classification performance (evaluated using TP rate, FP rate, precision, recall, F-measure, ROC area) for the testing 
set (using the 70 selected features) is given in Table 5 (a). To demonstrate the value of the step of pointer filling, we also 
evaluated the performance of our ROI classifier on the dataset in which the pointers are not filled. The results are given 
in Table 5(b). The overall classification accuracies for the dataset with pointer filling and the dataset without pointer 
filling are 70.2% vs. 64.9%. These numbers demonstrate the effectiveness/necessity of pointer recognition and filling.    
 

Table 5. Classification results of testing set                                             
 (a) with pointers filled (b) without pointers filled 
 TP 

Rate 
FP 
Rate 

Precision Recall F-
Measure 

ROC 
Area 

TP 
Rate 

FP 
Rate 

Precision Recall F-
Measure 

ROC 
Area 

accordion 1 0.036 0.786 1 0.88 0.988 0.909 0 1 0.909 0.952 0.993 
comb 0.5 0.061 0.545 0.5 0.522 0.805 0.5 0.085 0.462 0.5 0.48 0.877 
ring 0.65 0.054 0.765 0.65 0.703 0.88 0.55 0.081 0.647 0.55 0.595 0.88 
sandwich 0.833 0 1 0.833 0.909 0.999 0.667 0 1 0.667 0.8 0.987 
Small bowel feces 0.692 0.049 0.692 0.692 0.692 0.945 0.462 0.062 0.545 0.462 0.5 0.876 
target 0.7 0.048 0.636 0.7 0.667 0.923 0.5 0.012 0.833 0.5 0.625 0.896 
whirl 0.803 0.060 0.803 0.803 0.667 0.856 0.864 0.194 0.576 0.864 0.648 0.848 
Overall accuracy 70.2% 64.9% 

    

5. CONCLUSIONS  
Searching/Retrieving images within peer-viewed biomedical literature has become an active research topic due to the 
prevalence of these images and the rich information they can provide for researchers and clinicians. In this paper, we 
present our initial efforts towards retrieving abdominal CT images in radiology articles. Specifically, we develop a 
classification method that labels image regions based on imaging signs. Imaging signs are characteristic imaging features 
of anomalies that are often seen in radiologic practice and are used by radiologists to recognize abnormalities and 
diagnose disease. Therefore they are of great significance for radiology study and relevant case retrieval. One identifiable 
challenge we face in this work is the intrinsic large variability presented among article figures with respect to image 
content, quality, and size. The feasibility of the proposed approach is demonstrated by the experimental tests and the 
results are encouraging. We also present a method to automatically recognize and replace the pointers (arrows and 
symbols) that are often contained in biomedical articles. Future work includes the expansion of the dataset, the addition 
of additional shape features, and the development of automatic extraction of region-of-interest for figures containing 
arrows.  
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