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ABSTRACT

Biomedical images are often referenced for clinical decision support (CDS), educational purposes, and research. They
appear in specialized databases or in biomedical publications and are not meaningfully retrievable using primarily text-
based retrieval systems. The task of automatically finding the images in an article that are most useful for the purpose of
determining relevance to a clinical situation is quite challenging. An approach is to automatically annotate images
extracted from scientific publications with respect to their usefulness for CDS. As an important step toward achieving
the goal, we proposed figure image analysis for localizing pointers (arrows, symbols) to extract regions of interest (ROI)
that can then be used to obtain meaningful local image content. Content-based image retrieval (CBIR) techniques can
then associate local image ROIs with identified biomedical concepts in figure captions for improved hybrid (text and
image) retrieval of biomedical articles.

In this work we present methods that make robust our previous Markov random field (MRF)-based approach for pointer
recognition and ROI extraction. These include use of Active Shape Models (ASM) to overcome problems in recognizing
distorted pointer shapes and a region segmentation method for ROI extraction.

We measure the performance of our methods on two criteria: (i) effectiveness in recognizing pointers in images, and (ii)
improved document retrieval through use of extracted ROIls. Evaluation on three test sets shows 87% accuracy in the
first criterion. Further, the quality of document retrieval using local visual features and text is shown to be better than
using visual features alone.

Keywords: Biomedical image analysis, biomedical article retrieval, content-based image retrieval, image overlay
extraction, pointer symbol extraction, Active Shape Model

1. INTRODUCTION

Biomedical images are frequently used in publications to illustrate the medical concepts or to highlight special cases.
They are invaluable in establishing diagnosis, acquiring technical skills, and implementing best practices in many areas
of medicine. Conventional approaches for biomedical journal article retrieval have been text-based with little attention
devoted to the use of images in the articles. Text-based retrieval uses text information automatically extracted from title,
abstract, figure captions, and discussions (mention). It provides fairly good results; however, the relevance quality
sometimes is not satisfactory. Content-based image retrieval (CBIR) also has been applied to biomedical image retrieval
[1]. However, the retrieval performance is far behind the text-based retrieval due to semantic gap [2]. Low level features
such as color, textual, and shape used in CBIR are insufficient to represent medical concepts or meaningful diagnostic
information in the images effectively.

To improve the relevance quality of conventional retrieval approaches, we have proposed an approach using hybrid (text
and image) features [3]. Information retrieval (IR) techniques are used to identify key textual features in the title,
abstract, figure caption, and figure citation (mention) in the article. Structured vocabularies, such as the National Library
of Medicine’s Unified Medical Language System (UMLS ®) are used as well to identify the biomedical concepts in the



text [4-7]. Unlike conventional CBIR that uses image features from the entire image, our proposed approach uses a
combination of features computed over the entire image and those computed from specific image regions of interest
(ROIs). We recognize that authors often use the annotations overlaid on figures and illustrations in the articles in the
form of pointers or symbols to highlight regions of interest. Recognizing these image annotations may be useful to
identify specified local regions. These annotations are also often referenced in the figure meta-text (captions, mentions)
in the article. We hypothesize that correlating biomedical concepts from the figure meta-text with image features
computed on the image regions identified by the pointers may improve the quality of biomedical document retrieval
when using both images and text features in the query.

This article presents our efforts to improve our prior work [3-4] on pointer recognition and ROI extraction to achieve
better relevance quality in the proposed multimodal biomedical article retrieval. Additional pointer segmentation and
ROI extraction methods were developed based on region growing method. A new pointer recognizer based on Active
Shape Model (ASM) was developed to complement our Markov random field (MRF)-based pointer recognizer proposed
in [3]. Biomedical image retrieval tests utilizing several components we have developed have been performed and some
initial test results and performance analysis are discussed as well.

2. PRIOR WORK

We actively participated in the ImageCLEF 2009 medical retrieval track and submitted various retrieval runs based on
textual, image, and multimodal (combinations of text- and content-based approaches) features [8]. Our group and several
runs were ranked on top among 17 research groups and over 100 submitted runs for image- and case-based topics [9].
Our multimodal relevance feedback and visual-based retrieval approaches were ranked 1% in interactive and visual runs,
respectively. Our case-based runs also were ranked in 1% and 2" among all case-based run submissions. Text features
were extracted from image captions provided in the ImageCLEFmed’09 collection and several automatically extracted
search areas such as title of the article in which the image appears, the article’s abstract, a brief mention of the image
from the article’s full text, and the Medical Subject Headings (MeSH terms), which is a controlled vocabulary created by
NLM to index biomedical articles, assigned to the article. Image feature vectors were obtained from both visual concept-
based feature based on a “bag of concepts” model comprising color and texture patches from local image regions [10]
and various low-level global features including color, edge, and texture.

Our previous approach to locating and recognizing pointers in biomedical images proposed a Markov random field
(MRF)-based recognition scheme to add robustness to our first approach discussed in [4]. 43 labels were defined from
boundary parts frequently seen in commonly used arrow type pointers overlaid on biomedical images. MRF theory is
applied to label line segments extracted from a pointer boundary. Dynamic programming (DP) technique was applied to
the line segment labeling results to select the best label for each line segment and find an optimal configuration for the
boundary. Hidden Markov model (HMM)-based classifier following the MRF labeling was applied to classify a labeling
configuration into three pointer classes. Our test results showed that the proposed method can recognize almost all arrow
type pointers used in biomedical images and is less affected by the large variation in pointer shape. 82% success rate in
pointer recognition was reported on a pointer image set manually cropped from ImageCLEFmed’09 image set.

In addition to the pointer recognition test, we performed biomedical image retrieval test utilizing the pointer recognition
method and local image analysis. Image regions of interest (ROI) indicated by the pointers were localized and image
features were computed from the ROIs. Two image-based topics from ImageCLEFmed’08 were selected. Initial results
retrieved by text retrieval were re-ranked based on the comparison results between the ROIs from the images and sample
ROIs of each topic. We achieved mixed retrieval results, some of which were promising. Several potential solutions to
improve the quality of retrieval were discussed in [3].

3. METHODS

Three methods are proposed as solutions to the drawbacks identified in [3]. These are improved pointer segmentation,
improved pointer recognition, and variable-size ROI extraction. These methods are described in this section.

! http://imageclef.org



3.1 Pointer segmentation

Edge-based segmentation is simple but powerful and has been widely used for object segmentation [11]. Object
boundary can be segmented by edge detection followed by binarization of the edge image. A drawback of edge-based
segmentation caused by weak edges was described in [4]. Recently we identified another drawback causing errors in
small pointers recognition. Figure 1 shows an example of the case. Small pointers frequently lose their tail due to the
smoothing effect of edge detection and binarization, which shrink the region of segmented pointers. Figure 1(a) shows
extracted boundaries by Roberts edge detection followed by adaptive thresholding. The boundaries are overlaid on the
pointers. They were recognized as arrowhead or noise.

Among many edge detection operators, Roberts edge detection was applied in our prior work. Compared to other famous
edge detection methods such as Sobel and Canny, Roberts operator generates less noise boundaries than Sobel but more
than Canny. Figure 2 shows edge detection results of the three methods on the entire image containing Figure 1(a).
Canny operator generates least noise boundaries; however, it does not guarantee a closed boundary of a pointer. In order
to form a closed boundary, a simple morphological operation can be applied to the edge image. One serious problem of
morphological operation is that the shrinking discussed above is worse than the result shown Figure 1(a). Figure 1(c)
shows extracted pointer boundaries by Canny edge detection followed by dilation. The tails of all arrows disappeared
and the arrowheads are smaller than the result in Figure 1(a).

A pointer segmentation method based on Canny edge detection and region growing was developed to take the benefit
and solve the drawback of Canny edge detection in pointer recognition. The segmentation method has two steps, viz.,
histogram analysis and region growing. In the histogram analysis step, interior region of detected pointer boundary is
used as seed region and all gray intensity levels of the pixels are collected. The min and max of all the intensity levels are
obtained and used in region growing step. In region growing step, only pixels outside of the boundary are examined and
merged based on the min and max. The region growing can be used with any edge detection method and can segment
almost entire region of target pointers (compare (a) and (c) with (b) and (d), respectively). Figure 1(b) and (d) show
pointer boundaries extracted by region growing with Roberts and Canny edge detection methods, respectively.

A | N
(a) Boundary extraction by (b) Region growing from (c) Boundary extraction by (d) Region growing from
Roberts edge detection boundaries in (a) Canny edge detection boundaries in (c)

followed dilation

Figure 1. Edge detection and pointer segmentation results

(a) Roberts edge detection (b) Sobel edge detection (c) Canny edge detection

Figure 2. Comparison of three edge detection methods



3.2 Active Shape Model (ASM) pointer recognizer

Our Markov random field (MRF)-based pointer recognition is capable of recognizing various shapes of arrow type
pointers with no specific pointer models used. General model based approaches define object models, train the models,
and recognize objects by comparing unknown object with the models. Difficulties in applying model-based approaches
to pointer recognition were discussed in our prior work [3]. One drawback of the MRF-based recognizer is that it can not
recognize pointers with some degree of distortion in their boundaries. The MRF recognizer can handle minor distortion
and over-segmented line segments; however, severe distortion as shown in Figure 3 can not be handled even though the
pointer is perfectly segmented from the background. The boundary and its line segment approximation result have some
distortion and the distortion caused incorrect line segment labeling and recognition result as well. Other approaches
rather than boundary-based method may recognize the segmented pointer since the overall shape of the pointer is fine
enough and the pointer region is well-separated from background. Figure 3(d) shows result of ASM recognizer, which is
discussed below.

A recognizer based on Active Shape Model (ASM) was developed to handle pointers with distortion in their boundary
and line segment approximation results. The ASM was developed by Cootes and Taylor in 1995 and has been
successfully applied to object detection and recognition problems such as face detection, hand detection, and medical
applications [12]. Unlike other applications where rotation of object is not explicitly considered, pointer recognition
should consider pointer rotation since pointers point to arbitrary direction and they need to be aligned with model
pointers to get correct similarity score. To address this problem, a segmented pointer is rotated and mirrored several
times and then each transformed pointer is matched with model pointers. The eigen analysis used in [4] is applied to
obtain initial rotated pointer. Four different pointers including the initial pointer are generated and then compared to
models. Pixels with same gray intensity level (black-black or white-white) from two overlapped pointer regions, one is
unknown pointer and the other is interior region of fitted ASM model, are counted and then divided by widthxheight of
the segmented pointer image. The ratio is used as similarity score to choose the best matching model.

Figure 4 shows types of recognizable pointers by ASM recognizer. The numbers shown in parentheses are the number of
landmark points in each pointer model. Only several pointers frequently used in biomedical images are selected.
Compared to MRF recognizer, only several types of pointers used in model generation can be recognized and that is the
biggest drawback of the ASM recognizer. Figure 5 shows an example pointer and its transformed images in matching
step. The curved arrow is initially rotated by a rotation angle calculated by eigen analysis (Figure 5(b)) and three more
pointers (Figure 5(c)~(e)) are generated by mirroring the pointer in previous step. The pointer in Figure 5(d) is the best
matching mirror image and the pointer model (Figure 4(b)) generates the largest similarity score and hence is selected as
recognition result.

Pointers are recognized by MRF recognizer first and then ASM pointer recognizer only if the similarity score from MRF
recognizer is smaller than a threshold. Boundaries are assumed as noise if the similarity score from ASM recognizer is
less than a threshold.

(@) Input pointer (b) Extracted boundary (c) Line segment (d) ASM fitted result
approximation result

Figure 3. A pointer that MRF recognizer cannot recognize due to distortion in its boundary
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(a) Straight arrows (22) (b) Curved arrow 1 (33)  (c) Curved arrow 2 (26)  (d) Arrow head (12)
Figure 4. Types of recognizable pointers by ASM recognizer
(Numbers in parentheses are the number of landmark points in each pointer model.)
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(a) Input and output (ASM fitting and ROI) (b) Initial rotated pointer

S5 &4 SCQ

(c) Horizontal mirror of (b) (d) Vertical mirror of (c) (e) horizontal mirror of (d)

Figure 5. Example of ASM recognition
(Left: input to ASM, right: final fitting result with overlaid fitted model)

Figure 6. ASM recognition results and ROIls

Figure 6 shows some recognition results of ASM recognizer. Solid lines and points overlapped on each pointer show the
best fitted model pointer and its landmark points. The rectangle is the region of interest (ROI) pointed by each pointer.

3.3 ROI extraction

In our prior work [3-4], a fixed size rectangle ROI (e.g., 200x200) is localized based on some information from pointer
recognition result. The fixed size ROI is easy to localize; however, it is sometimes not proper to contain an entire
concept in the local region. A variable-size ROl extraction method has been developed similar to the pointer
segmentation method described in section 3.1.



The ROI extraction method has two steps: (i) seed region histogram analysis and (ii) region growing. In the seed region
histogram analysis step, a 100x100 rectangle ROI as before is used as seed region (see Figure 7). Gray intensity
histogram is obtained from the seed region and some representative gray intensity levels are extracted by detecting
dominant peaks in the histogram. In the region growing step, pixels with any of the representative gray intensity levels
are selected as seed pixel for region growing. From a seed pixel in the seed region, pixels with gray intensity of seed
intensity+10 are merged. Two measurements are calculated from a grown region to decide termination of the growing
process. They are the centroid of a region bounding box and distances between two reference lines and the centroid.
Growing process is terminated when the distances are larger than some thresholds or the region bounding box becomes
larger than a threshold. Figure 7 describes the seed region, a region being grown, and the measurements for the decision
of growing process termination. Figure 8 shows all local regions grown from two representative intensity levels (67 and
107). The final ROl is a rectangle containing all the rectangles of grown regions. As seen in the result, ROI extracted by
region growing is more precise than the ROI obtained by 200x200 fixed-size rectangle shown in (a).

One benefit of the ROI extraction method is that it enables extraction of large ROI pointed by several identical pointers.
ROI in Figure 9(a) is indicated by six black arrows and the arrows are located near the boundary of the interesting
content. None of the 200%200 rectangle ROIs contains the entire ROI and hence these ROIs should be combined in some
ways to extract the entire ROI. The right result of (a) shows a ROI extracted by region growing starting from one arrow.
Other ROIs by the other five arrows are similar with the result.

Pointing direction

Target region
bound ©_

Region being grown
& its bounding box

distance measures

Figure 7. ROI extraction by region growing

*

(a) Input and 200%200 ROI (b) Two grown regions (c) Final extracted ROI
Figure 8. Region growing ROI extraction result
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(b) (c)
Figure 9. Variable-size ROI extraction results
(In each pair left one is 200%200 fixed ROI and right one is variable-size ROI.)




3.4 Multimodal biomedical image retrieval

In our proposed multimodal biomedical image retrieval, we are interested in local image features rather than features
computed from entire images. Features from image ROIs can be used in various multimodal retrieval scenarios. Text- or
image-based retrieval results can be re-ranked by comparing ROIs extracted from initial retrieved images with sample
ROIls. The sample ROIs can be identified by analyzing text query and then retrieved from an image DB or can be a user-
marked ROI if the query includes an image. Then images with pointers and containing similar local regions with the
query, which are expected to be more relevant, could be ranked on top of the new result.

For hybrid queries (text and image), utilizing features computed from ROIs could provide better results than using image
features computed from entire images. Text retrieval is efficient to reduce the search space; however, the results may not
be satisfactory since it does not use any image features and hence may not find images containing similar contents that
the user-provided query image has. CBIR by features computed from entire images could retrieve images that look like
the query image. Those features, however, may be inadequate to represent specific concepts in local regions or concepts
that users provide by text queries. ROI analysis can be placed between text retrieval and CBIR and may provide useful
information complementing both text retrieval and CBIR. Specific medical concepts associated with the ROIs when the
images are annotated also could improve relevance quality. The extracted text concepts from the ROIs in the retrieved
images can be compared with the concepts extracted from the text query. The initial results could be simply re-ranked by
the local image features or text concepts. Additional relevant images could be retrieved by another text retrieval using
the concepts identified through the ROI analysis.

Multimodal features may be the most potential method to obtain better results over conventional retrievals. Using entire
images, however, may not be helpful in multimodal retrieval. Results by text- or image-only are expected to be fairly
relevant to the queries. Features computed from entire images may no longer be able to provide detailed and meaningful
information for better relevance quality over the initial results due to semantic gap. The pointer and overlay finding
results is expected to improve the specificity in image retrieval. If a pointer has been detected in an image through the
use of text clues indicating their presence or directly by the MRF pointer recognizer, the image region pointed to can
provide greater specificity on the image content. We expect this to significantly improve retrieval quality.

4. EXPERIMENTS
4.1 Test setup

We performed biomedical image retrieval test as discussed in [3]. ImageCLEFmed’09 data set was used and three topics
out of 25 topics were selected based on the number of ground truth relevant images to the topics. The three topics are i)
Topic 2: Breast cancer mammogram, ii) Topic 12: Radiographic findings of osteomyelitis, and iii) Topic 21:
Osteoporotic bone. Figure 10 shows sample images relevant to each topic. Two retrieval runs, text and image modes,
submitted to the competition were selected for the initial text- and image-based retrieval results [9]. The initial results
were re-ranked by comparing ROIs extracted from images of initial result with sample ROIs for each topic. TRECEVAL
package [13] was used to analyze and obtain common evaluation measures such as precision and recall.

%

(a) Topic 2 (b) Topic 12 (c) Topic 21

Figure 10. Sample relevant images to each topic




4.2 Evaluation results

Through this retrieval test, we evaluated two components in our proposed multimodal retrieval approach; i) pointer
recognition and ii) retrieval performance using local image features. Table 1 and 2 shows some useful statistics on rate
of pointer presence in retrieved images and ground truth images of the three topics. Total ret denotes the number of total
retrieved images by each retrieval mode for each topic and the next three columns (w/ pointer, w/o pointer, and rel-ret)
show percentages out of the Total ret in each row. rel-ret w/ pointer means images that contain pointers and are relevant
to the topic among the retrieved images. The numbers show percentages out of the rel-ret (relevant and retrieved). For
example, 294 (29%) out of the 1,000 images retrieved for topic 2 were judged relevant and 171 (58%) images among the
294 rel-ret images were containing pointer(s). From Table 1 we can notice that approximately 60% of retrieved images
by any retrieval mode have pointers and the other 40% images have no pointers. Similar percentages can be found from
ground truth of each topic shown in Table 2.

Table 1. Pointer presence rate in retrieved images

Text-based retrieval Image-based retrieval
Total w/ w/o rel-ret Total w/ w/o rel-ret
. . rel-ret . . . rel-ret .
ret pointer | pointer w/ pointer ret pointer | pointer w/ pointer
Topic 2 | 1,000 58% 42% 29% 58% 1,000 67% 33% 4% 64%
Topic 12 | 847 64% 36% 23% 64% 843 59% 41% 4% 46%
Topic 21 | 1,000 61% 39% 6% 39% 996 60% 40% 1% 36%

Table 2. Pointer presence rate in ground truth images

# of Qrel relevant w/ pointers w/o pointers
Topic 2 444 53% 47%
Topic 12 236 60% 40%
Topic 21 133 44% 56%

Table 3. Pointer recognition performance

Text-based retrieval Image-based retrieval
SucCess False Missed SuCCess False Missed
alarm detection alarm detection
Topic 2 82% 10% 8% 89% 2% 9%
Topic 12 83% 4% 13% 87% 3% 10%
Topic 21 82% 7% 11% 85% 5% 10%

Table 3 shows pointer recognition evaluation results. Three measures, success, false alarm, and missed detection, are
considered to evaluate the performance. The success includes images that i) have pointer(s) and algorithm detected all or
some of them (w/ or w/o some noise pointers) and ii) have no pointers and algorithms detected no pointers. The false
alarm includes images that have no pointers but algorithm detected some noise pointers. The missed detection counts
images that have pointer(s) but algorithm detected nothing or some noise pointers.

Our pointer recognizer is a combination of the MRF and ASM recognizers. The ASM recognizer alone can not achieve
better recognition performance than the MRF recognizer due to the drawback discussed in Section 3.2. Adding and
training more pointer models may solve the drawback. However, the processing time increases according to the number
of pointer models and the increased running time may not be acceptable.

Average success rates are 82% and 87% for images retrieved by text and image modes, respectively. Most images
retrieved by image mode have less complicated background than those retrieved by text mode. They have similar texture



and color with the sample images shown in Figure 10 since they are retrieved by CBIR engine. Images similar with the
sample images have fewer noise boundaries and hence produced lower false alarm rate.

Figure 11 shows Recall-Precision graph and precision graph after N images retrieved. Only relevant images with
pointers on the ground truth list were considered as relevant images since we re-rank the initial retrieved result based on
presence of pointers and ROI analysis. The graphs show that text mode retrieval shows the best performance in all cases.
Visual+ROI and Visual show very poor performance since the initial retrieval results (by image mode) contained fewer
relevant images than text mode results.

Our retrieval tests show some promising results on use of pointer localization and local image analysis for improved
biomedical image retrieval. Our ultimate goal is to obtain better performance graph than the Text results in the graphs. In
that case more relevant images with pointers can be ranked on top and hence the relevance quality could be improved.

To achieve improvement on our initial test, we need to obtain list of relevant images to a certain query topic judged by
local regions pointed by pointers. The relevant images in this test were selected by observing the entire image, not the
ROls, and hence some ROIs may not be relevant to the query topic even though they are extracted from relevant images.
Another improvement can be made by enhancing pointer recognition performance. Achieving higher success rate is
necessary to extract more precise ROI.

5. CONCLUSION

Local image region in biomedical images may have more meaningful information and may be more relevant than other
region in an image for biomedical image retrieval. Authors frequently use pointers and symbols to highlight specific
local regions and mention them in figure captions and text discussions. Localizing those pointers can help extract
specific local regions of interest (ROIs) and using the ROIs could improve relevance quality of conventional retrieval
approaches by combining textual and image features from local regions.

In this article we present our research effort to enhance our prior work on pointer recognition and ROI extraction.
Region growing technique was applied to improve pointer segmentation and ROI extraction performance. Active Shape
Model (ASM)-based pointer recognizer was developed to handle pointers that can not be recognized by the MRF
recognizer due to some distortion in their boundary. Average 87% success rate on pointer recognition was achieved.

This article also presents preliminary retrieval test results. In order to verify effectiveness of our retrieval approach, it is
necessary to consider several important issues and appropriate evaluation methods, viz., (i) accurate ROI identification
and extraction, (ii) feature selection for image ROl comparison, (iii) database generation of ground truth ROIs (image
patches) for query topics identified from text, and (iv) scheme of utilizing local image comparison results to obtain better
retrieval relevance quality.

One of interesting future work is identifying ROIs in images that are mentioned in text such as figure captions and
discussions. Several image features such as color and shape of pointers are available by pointer recognition. More
specific features are available from text such as size (small, large), location (left, right, etc.), and plurals (single or
multiple pointers pointing to an ROI). Numerical features of pointers obtained from image (e.g., gray intensity level,
length of contour boundary, location coordinates, etc.) can be more specific by mapping related text features to them.
ROls also could be identified and extracted more accurately by utilizing the text features and image features as well.
Fixed-size ROl may provide us easy way of extracting and utilizing local image regions in our retrieval approach.
However, our ultimate goal is to extract and use variable-size ROI since it fits better to desired ROIs.
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