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ABSTRACT
Due to the large yearly growth of MEDLINE, MeSH in-
dexing is becoming a more difficult task for a relatively
small group of highly qualified indexing staff at the US Na-
tional Library of Medicine (NLM). The Medical Text In-
dexer (MTI) is a support tool for assisting indexers; this
tool relies on MetaMap and a k-NN approach called PubMed
Related Citations (PRC). Our motivation is to improve the
quality of MTI based on machine learning. Typical machine
learning approaches fit this indexing task into text catego-
rization. In this work, we have studied some Medical Subject
Headings (MeSH) recommended by MTI and analyzed the
issues when using standard machine learning algorithms. We
show that in some cases machine learning can improve the
annotations already recommended by MTI, that machine
learning based on low variance methods achieves better per-
formance and that each MeSH heading presents a different
behavior. In addition, there are several factors which make
this task difficult (e.g. limited access to the full-text of the
citations) which provide direction for future work.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.3.1 [Content
Analysis and Indexing]: Indexing methods
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1. INTRODUCTION
MEDLINER© citations are indexed using the Medical Sub-

ject Headings (MeSH)R© controlled vocabulary. This index-
ing is performed by a relatively small group of highly qual-
ified indexing staff at the US National Library of Medicine
(NLM). Their task is becoming more difficult due to the ever
increasing size of MEDLINE, currently around 700k articles
per year1. We hope that the situation can be eased through
improvements to the recommendations made by NLM’s in-
dexing tool, the Medical Text Indexer (MTI) [2, 4].

MTI is a support tool for assisting indexers as they add
MeSH indexing to MEDLINE. MTI has two main compo-
nents: MetaMap [3] and the PubMedR© Related Citations
(PRC) algorithm. MetaMap performs an analysis of the
citations and annotates them with Unified Medical Lan-
guage System (UMLS)R© concepts. Then, the mapping from
UMLS to MeSH follows the Restrict-to-MeSH [6] approach
which is based primarily on the semantic relationships among
UMLS concepts. The PRC [11] algorithm is a modified k-
NN algorithm which relies on document similarity to assign
MeSH headings (MHs). This method attempts to increase
the recall of MetaMap by proposing indexing candidates for
MeSH headings which are not explicitly present in the cita-
tion but which are used in similar context.

Our motivation is to improve MTI’s recommendations us-
ing machine learning because there is a large number of
MeSH headings, around 26k, and previously indexed cita-
tions are available as training data. On the other hand, in-
dexers have access to the full-text. Automatic indexing has
no access to this due to license restrictions. We encounter
issues, some of which are common to text categorization:

1. Imbalance between the number of positive and nega-
tive instances where the negative class usually over-
whelms the positive one. Some machine learning algo-

1http://www.nlm.nih.gov/bsd/bsd key.html



rithms have difficulty with this imbalance. We tested
several approaches to deal with this issue to balance
the datasets and to use a method based on the opti-
mization of a multivariate measure instead of relying
on accuracy. Joachims [10] proposed an adaptation
of SVM to optimize measures like F -measure or the
area under the ROC-curve instead of accuracy, being
an alternative to balancing the positive and negative
instances.

2. Even if a MeSH heading is correctly identified with
a citation, it might not be significant enough to be
included in the indexing.

3. Inconsistencies in the annotations might appear due
to:

(a) Inconsistency between MeSH indexers [7].

(b) Changes in indexing policy over time can intro-
duce inconsistencies with previously-indexed cita-
tions. This can even apply to routine changes to
the structure of MeSH. In the selection of our set
we carefully avoided this issue by selecting MHs
which were already in MeSH during the current
indexing period.

In this paper, we study the use of machine learning algo-
rithms in the task of MeSH indexing for some MeSH head-
ings and present several characteristics of the task. We show
that the citation text has limited prediction capability and
that other sources of information (e.g. fulltext) or repre-
sentations of the citations other than unigrams and bigrams
could still be explored. In the discussion, we point to fu-
ture work and, based on statistics about MeSH indexing
and MTI’s performance.

2. RELATED WORK
Previous work has seen the indexing task as a text cat-

egorization task. The large body of related work provides
valuable insights with respect to classification of MEDLINE
citations and feature selection methods.

We find that most of the methods fit either into pattern
matching methods which are based on a reference terminol-
ogy (like UMLS or MeSH) and machine learning approaches
which learn a model from examples of previously indexed
citations.

Among the pattern matching methods we find the first
component of MTI, as mentioned above, and an informa-
tion retrieval approach by Ruch [13]. Ruch’s system is a
combination of information retrieval and boosting based on
pattern matching. In his approach, the categories are the
documents and the query is the text to be indexed. Pattern
matching considers only the inner structure of the terms but
not the terms with which they co-occur. This means that
if an article is related to a MeSH heading but does not ap-
pear in the reference source (usually restricted to abstract
text and title due to availability of full-text), it will not be
suggested.

This problem has been approached in several ways from
a machine learning point of view. Machine learning meth-
ods tend to be ineffective with many categories; i.e. turn
the multi-class problem into a binary classification prob-
lem. Small scale studies with machine learning approaches

already exist [1, 15]. But the presence of a large number
of categories has forced machine learning approaches to be
combined with information retrieval methods designed to
reduce the size of the problem. For instance, PRC and a
k-NN approach by Trieschnigg et al. [14] look for similar
citations in MEDLINE and predict MeSH headings by a
voting mechanism on the top-scoring citations. Experience
with MTI shows that k-NN methods produce high recall but
low precision indexing. Other machine learning algorithms
have been evaluated which rely on a more complex represen-
tation of the citations which do not rely only on unigrams or
bigrams, e.g., learning based on ILP (Inductive Logic Pro-
gramming) [12].

3. MACHINE LEARNING ANALYSIS
Experiments have been performed on the MTI experiment

set for the 2009 MeSH indexing. This set-up allows avoid-
ing any interference provided by policy change in the index-
ing. We have selected candidate MHs highly represented in
MEDLINE but with poor recall performance by MTI. The
list of selected MHs is found in Table 1 along with their
MeSH identifiers and tree code2. MTI performance for each
MH is available in this table and as well in Table 4.

Considering that the total number of citations in the train-
ing set is 409279, we can see that the number of mentions
(Positives) of these MeSH headings is very low. We find
a very imbalance data set in which the negative examples
exceed by far the number of positive ones. MTI identifies
correctly a small amount of the positives (MTITP) but on
the other hand, a large set of false positives is incorrectly
predicted (MTIFP).

MeSH Heading Unique ID Potives MTITP MTIFP
Acute Disease D000208 2739 526 1857
Gene Expression D015870 3442 841 4225
Health Services D006296 967 301 1963
Hormones D006728 291 108 2094
Infection D007239 437 182 3113
RTPCR D020133 6953 3428 13711

Table 1: Selected MeSH headings based on 2010
MeSH and MTI performance on the training set

This selection has been previously used in [9]. In the cur-
rent work a two stage approach to the problem is presented,
in which the first step attempts to improve recall while the
latter to increase precision. Compared to this previous work,
we focus on a deeper analysis of the second step, in which a
previously selected subset of documents is further analyzed
according to the methods and the representation of the doc-
uments.

In the first step, the idea is to reduce the whole dataset to
ease the work with machine learning algorithms. This im-
plies identifying a set of classification rules with high recall,
which might have a low precision performance. This reduc-
tion is performed by doing feature selection using Latent
Dirichlet Allocation (LDA) [5] to extract the most salient
terms in the groups and selecting the terms with a higher
prediction performance based on the combination of deci-
sion trees (DT) common branches of the trees among cross-

2RTPCR stands for Reverse Transcriptase Polymerase
Chain Reaction and Health Services stands for Health Ser-
vices Needs and Demands



validation sets and decision trees. The DT derived rules
(recall rules) reduce the total set of citations to be consid-
ered by the false positive filtering study, see Table 4. We
can see that in almost all the cases we can reduce the size of
the set, keeping recall high for each MeSH heading but still
with low precision.

In Table 2, we show several terms which appeared in the
LDA analysis for Gene Expression. We find that terms like
expression have high coverage but low precision, since there
are terms which can be used in different situations. On
the other hand, we find the term gene expression which has
lower recall, but surprisingly the precision is still very low.
This means that there are cases in which the term gene
expression appears in the citation but does not qualify to
be included as a candidate MH. Machine learning will not
only have to ensure that the term is used in the proper sense
but that it is significant enough to qualify, showing further
the complexity of the task.

Term Rec Prec F1
gene expression 0.2543 0.1668 0.2014
mrna 0.2965 0.1243 0.1752
expression 0.7704 0.0933 0.1664
gene 0.5492 0.0725 0.1281
expressed 0.3033 0.0771 0.1230

Table 2: Gene expression feature prediction study

Some of the MeSH headings in our study are parents of
more specific headings in the MeSH taxonomy (e.g. Hor-
mones). These more specific headings (e.g. thyroid hor-
mones) might be used for indexing instead of the MHs we
are considering. To evaluate the impact of this phenomenon
we have identified the children of the MHs under study. This
includes the immediate and all their descendants.

In Table 3 we show that some MHs like Hormones and In-
fection have a large number of children and seem to overlap
with the indexing performed for these MHs (FP+Children).
In the case of Hormones, half of the false positives (FP) are
indexed with a hormone type. Methods based on pattern
matching might avoid this issue selecting the MH matching
the largest span of text. Examples of these methods are
MetaMap and Ruch’s approach.

MeSH Heading Children FP+Children Total FP
Gene Expression 3 984 24978
Health Services 2 76 27475
Hormones 212 2290 4181
Infection 148 3408 49796

Table 3: Overlap of FPs and annotation of more
specific MeSH Headings

In the second step, to the reduced set produced by the
recall rules, we have applied the following machine learning
algorithms. Each algorithm relies on different learning bias
which would allow closer examination of the results for each
one of the cases.

1. Traditional classifiers (SVM, Näıve Bayes, decision trees,
k-NN and AdaBoost).

2. Multivariate SVM [10], the training is done to optimize
F1-measure.

3. We have performed class noise removal based on the
algorithms by Zhu et al.[16].

False positive filtering experiments (Filtering) have been
performed for each one of the learning algorithms listed
above. Unigrams and bigrams are used in the representa-
tion of the documents. Results are presented in Table 4,
considering Filtering results, only the results for the best
performing method are shown. We show the MTI results,
MTI with machine learning filtering (MTI+Filtering), the
outcome of the recall rules and the recall rules with ma-
chine learning filtering (RecRul+Filtering). The data sets
for (MTI+Filtering) are derived from the MTI results while
the data sets for (RecRul+Filtering) are derived from the
recall rules presented above. Further experiments are per-
formed balancing the data sets.

Considering the MTI+Filtering results, as observed al-
ready in [9], is that machine learning improves the precision
of the MeSH heading recommendation but at the cost of re-
call. AdaBoost performs better for Acute Disease and Gene
Expression. Class noise reduction improves Health Services
and Infection, while the method used from this reduced set
are decision tree and Näıve Bayes respectively. Multivariate
SVM is the preferred method for Hormones and RTPCR. In
all the methods but multivariate SVM, balancing the posi-
tive and negative examples increases the performance of the
classifiers.

Considering the RecRul+Filtering, AdaBoost is the best
performing method. As in the previous set, balancing the
positive and negative examples improves the performance of
the classifiers. Only in the case of Acute Disease, the best
performing method is multivariate SVM.

We also show results of the children analysis in Table 4
for Hormones and Infection. We can see that children analy-
sis improves the performance of the recommendations, mean-
ing that the MeSH structure should be further studied in
order to improve the recommendations. In both cases, Ad-
aBoost is the best performing method.

From the machine learning algorithms used in the exper-
iments, AdaBoost and multivariate SVM achieve the best
performance in many of the filtering results, meaning that
low variance methods achieve a better performance. On the
other hand, decision trees achieve the lowest performance
which correlates with previous studies on text categoriza-
tion.

4. DISCUSSION
In our study, we have used a data set from 2009 MTI

experiments, and we have analyzed some of the characteris-
tics of the results obtained by applying machine learning on
them. We have presented the issues which machine learning
algorithms face when dealing with MeSH indexing.

As we have noted above, each MH seems to have a dif-
ferent behavior according to the method used. Since there
are 26k MHs, to train and maintain up-to-date a system
which can manage the different MHs, it might be possible to
place the effort on highly represented MHs. Systems based
on k-NN [11, 14] or matching strategies like MetaMap and
Ruch’s approach [13] manage the size problem efficiently. In
this section, we present different statistics on the MeSH in-
dexing which could help deciding on focusing the effort on
a specific set of MHs.

Table 5 shows the micro/macro-average performance of
MTI evaluated for all 26k MHs. We can see that while
recall is almost the same, precision is much lower for micro-
average. This might mean that there are MHs which are



Acute Disease Prec Rec F1 F2
MTI 0.2664 0.1580 0.1984 0.1720
MTI+Filtering 0.4272 0.1395 0.2103 0.1612
Recall rules 0.1176 0.8562 0.2068 0.3795
RecRul+Filtering 0.1941 0.6611 0.3001 0.4463
Gene Expression Prec Rec F1 F2
MTI 0.1958 0.2712 0.2274 0.2518
MTI+Filtering 0.2642 0.1389 0.1896 0.1805
Recall rules 0.0645 0.8165 0.1195 0.2450
RecRul+Filtering 0.1130 0.5220 0.1858 0.3029
Health Services Prec Rec F1 F2
MTI 0.1810 0.3533 0.2394 0.2968
MTI+Filtering 0.2636 0.2387 0.2505 0.2433
Recall rules 0.0169 0.6293 0.0329 0.0763
RecRul+Filtering 0.0723 0.3547 0.1201 0.1992
Hormones Prec Rec F1 F2
MTI 0.0726 0.4000 0.1229 0.2103
MTI+Filtering 0.1310 0.2800 0.1785 0.2281
Recall rules 0.0328 0.6311 0.0624 0.1359
RecRul+Filtering 0.0839 0.3600 0.1361 0.2172
Recall no children 0.0698 0.6311 0.1258 0.2421
Recall nc filter 0.1845 0.3911 0.2507 0.3195
Infection Prec Rec F1 F2
MTI 0.0649 0.4013 0.1117 0.1970
MTI+Filtering 0.1568 0.2492 0.1925 0.2229
Recall rules 0.0048 0.7767 0.0095 0.0234
RecRul+Filtering 0.0216 0.4660 0.0412 0.0910
Recall no children 0.0051 0.7767 0.0102 0.0251
Recall nc filter 0.0276 0.4854 0.0523 0.1126
RTPCR Prec Rec F1 F2
MTI 0.2790 0.3738 0.3213 0.3535
MTI+Filtering 0.5316 0.3038 0.3879 0.3188
Recall rules 0.0931 0.7191 0.1648 0.3066
RecRul+Filtering 0.2048 0.4863 0.2883 0.3815

Table 4: Results of different methods on selected
MeSH headings

highly represented in MeSH indexing (e.g. Female) for which
MTI achieves a result with low precision.

Precision Recall F-measure
Macro-average 0.4164 0.5111 0.4589
Micro-average 0.3268 0.5118 0.3989

Table 5: MTI macro and micro averaging based on
ln frequency

Table 6 shows the distribution of MHs according to their
occurrence frequency in MEDLINE. In order to properly dis-
tribute the MHs, we have placed them into bins according
to the logarithm of the frequency. MHs indicate the number
of individual MHs, the total is the actual total mention of
MHs, and precision, recall and F-measure is the average per-
formance in each one of these categories. MTI’s performance
seems to decrease slightly as the total number of citations
indexed by the MHs increases. The exception is the last
category with only the single MH Humans. We can see that
the last five categories have a low number of MHs but the
total number of occurrences in MEDLINE is quite high. The
most popular terms in our dataset are Humans with 471,467
occurrences, Female with 233,499 and Male with 227,052.

There are MHs with very low number of mentions in MED-
LINE. We can assume that these MHs are rare, but even if
you find the term it does not mean that it is significant
enough to be added to the indexing.

We find as well that there are 1,314 MHs which are never

considered for indexing3. Some MHs are used to specify
the Publication Characteristics (Tree V), which in some cases
allow the identification of funding support for the article4.
Other MHs are used to organize the MeSH taxonomy.

ln(freq) MHs Total Prec Rec F1
0 833 833 0.2878 0.4898 0.3626
1 1933 5704 0.4448 0.5108 0.4755
2 3375 27296 0.4910 0.5363 0.5126
3 4393 94692 0.4834 0.5430 0.5115
4 4795 273297 0.4671 0.5456 0.5033
5 4313 650906 0.4230 0.5399 0.4743
6 2698 1091380 0.3860 0.5454 0.4520
7 1319 1392237 0.3500 0.5602 0.4309
8 465 1303683 0.3321 0.5574 0.4162
9 115 898067 0.3263 0.5208 0.4012

10 22 429109 0.4074 0.4413 0.4237
11 7 369217 0.4735 0.3472 0.4007
12 5 874276 0.5817 0.2964 0.3927
13 1 471467 0.9155 0.6914 0.7878

Table 6: MTI macro averaging based on ln frequency

Table 7 shows the macro average performance of MTI ac-
cording to each one of the MeSH trees. A detailed list of the
current tree codes is available from5. We can see that there
are trees which contain a low number of MeSH headings
but embody a large number of indexed citations like CT
(Check Tags), G (Analytical, Diagnostic and Therapeutic
Techniques and Equipment) and E (Phenomena and Pro-
cesses).

One possible next step would consist of focusing on these
sets of MeSH headings and try, in addition, to identify com-
monalities among the MHs.

Tree MHs Total Prec Rec F1
A 1614 480326 0.3723 0.5404 0.4641
B 3546 248804 0.5459 0.6465 0.5989
C 4394 757400 0.4600 0.5682 0.5107
CT 34 1804516 0.4393 0.3007 0.3041
D 8805 1287185 0.4323 0.5327 0.4740
E 2396 1412951 0.3515 0.4146 0.3590
F 739 281784 0.3208 0.3944 0.3352
G 1360 822398 0.2970 0.4253 0.3491
H 292 91239 0.2796 0.3122 0.2656
I 410 133224 0.3068 0.3389 0.2977
J 193 46574 0.3123 0.4165 0.3557
K 145 13341 0.3135 0.2505 0.2404
L 246 86219 0.2171 0.2519 0.2066
M 154 48106 0.3371 0.3564 0.3106
N 737 233104 0.2528 0.2536 0.2194
V 146 0 0.0000 0.0000 0.0000
Z 377 134993 0.5006 0.5391 0.5125

Table 7: MTI macro averaging based on MeSH Tree
code

5. CONCLUSION
Experiments show that machine learning can be used to

improve the results of MTI, but the results are still low for
production purposes. From the results, we can see that low
variance machine learning methods provide better results.

3From the MEDLINE Baseline
http://mbr.nlm.nih.gov/index.shtml
4http://www.nlm.nih.gov/bsd/funding support.html
5http://www.nlm.nih.gov/mesh/trees.html



This implies that noise resilient methods are preferred, even
though it is still difficult to know how much noise is de-
rived from attribute noise or class noise. Further work might
be devoted to understand both noise types and devise ap-
proaches to deal with them. In addition, indexing methods
exhibit different behavior depending on the MH. This might
be taken into account when training a system for all the
MHs in MeSH.

We have presented results on a limited number of exam-
ples. Extending the work to more MeSH headings would
provide better insights in the comparison of machine learn-
ing approaches. For instance, improvement the results for
the Check Tag MHs, given the low number of them and the
large number of citations, would provide a boosting in the
performance of the MTI. Very frequent MHs like Humans,
Male and Female belong as well to this category of MHs.

Balancing the number of positives and negatives by re-
moving instances from the negatives (subsampling) has im-
proved the performance of many classifiers. On the other
hand, subsampling has removed negative instances with fea-
tures that should be considered. We plan to consider other
sampling approaches including synthetic sampling.

We have performed experiments on the text provided by
the abstract and title of the citations. The results point out
that the citations might not provide enough information to
index the citations, e.g. for around 15% of the citations only
the title is present. Only the title is not enough to decide
on the MeSH headings to be used to index the documents.
In addition, we have seen in Table 2 that there is a limited
number of terms related to Gene Expression with high F -
measure performance. The analysis performed in this paper
indicate that AdaBoost performs reasonably well. AdaBoost
in this study uses a decision tree as base learner, this means
that capturing relations between features will increase per-
formance. A larger set of features, available in full text,
might increase the performance of the classifiers. Further
studies on full-text might be required, but only 15% of the
PMIDs in our dataset could be matched to full-text identi-
fiers in PubMed CentralR©.

Another possibility to extend the feature set is to consider
existing meta-data already available in the citations. One
way of doing this might be correlating the MeSH headings
with the journals in which the citations appears. This might
be approached using the Journal Descriptor indexing which
has already been proposed in the literature [8].
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