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ABSTRACT

This paper describes two classifiers, Naive Bayes and Support Vector Machine (SVM), to classify sentences containing
Databank Accession Numbers, a key piece of bibliographic information, from online biomedical articles. The correct
identification of these sentences is necessary for the subsequent extraction of these numbers. The classifiers use words
that occur most frequently in sentences as features for the classification. Twelve sets of word features are collected to train
and test the classifiers. Each set has a different number of word features ranging from 100 to 1,200. The performance of
each classifier is evaluated using four measures: Precision, Recall, F-Measure, and Accuracy. The Naive Bayes classifier
shows performance above 93.91% at 200 word features for all four measures. The SVM shows 98.80% Precision at 200
word features, 94.90% Recall at 500 and 700, 96.46% F-Measure at 200, and 99.14% Accuracy at 200 and 400. To
improve classification performance, we propose two merging operators, Max and Harmonic Mean, to combine results of
the two classifiers. The final results show a measureable improvement in Recall, F-Measure, and Accuracy rates.

Keywords: Naive Bayes, Support Vector Machine (SVM), databank, labeling, text classification, bibliographic
information.

1. INTRODUCTION

The U.S. National Library of Medicine (NLM) maintains MEDLINE®, a heavily used bibliographic database of 17
million citations to the biomedical journal literature. Each citation consists of bibliographic information such as article
title, author names, affiliations, grant numbers, grant support types, databank accession numbers, etc. While NLM
receives most such citations in XML format directly from journal publishers, key bibliographic information is often
missing, requiring manual entry. Databank Accession Number (DAN) [1] is typically one such missing item.

Databanks are databases/registries of genetic sequences, clinical trials, gene expression data, genomic DNA/protein
sequences, small molecules, etc. There are several databanks such as GenBank, NCT, PDB, etc. and DAN is the
registration number of a sequence (entry) in any of these databanks. DAN usually appears in a sentence together with
other information such as databank names and/or words such as “deposit”, “submit”, etc. For the purpose of this article,
we call this sentence a “DAN sentence”. An example of DAN sentences is “The confirmed nucleotide sequence of mouse
preproET-1 cDNA was deposited into the GenBank database (accession no AB081657).” In this sentence, GenBank is the
databank name and “AB081657” is a DAN. Indentifying a DAN sentence is a precursor to extracting the DAN by
subsequent pattern matching.

To find DAN sentences manually, professional indexers have to carefully search an entire article since DAN sentences,
although usually located in the first or last page of an article, can occur anywhere. The work is labor-intensive and often
error-prone; hence our interest in an automated approach.

The automatic detection of DAN sentences may be formulated as a text classification/categorization problem and several
algorithms are used for this purpose. In earlier work we developed a rule-based algorithm [2] to classify DAN sentences. The
rules in the algorithm are based on three types of clue words (Databank names, words such as “deposit”, “submit”, and
words such as “accession”, etc.) and DAN formats. Although the algorithm works well for DAN sentences with the clue
words, it frequently generates under- or over-classification errors when these sentences do not contain the clue words. We
therefore focus on machine learning approaches in our current work and choose two common algorithms, Naive Bayes
and SVM classifiers, to solve this problem.
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Naive Bayes classifier [3] is a widely used technique for text classification. Due to its simplicity, efficiency, and speed, it is
widely used in classifying Web documents [4], spam emails [5], and other types of documents such as newsgroups, newswire
articles, etc. [6]. SVM [7] is also commonly used to categorize newswire documents and Medical Subject Headings (Mesh) [8],
Reuters-21578 collection (in which 12,902 stories fall into 118 categories) [9], and Web documents [10]. We therefore adapt
both Naive Bayes and SVM classifiers to identify DAN sentences, and then combine them using two merging operators to
improve performance.

The paper is organized as follows. The definition of a DAN sentence is given in Section 2. The details of our method
using the Naive Bayes and SVM classifiers are presented in Section 3. Performance evaluation measures are shown in
Section 4. We report experimental results in Section 5, and conclusions in Section 6.

2. DATABANK ACCESSION NUMBER (DAN) SENTENCE

Each of the several databanks has its own distinct DAN format. Table 1 shows a list of databank names and their
corresponding DAN formats. The first databank called “GenBank” has three different formats illustrated in the examples
as “A12345”, “AB123456”, and “ABC12345”. Other databanks also have their own DAN formats except for the ones in
the last row: SwissProt, PIR, GDB, CSD, HGML and PREFSEQDB databanks follow free formats. We can therefore recognize
a DAN sentence based on databank names and numbers that follow known formats.

Table 1. Databank names and Databank accession number formats.

Databank name Databank accession number format Example
GenBank [11] [one-letter character]+[five-digit number], Al12345,
[two-letter character]+[six-digit number], AB123456
[three-letter character]+[five-digit number] ABC12345
NCT (Clinical Trials) [12] NCT+[eight-digit number] NCT 12345678
GEO {GEO, GDS, GSE, GPL, or GSM }+[any digit number] GDS01,
(Gene Expression Omnibus) [13] GSE1234567
ISRCTN [14] ISRCTN+[eight-digit number] ISRCTN 12345678
RefSeq {AC, AP, NC, NG, NM, NP, NR, NT, NW, NZ, XM, XP, XR, | AC_123456,
(Reference Sequence) [15] YP, or ZP } +“ ” +[six or nine-digit number] AC_123456789
OMIM (Online Mendelian OMIM+{ space, *#,+%, or °} + {1,2,3,4,5, or 6} + [five-digit | OMIM ~123456,
Inheritance in Man) [16] number]
PDB (Protein Data Bank) [17] [one-digit number] + [three-digit Alphabet character or Arabic | 1FA7
number]
PubChem [18] {PubChem, PubChem-Substance, PubChem-Compound, or | PubChem/12345,
PubChem-BioAssay} + [any digit number] PubChem-Substance/ 123456
SwissProt, PIR, GDB, [Free Formats] Free Formats
CSD, HGML, PREFSEQDB [1]

Figure 1 shows typical articles that contain several DAN sentences. Figure 1(a) shows a DAN sentence having a databank
name “GenBank”, a DAN “AY971603”, and the word “submitted”. Tt is clear that “AY971603” is a DAN because of the
words “GenBank” and “submitted” in the sentence. This sentence is located at the end of the article. Figure 1(b) shows
two DAN sentences with four DANSs. But there are no databank names corresponding to the DANS in these sentences. In
addition, these DAN sentences are located in the middle of the article which is not a usual place to search for DANSs.
However, there is a word “sequence” in the first sentence for three DANs (AF427618, AY 359025, and BC028091) and
the second sentence also has words such as “protein” and “molecular” for one DAN (AY646929).

Table 2 shows three Non-DAN sentences that have numbers that appear to follow DAN formats. The first sentence
contains NIH Grants “AI065898” and “RR015563” that mimic a DAN format in GenBank. The second and third
sentences also include year “2001” and page numbers “2488” and “2492” that appear to be a DAN in the PDB databank.
However, there are no words suggesting DANSs in these sentences. Clearly, words suggesting DANs are important to
identify a DAN sentence. We use words that occur frequently in DAN and Non-DAN sentences as word features for
classifying DAN sentences.
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Figure 1. Examples of Databank accession humbers (a) AY971603, (b) AF427618, AY 359025, BC028091, and AY646929.
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Table 2. Examples of Non-DAN sentences.
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3. OUR APPROACH
3.1 Naive Bayes classifier

Assume that we have a binary feature vector from a sentence x=(x1, X,, Xs, ..., Xm) Where m is the dimension of the vector and x=0
or 1 means absence or presence of the ith feature (feature refers to word, in our case) in the vector. Assume there are two classes
C, and C,: relevant and non-relevant classes. In this paper, DAN sentences belong to C, and Non-DAN sentences belong to C,,.
The decision function can be written as

P(XC) P (Cy) > P (XICr) P(Cy), @
where P(C;) is the prior probability of C;.

Assume that the features x; in feature vector x=(xy, Xa,..., Xn) are stochastically independent. Let us define p; as the probability of
occurrence of a word (ith word) suitable as a feature in a sentence that is in a relevant class, and ¢; as the probability of the word
(ith word) in a non-relevant sentence. Then, P(x|C;) can be rewritten as

P(XIC)= [ pia-p)" @
POxIC) =T [0 @-a) ©

where p; = P(x=1|C,) and gi = P(x=1|C,).

When we insert Equations (2) and (3) into Equation (1), take logs, and move the right term to the left, we have the following
linear decision function G(x):

(1— Z g(l— ) e,

G(x) = ZIog Pd-a)

When G(x) is positive, X belongs to C,. If not, x belongs to C,.. We use this equation to classify the DAN sentence. To normalize
G(X) output to a value from 0.0 to 1.0, we use the following equation Gyg(X):



Gy (X) = he%(x’ , where G(x) is the expression in (4). (5)

3.2 SVM classifier

We use the LIBSVM [19, 20] library and use radial basis function (RBF) as the kernel function. In the case of parameters
(C, ), the library automatically sets its own parameters after its optimization process.

Given training vectors x; € R", i =1, 2,...,I, in two classes y; € {1,-1} (1 means relevant class and -1 means non-
relevant class), C-support vector classification (C-SVC) tries to solve the following problem.
|
min sW'W +CY ¢ (6)
W.b,& 2 i=1

subjectto yi(W' @ (x) +b)>1-&,, & >0,i=1,2,...,1.

When K(xi, Xj) = ¢ (xi)T¢ (x;) is the kernel and ¢ (x;) is a function mapping X; into a higher dimensional space, the
decision function is

|
sgn(z yiaiK(xiyx)_FbJ,WhereOS(XiS l. 7
i=1
We use the following sigmoid function to convert the results (7) into a value from 0.0 to 1.0.
|
Gsuu (><)=1+e_t ’WheretzgyiaiK(xivx)+b (8)

3.3 Feature extraction
We use the following equation to select and extract word features more related to the relevant class [21]. In this equation, p;
and ¢ are the same variables used in Section 3.1.
M(x) =|logPd=8) | 5 ©)
q,1-p)

When a feature candidate x; satisfies the above criterion (greater than or equal to the threshold t), we choose x; as one of the
features in X=(xy, Xo, Xa,... , Xm). We collect several feature sets using different values of t in our experiment. In this paper, x; stands
for a word (a frequently occurring one) selected from sentences with and without DANS.

3.4 Merging operators for the Naive Bayes and SVM classifiers

We use two operators to combine the results of these classifiers (Equations (5) and (8)) to compensate for errors in each
classifier, and to improve the classification performance:

Guax(X) = Max {Gsym(X), Gns (X)} (10)
Gharmonic (X) = 2.0 X Ggyw(X) XGng (X) / (Gsum(X) + Gng (X)) (11)

Equation (10) shows that the Gy (X) operator chooses a maximum value among the results of the Naive Bayes (Gyg (X)) and
SVM (Gsym(X)) classifiers for an input sentence X. In Equation (11), the Ghamonic (X) Operator estimates the Harmonic Mean of
the results of these two classifiers.

4. PERFORMANCE EVALUATION MEASURES

We use four measures, Precision, Recall, F-Measure, and Accuracy, to evaluate the performance of the classifiers and the
merging operators. The measures are expressed as follows:

Precision = TP/(TP+FP),
Recall = TP/(TP+FN),
F-Measure = 2xPrecisionxRecall/(Precision+Recall),

Accuracy = (TP+TN)/(TP+TN +FP+FN),"



where TP, TN, FP and FN stand for the numbers of “true-positives”, “true-negatives”, “false-positives”, and “false-
negatives”, respectively.

5. EXPERIMENTAL RESULTS

The experiment consists of the following steps. First, we collect twelve sets of word features using Equation (9). Second, we
compare the performance of the two classifiers, Naive Bayes and SVM, for each set of word features. Third, we use merging
operators to combine the results of these two classifiers to improve performance.

We collect 21,287 sentences from biomedical articles published in 2006, to train and test the classifiers. 2,632 of these sentences
are DAN sentences (relevant class) and 18,655 sentences are Non-DAN sentences (non-relevant class). From the 2,632 DAN
sentences, we randomly sample 1,316 sentences for training and reserve the remaining 1,316 sentences for testing. We use the
same sampling method to select sentences (9,327 and 9,328) for training and testing from the 18,655 Non-DAN sentences.

To obtain word features for the classifiers, we collect 2,094 of the most frequently occurring words in these sentences as
“general” features, using the criterion expressed in Equation (9), and use three “special” features as shown in Table 3. From these
features, we estimate M(x;) of all word features using Equation (9), sort them in descending order, and collect twelve feature sets
ranging from 100 to 1,200 words by decreasing the threshold t. In Table 3, the definition of p; and g; are the same as in Section
3.1. For example, in the case of the general word feature “accession”, p;=0.65, i.e., it is found in 65% of DAN sentences (relevant
class) and 0% of Non-DAN sentences (non-relevant class).

Table 4 shows the performance of the Naive Bayes and SVM classifiers for each set of word features. We use twelve sets of
word features for experiments as shown in the first column of the table. In the case of the Naive Bayes classifier, the highest
Precision (second column) is 97.70% at 200 word features, Recall (third column) 93.91% at 200, F-Measure (fourth column)
95.77% at 200, and Accuracy (fifth column) 98.97% at 200. In the case of the SVM classifier, Precision (sixth column) shows
the best performance 98.80 at 400 word features, Recall (seventh column) 94.90% at 500 and 700, F-Measure (eighth column)
96.46% at 200, and Accuracy (ninth column) 99.14% at 200 and 400 word features. The Naive Bayes classifier shows the best
performance at 200 word features in all four measures while the SVM classifier does not. The SVM classifier shows the best
performance at 200 word features for F-Measure and Accuracy. When we compare the performance of the two classifiers, the
SVM classifier performs a little better than the Naive Bayes classifier in all four measures using several sets of word features.

The results of all four measures are important to evaluate the performance of these classifiers. Of the four measures, Recall is
more important than the others. The better the Recall, the fewer the false-negative (under-classification) errors. In the case of
false-positive (over-classification) errors, post processors (the next modules) have a chance to check for these errors
automatically. However, false-negative errors cannot be checked and human indexers have to manually find the missing DAN
sentences.

Therefore, we try to combine the results of the two classifiers using two merging operators (Equations (10) and (11)) to improve
their performance, especially the Recall rate. Table 5 shows the performance of each classifier and operator with the best Recall
rate. The Naive Bayes classifier shows the best Precision rate (97.70%). Gua(X) operator shows the best Recall rate (95.36%),
and Gramonic(X) operator shows the best F-Measure rate (96.18%) and Accuracy rate (99.07%). As shown in Table 5, both
Guax(X) and Gpamonic(X) operators increase Recall, F-Measure, and Accuracy rates over those resulting from the Naive Bayes and
SVM classifiers.

Table 3. Some word features and corresponding p; and g;.

Feature type Feature Pi i

Special Databank Name (GenBank, PDB, etc.) 0.9445288 0.0081475
Deposit Word (deposited, submitted, etc.) 0.6276595 0.0019296
Accession Word (accession, access, etc.) 0.6580457 0.0010720

General accession 0.6512158 0.0006432
deposited 0.4886010 0.0004280
foundation 0.1675220 0.0043680
coordinates 0.2051670 0.0003210
numbers 0.1626130 0.0022510
structure 0.1846500 0.0039660




Table 4. Performance of Naive Bayes and SVM classifiers for each feature set.

Naive Bayes SVM

Number | Precision | Recall | F- Accuracy Precision | Recall | F- Accuracy | C,y

of word (%) (%) Measure | (%) (%) (%) Measure | (%0)

features (%) (%)

100 96.57 9224 | 94.36 98.63 98.13 9193 | 9493 98.78 0.125, 0.0078125

200 97.70 9391 | 95.77 98.97 98.72 94.29 | 96.46 99.14 0.5,05

300 97.31 9353 | 95.38 98.88 98.02 94.60 | 96.28 99.09 0.5,0.125

400 97.31 9353 | 95.38 98.88 98.80 9422 | 96.45 99.14 8.0, 0.03125

500 97.38 9353 | 9542 98.89 94.83 9490 | 94.86 98.73 128, 0.000122

600 97.31 93.68 | 9546 98.90 98.41 94.44 | 96.39 99.12 2,048, 0.000122

700 97.16 93.84 | 9547 98.90 94.33 9490 | 94.61 98.66 128, 0.0000305

800 97.23 9346 | 95.30 98.86 9841 9429 | 96.31 99.10 2048, 0.0000305

900 97.23 93.61 | 95.38 98.88 98.33 9429 | 96.27 99.09 8192, 0.000305

1,000 97.31 93.68 | 95.46 98.90 98.33 9422 | 96.23 99.08 8,0.125

1,100 97.31 93.68 | 9546 98.90 98.33 9452 | 96.39 99.12 8, 0.03125

1,200 97.23 9353 | 9534 98.87 98.10 94.67 | 96.36 99.11 32,0.00195

Table 5. Performance of Naive Bayes and SVM Classifiers and Max and Harmonic operators.

Classifier or | Number of Precision | Recall | F-Measure | Accuracy | Number of | Number of | Number of

Operator word feature | (%0) (%) (%) (%) False- False- Total
Negative Positive Errors

Naive Bayes | 200 97.70 93.91 95.77 98.97 80 29 109

SVM 500 94.83 94.90 94.86 98.73 67 68 135

Guax(X) 1,000 96.83 95.36 96.09 99.04 61 41 102

Griarmonic(X) 700 97.50 94.90 96.18 99.07 67 32 99

Tables 6 and 7 show examples of false-negative and false-positive errors made by the two classifiers, respectively. In
Table 6, although the first sentence contains a DAN “DQ022369”, the Naive Bayes classifier does not classify it as a
DAN sentence. Also in Table 6, the SVM classifier could not correctly classify the third sentence as a DAN sentence
(“AF241848” is a DAN). Table 7 shows examples of false-positive errors. Although they do not contain DANS, all four
sentences are misclassified as DAN sentences because of suggestive words such as “OMIM”, “Online Mendelian

Inheritance in Man”, “amino acid sequence”, “amino acid sequence” and “pDB”.

Table 6. Examples of false-negative (under-classification) errors made by the Naive Bayes and SVM classifiers.

Classifier

Sentence

Naive Bayes

1. Differential display generated rabbit Fn1 cDNA clone sequence (477 bp,Ac #DQ022369,this study).

2. Ribbon diagrams of ubiquitin (1UBI),Urm1 (2AX5),Mo0aD (1FMA chainD),and ThiS (1F0Z) are located
on the right.

SVM

3. Extensive analysis of the sequence AF241848 that contains promoter area of RFP2 was performed.

4. Deletions for TR2 and TR2A included bp 2754 to 3323 (DQ360502) and bp 345279 to 346423
(NC_005139), respectively.




Table 7. Examples of false-positive (over-classification) errors made by the Naive Bayes and SVM classifiers.

Classifier Sentence

Naive Bayes 1. McKusick,V A (2000) Online Mendelian Inheritance in Man, OMIM, Bethesda, MD, Available at
www.nchi.nIm.nih.gov Prevent Blindness America Skokie,IL Available at http://mww.preventblindness.org
Accessed December 1,2004.

2. Hydropathy plot of the mouse SCD1 amino acid sequence and the design of the epitope-tagged SCD1
constructs.

SVM 3. Representation of the region of IE62 containing ORF66-directed phosphorylation sites,with the amino acid
sequence in single-letter code and the position of each serine or threonine residue indicated with the residue
number above.

4. The PCR products were digested with Notl/Nsil,and then ligated into an intermediate vector,pDB25,which
contains the Notl/Bcll fragment of pTN201 in pET28A for ease of cloning.

6. CONCLUSIONS

In this paper we describe our use of two classifiers, Naive Bayes and SVM, to classify sentences that contain Databank
Accession Numbers in online biomedical articles, as s preliminary step to identifying these numbers. We collect words that occur
most frequently in DAN and Non-DAN sentences as word features for the classifiers. To find the optimum number of word
features, we collect twelve sets of word features with different sizes to train and test the classifiers. Both classifiers show
relatively good performance in all sets, although the SVM classifier shows a little better performance in several sets. The Naive
classifier shows the best performance when the number of word features is 200 in all four measures. However, the SVM
classifier does not show the best performance in all four measures in any set. This classifier shows the best performance for
Precision at 400 word features, Recall at 500 and 700, F-Measure at 200, and Accuracy at 200 and 400. The best Recall rate of
the Naive Bayes classifier is 93.91% and that of the SVM classifier is 94.90%. We use two merging operators to combine results
of the Naive Bayes and SVM classifiers to improve performance, especially for the Recall rate. The merging operators do
improve performance, as seen in the results for Recall (95.36%), F-Measure (96.18%), and Accuracy (99.07%) rates. As future
work, we intend to find additional methods of collecting sets of word features and different merging operators to further improve
performance.
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