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Abstract 

The Predication-based Semantic Indexing (PSI) approach 
encodes both symbolic and distributional information into a 
semantic space using a permutation-based variant of 
Random Indexing. In this paper, we develop and evaluate a 
computational model of abductive reasoning based on PSI. 
Using distributional information, we identify pairs of 
concepts that are likely to be predicated about a common 
third concept, or middle term. As this occurs without the 
explicit identification of the middle term concerned, we 
refer to this process as a “logical leap”. Subsequently, we 
use further operations in the PSI space to retrieve this 
middle term and identify the predicate types involved. On 
evaluation using a set of 1000 randomly selected cue 
concepts, the model is shown to retrieve with accuracy 
concepts that can be connected to a cue concept by a middle 
term, as well as the middle term concerned, using nearest-
neighbor search in the PSI space. The utility of quantum 
logical operators as a means to identify alternative paths 
through this space is also explored.

 Introduction 

The development of alternative approaches to automated 
reasoning has been a concern of the Quantum Interactions 
(QI) community since its inception. One line of inquiry has 
explored the utility of distributional models of meaning as 
a means of simulating abduction, the generation of new 
hypotheses, in a computationally tractable manner (Bruza, 
Widdows, and Woods, 2006). Another concern has been 
the combination between symbolic and distributional 
models, and ways in which mathematical models derived 
from quantum theory might be applied to this end (Clark 
and Pulman, 2006). This paper describes recent 
developments along these lines resulting from our work 
with Predication-based Semantic Indexing (PSI) (Cohen, 
Schvaneveldt, and Rindflesch, 2009), a novel distributional 
model that encodes predications, or object-relation-object 
triplets into a vector space using a variant of the Random 
Indexing model (Kanerva, Kristofersson, and Holst, 2000). 

These predications are extracted from citations added to 
MEDLINE, the most comprehensive database of 
biomedical literature, over the past decade using the 
SemRep system (Rindflesch and Fiszman, 2003). We 
proceed by presenting the methodological roots and 
implementation of the PSI model, and follow with an 
discussion of the ways in which abduction can be 
simulated in the PSI space. Finally, we explore the use of 
quantum-inspired approaches to concept combination to 
constrain the process of abduction, with the aim to identify 
associations between concepts that are of interest for the 
purpose of biomedical knowledge discovery.

 Background 

Abduction, Similarity and Scientific Discovery 
Abductive reasoning, as defined by the philosopher and 
logician, C. S. Peirce (1839-1914) is concerned with the 
generation of new hypotheses given a set of observations. 
Inductive and deductive reasoning can be applied to 
confirming and disproving hypotheses, but abductive 
reasoning is concerned with the discovery of hypotheses as 
candidates for further testing. Abductive reasoning does 
not necessarily produce a correct hypothesis, but effective 
abductive reasoning should lead to plausible hypotheses 
worthy of further examination and testing. Several factors 
can be seen to be at work in abductive reasoning 
(Schvaneveldt and Cohen, 2010). Among these is 
establishing new connections between concepts. For 
example, consider information scientist Don Swanson's 
seminal discovery of a therapeutically useful connection 
between Raynaud's disease and fish oil (Swanson, 1986). 
These concepts had not occurred together in the literature, 
but were connected to one another by Swanson by 
identifying potential bridging concepts that did occur with 
Raynaud's disease (such as blood viscosity). Concepts 
occurring with such bridging concepts were considered as 
candidates for literature-based discovery. Bruza and his 
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colleagues note that Swanson's discovery is an example of 
abductive discovery, and argue that, given the constraints 
of the human cognitive system, deductive logic does not 
present a plausible model for reasoning of this nature 
(Bruza et al., 2006). Rather, associations between terms 
derived by a distributional model of meaning, in their case 
Hyperspace Analog to Language (Burgess et al., 1998), are 
presented as an alternative, a line of investigation we have 
also pursued in our recent work on literature-based 
discovery (Cohen, Schvaneveldt, and Widdows, 2009) . 

Specifically, we have been concerned with the ability of 
distributional models to generate indirect inferences, 
meaningful estimates of the similarity between terms that 
do not co-occur with one another in any document in the 
database. Such similarities arise because concepts may co­
occur with other terms even though they never co-occur 
with one another. In the context of Swanson's discovery, 
this would involve identifying a meaningful association 
between Raynaud and fish oil. This association would be 
drawn without the explicit identification of a bridging 
term. Having identified these associations, it would then be 
possible to employ some more cognitively and 
computationally demanding mechanism such as symbolic 
logic to further investigate the nature of the relationship 
between these terms. As proposed by Bruza and his 
colleagues, these associations serve as “primordial stimuli 
for practical inferences drawn at the symbolic level of 
cognition” (Bruza, Widdows, and Woods, 2006). The idea 
that some economical mechanism such as association 
might be useful in the identification of fruitful hypotheses 
for further exploration is appealing for both theoretical and 
practical reasons, the latter on account of the explosion in 
computational complexity that occurs when considering all 
possible relations of each potential bridging term in the 
context of scientific discovery. In addition, there is 
empirical evidence that associations drawn subconsciously 
can precede the solution of a problem (Durso, Rea, and 
Dayton, 1994). In the remainder of this paper, we will 
discuss the ways in which similarity/association captured 
by a distributional model of meaning, can support both the 
identification and validation of hypotheses drawn from the 
biomedical literature. We begin by presenting some recent 
technical developments in the field of distributional 
semantics, to lay the foundation for a discussion of 
Predication-based Semantic Indexing (PSI) (Cohen et al. 
2009), a novel distributional model we have developed in 
order to simulate aspects of abductive reasoning. 

Permutation-based Semantic Indexing 
In a previous submission to QI (Widdows and Cohen, 
2009), we discussed a recently emerged variant of the RI 
model developed by Sahlgren and his colleagues 
(Sahlgren, Holst, and Kanerva, 2008). Based on Pentti 
Kanerva's work on sparse high-dimensional representations 
(Kanerva, 2009), this model utilizes a permutation operator 
that shifts the elements of an elemental vector in order to 
encode the positional relationship between two terms in a 
sliding window. In sliding-window based variants of RI, 

each term is assigned both a sparse elemental vector, and 
a semantic vector of a pre-assigned dimensionality several 
orders of magnitude less than the number of terms in the 
model (usually on the order of 1000). Elemental vectors 
consist of mostly zero values, however a small number of 
these (usually on the order of 10) are randomly assigned as 
either +1 or -1, to generate a set of vectors with a high 
probability of being close-to-orthogonal to one another on 
account of their sparseness. For each term in the model, the 
elemental vector for every co-occurring term within a 
sliding window moved through the text is added to the 
term's semantic vector. The permutation-based model 
extends this sliding window approach, using shifting of 
elements in the elemental vector to encode the relative 
position of terms. Consider the following approximations 
of elemental vectors: 

v1: [-1, 0, 0 , 0 , 1, 0, 0, 0, 1, 0] 
v2: [0, -1, 0 , 0 , 0, 1, 0, 0, 0, 1] 

Vector v2 has been generated from vector v1 by shifting all 
of the elements of this vector one position to the right. Of 
note, these two vectors are orthogonal to one another, and 
with high-dimensional vectors it is highly probable that a 
vector permuted in this manner will be orthogonal, or 
close-to-orthogonal, to the vector from which it is derived. 
It is also possible to reverse this transformation by shifting 
the elements one position to the left to regenerate v1. 
These properties are harnessed by Sahlgren and his 
colleagues to encode the relative position of terms to one 
another, providing a computationally convenient 
alternative to Jones and Mewhort's Beagle model (Jones 
and Mewhort, 2007), which uses Plate's Holographic 
Reduced Representation (Plate, 2003) to achieve similar 
ends. Both of these methodological approaches allow for 
order-based retrieval. In the case of permutation-based 
encoding, it is possible, by reversing the permutation used 
to encode position, to extract from the resulting vector 
space a term that occurs frequently in a particular position 
with respect to another term. For example, in a 
permutation-based space derived from the Touchstone 
Applied Sciences corpus, the vector derived by shifting the 
elements of the elemental vector for the term “president” 
one position to the left produces a sparse vector that is 
strongly associated with the semantic vectors1 for the terms 
“eisenhower”, “ nixon”, “reagan” and “kennedy”. 

Predication-based Semantic Indexing (PSI) 
While the incorporation of additional information related 
to word order facilitates new types of queries, and has been 
shown to improve performance in certain evaluations 
(Sahlgren et al., 2008), the associations derived between 
terms are general in nature. However, it has been argued 
that the fundamental unit of meaning in text 

1 It is also possible to use a permuted semantic vector as a 
cue and search elemental vectors. The differences between 
these approaches are the subject of ongoing research. 



        
        

           
          

         
        

        
      

         
        

          
         

         
          

       
      

        
      

        
          

        
          

           
        
          

    
       

         
         

           
  

         
          

           
        

         
          
         

         
        
       

         
         

        

        

         
            

       
          

         
         

       
      

           
           

      
         

   
         

        
          

         
 

          
           

           
         

        
        

         
        

       
        

   

         
        

        
       

      
      

       
         

       
       
     

      
         

         
       

       
        

 
        

       

      
       

        
        

      
      

comprehension is not an individual term, but an object-
relation-object triplet, or proposition. This unit of meaning 
is also termed a predication in logic, and is considered to 
be the atomic unit of meaning in memory in cognitive 
theories of text comprehension (Kintsch, 1998). While not 
primarily motivated by cognitive research, the desire to 
obtain a more constrained measure of semantic relatedness 
than that provided by cooccurrence-based distributional 
models has led to the development of wordspace models 
derived from grammatical relations produced by a parser 
(Pado and Lapata, 2007). However, these models do not 
encode the type of relationship that exists between terms, 
which is desirable for the purpose of mediating scientific 
discovery as it provides a way of constraining search and 
simulating cognitive processes involving specific relations. 

In our recent work (Cohen, Schvaneveldt and 
Rindflesch, 2009) we adapt the permutation-based 
approach developed by Sahlgren et al to encode object-
relation-object triplets, or predications, into a reduced-
dimensional vector space. These triplets are derived from 
all of the titles and abstracts added to MEDLINE, the 
largest existing repository of biomedical citation data, over 
the past decade by the SemRep system (see below). To 
achieve this end, we assign a sparse elemental vector and a 
semantic vector to each unique concept extracted by 
SemRep, and a sequential number to a set of predicate 
types SemRep recognizes. For example, the predicates 
“TREATS”, “CAUSES” and “ISA” are assigned the 
numbers 38, 7, and 22 respectively. Rather than use 
positional shifting to encode the relative position of terms, 
we use positional shifts to encode the type of predicate that 
links two concepts. Consequently each time the predication 
“sherry ISA wine” occurs in the set of predications 
extracted by SemRep, we shift the elemental vector for the 
concept “wine” 22 positions to the right, to signify an ISA 
relationship. We then add this permuted elemental vector 
to the semantic vector for “sherry”. Conversely, we shift 
the elemental vector for “sherry” 22 positions to the left, 
and add this permuted elemental vector to the semantic 
vector for “wine”. Encoding predicate type in this manner 
facilitates a form of predication-based retrieval that is 
analogous to the order-based retrieval employed by 
Sahlrgren and his colleagues. For example, permuting the 
elemental vector for “wine” 22 positions to the right 
produces a sparse vector with the nearest neighboring 
semantic vectors and association strengths in Table 1. 

Table 1. Results of the predication-based queries “? 
ISA wine” (left) and “? ISA food” (right). 
? ISA wine ? ISA food 

martini 0.73 pastry 0.72 

sherry 0.72 rusk 0.72 

dry sherry 0.72 dates - food 0.72 

fortified wine 0.67 whole grain barley 0.72 

wine cooler 0.52 hominy 0.72 

Further details of the implementation of this model, and 
examples of the sorts of queries it enables can be found in 
(Cohen, Schvaneveldt and Rindflesch 2009). For the 
purposes of this paper, we have modified the model in 
order to facilitate the recognition of terms that are 
meaningfully connected by a bridging term. In PSI, each 
unique predicate-concept pair is assigned a unique 
(permuted) elemental vector. Consequently, the semantic 
vectors for any two concepts should only be similar to one 
another if they occur in the same predication type with the 
same bridging concept (discounting unintended random 
overlap). This constraint is too tight to support scientific 
discovery, or model abduction. Consequently, in the 
current iteration of PSI in addition to adding the predicate-
appropriate permutation of an elemental vector to the 
semantic vector of the other concept in a predication, we 
also add the unpermuted elemental vector for this concept. 
The procedure to encode the predication “sherry ISA wine” 
would then be as follows. First, add the elemental vector 
for wine to the semantic vector for sherry. Next, shift the 
elemental vector for wine right 22 positions and add this to 
the semantic vector for sherry. The converse would be 
performed as described previously, but both the permuted 
and unpermuted elemental vectors for sherry would be 
added to the semantic vector for wine. Encoding of 
predicate-specific and general relatedness in this manner is 
analogous to the encoding of “order-based” and “content­
based” relatedness in approaches that capture the relative 
position of terms (Sahlgren, Holst and Kanerva 2008). 

Semrep 
The predications encoded by the PSI model are derived 
from the biomedical literature by the SemRep system. 
SemRep is SemRep is a symbolic natural language 
processing system that identifies semantic predications in 
biomedical text. For example, SemRep extracts 
“Acetylcholine STIMULATES Nitric Oxide” from the 
sentence In humans, ACh evoked a dose-dependent 
increase of NO levels in exhaled air. SemRep is 
linguistically based and intensively depends on structured 
biomedical domain knowledge in the Unified Medical 
Language System (UMLS SPECIALIST Lexicon, 
Metathesaurus, Semantic Network (Bodenreider 2004)). At 
the core of SemRep processing is a partial syntactic 
analysis in which simple noun phrases are enhanced with 
Metathesaurus concepts. Rules first link syntactic elements 
(such as verbs and nominalizations) to ontological 
predicates in the Semantic Network and then find 
syntactically allowable noun phrases to serve as arguments. 
A metarule relies on semantic classes associated with 
Metathesaurus concepts to ensure that constraints enforced 
by the Semantic Network are satisfied. 

SemRep provides underspecified interpretation for a 
range of syntactic structures rather than detailed 
representation for a limited number of phenomena. Thirty 
core predications in clinical medicine, genetic etiology of 
disease, pharmacogenomics, and molecular biology are 
retrieved. Quantification, tense and modality, and 



      
        
      

       
        

         
         
        
       

          
         

       
       

   
          

            
       

           
      

         

       
 

         
        

        
         

 
     

        
        

         
        

 

         
       

       
        

        
        

         
       

      
        

        
         
      

          
       

          

          
           

        
        

         
           

        
       

          
         

        
         

        
       

    
      

         

       
         

        
        

          
          

        
       

          
          

          
        

           
           

         
         

         
         
        

          
        

         
         

predicates taking predicational arguments are not 
addressed. The application has been used to extract 
23,751,028 predication tokens from 6,964,326 MEDLINE 
citations (with dates between 01/10/1999 and 03/31/2010). 
Several evaluations of SemRep are reported in the 
literature. For example, in Ahlers et al. (2004) .73 
precision and .55 recall (.63 f-score) resulted from a 
reference standard of 850 predications in 300 sentences 
randomly selected from MEDLINE citations. Kilicoglu et 
al. (2010) report .75 precision and .64 recall (.69 f-score) 
based on 569 predications annotated in 300 sentences from 
239 MEDLINE citations. Consequently, the set of 
predications extracted by SemRep present a considerable 
resource for biomedical knowledge discovery.

 Abduction in PSI-space 

For the reasons described previously, the stepwise traversal 
of all concepts in predications with each middle term that 
occurs in a predicate with a cue concept is not plausible as 
a computational model of abduction. Consequently, we 
have developed a model in which the search for a middle 
term is guided by an initial “logical leap” from cue concept 
to target concept. 

Our model of abduction consists of the following three 
stages: 

1. Identification of the nearest neighboring semantic 
vector to the semantic vector of a concept of interest. 
2. Identification of a third “middle term” between the 
cue concept and the nearest neighbor. This is 
accomplished by taking the normalized vector sum (or 
vector average) of the semantic vectors for these two 
concepts, and finding the most similar elemental vector. 
3. Decoding of the predicates that link the three concepts 
identified. For each pair of concepts, this is 
accomplished by retrieving the elemental vector for one, 
and the semantic vector for the other, and shifting one of 
these by the number corresponding to each encoded 
predication, to identify the predicate that fits best. 

Such "logical leaps" may correspond to an intuitive sense 
of association in psychological terms. The underlying 
mechanism may involve associations arising from related 
patterns of associated neighbors rather than any direct 
association. These indirect associations are likely to be 
weaker than direct associations so detecting and reflecting 
on them may not occur without some effort directed 
toward searching for potential hypotheses, solutions, or 
discoveries. Psychological research has provided evidence 
that such associations occur in learning and memory 
experiments (Dougher, et al., 1994, 2007; Sidman, 2000). 
Once detected, indirect associations could be pursued in a 
more conscious/symbolic way to identify common 
neighbors or middle terms on the way to assessing the 
value of the indirect associations. Our computational 
methods can be seen as ways to simulate the generation 

and evaluation of such potential discoveries. 
In order to evaluate the extent to which this approach 

can be used to both identify and characterize the nature of 
meaningful associations, we select at random 1000 UMLS 
concepts extracted by SemRep from MEDLINE over the 
past decade. We include only concepts that occur between 
10 and 50,000 times in this dataset, to select for concepts 
that have sufficient data points to generate meaningful 
associations and eliminate concepts that carry little 
information content from the test set. We generate a 500 
dimensional PSI space derived from all of the predications 
extracted by SemRep from citations added to MEDLINE 
over the past decade (n = 22,669.964), excluding negations 
(x does_not_treat y). We also exclude any predication 
involving the predicate “PROCESS_OF”, as these are 
highly prevalent but tend to be uninformative (for example, 
“tuberculosis PROCESS_OF patients”). For the same 
reason, we exclude any concepts that occur more than 
100,000 times in the database. 

We then follow the procedure described previously, 
taking the nearest neighboring semantic vector of each cue 
concept, generating the vector average of these two 
vectors, searching for the nearest elemental vector and 
using the decoding process to find the predication that best 
links each pair of concepts (cue and middle term, and 
target and middle term). We then evaluate these 
predications against the original database, to determine 
whether these are accurate. Of the 1000 cue concepts it 
was possible to evaluate 999, as one concept occurred in 
predications that were not included in the model (such as 
PROCESS_OF) only. Of these 999 concepts, a legitimate 
target concept and middle term were identified for 962 of 
them, which can be considered as a precision of 0.963 if 
retrieval of a set of accurate relationships from the 
database is taken as a gold standard. Accurately retrieved 
results tended to have a higher cosine association between 
the middle term and the vector average constructed from 
the cue concept and its nearest neighboring semantic 
vector, as illustrated in Figure 1, which gives shows the 
number of accurate and inaccurate results at different 
association strengths. 

Figure 1: Cosine association and accuracy 

Table 2 shows the five most strongly associated middle 
terms across this test set, together with the predicates 



   
       

           
         

        
       

        
         

       
         

        
         

         
 

          

 
 

 

 
  

 

 
  

 
 

 
 

          
           

       
         

           
          

        
      

       
       
        

        
        

          
         

       
      

       

        
       

        

        
         

          
           

          
   

         
        

         
      

           
         

        
         

            
         

           
        

         
          

       
         

         
        

        
       

 

       
          

          
        

           
        

          
        

         
            

       
 

         
  

         
          

          
          

        
         

       

linking them to the cue and target concepts. In the first 
example, an indirect connection between two molecules 
has been identified on the basis that they both interact with 
a third molecule. No predication linking smad proteins to 
latent tgf-beta binding protein (Ltbp4) occurs in the 
database. However, a Pubmed search (05/08/2010) for 
'smad "latent tgf-beta binding protein"' yields four results. 
One of these asserts that “a 12-amino-acid deletion in 
Ltbp4 was associated with increased proteolysis, SMAD 
signaling, and fibrosis. These data identify Ltbp4 as a 
target gene to regulate TGF-beta signaling and modify 
outcomes in muscular dystrophy.” (Heydeman et al 2009), 
which provides support for the inference drawn by the 
system that these concepts are meaningfully related. 

Table 2: “logical leaps”. Cue concepts are in bold, and 
nearest neighbors are underlined. 
Cosine	­Cue, neighbor, middle term and predications 

0.81	­ smad_proteins INTERACTS_WITH 
transforming_growth_factor_beta ; latent_tgf-
beta_binding_protein INTERACTS_WITH 
transforming_growth_factor_beta 

0.81	­ retinoyl_beta-glucuronide COEXISTS_WITH
­
tretinoin ; cyp26a1 INTERACTS_WITH
­
tretinoin
­

0.80	­ zenapax true ISA daclizumab ; daclizumab 
TREATS chronic_orbital_myositis; 

0.78	­ organophosphorus_compounds INHIBITS 
acetylcholinesterase ; crotoxyphos INHIBITS 
acetylcholinesterase 

0.78	­ rattus LOCATION_OF 
biotinylated_dextran_amine; 
rattus LOCATION_OF 1-
(methacryloyloxymethyl)propyl hydrogen 
maleate 

In the second example, a connection is drawn between two 
molecules that do not appear to be discussed together in 
the literature. Retinoyl beta-glucoronide (RAG) has been 
shown to have similar biological effects to tretinoin (a 
form of Vitamin A) but with fewer toxic effects (Barua 
and Sidell 2004). While it is well established that the 
protein cyp26A1 acts on tretinoin, a Pubmed search 
(05/08/2010) for 'cyp26A1 retinoyl beta-glucuronide' 
produces no results. In the third case, the system has 
recovered sufficient information to produce a logically 
consistent answer to the question “does Zenapax treat 
Chronic Orbital Myositis”, despite no predication in the 
database existing between these two concepts. Zenapax is 
the trade name of Daclizumab, a therapeutic agent that has 
been used in the treatment of auto-immune diseases such 
as orbital myositis. The fourth example has linked both the 
pesticide “crotoxyphos” and the class of 
“organophosphorus” compounds it belongs to the their 

inhibitory effect on acetylcholinesterase, and in the fifth 
molecules commonly employed in the laboratory are 
linked through their application to the laboratory rat, 
“rattus” Norvegicus. 

These examples illustrate the ability of vectors encoded 
using PSI to capture similarity between concepts linked by 
a middle term without the need to explicitly retrieve this 
term. However, at times it may be of greater interest to 
explore some subset of this space, so as to retrieve 
concepts linked by specific predicate types. One goal of 
this research is to develop computational tools with which 
scientists can explore the conceptual territory of their 
domain of interest. Just as users of a vector-based 
information retrieval system require methods through 
which to direct their search for documents, there is a need 
for the development of methods through which a scientist 
might further refine the search for new ideas. 

Quantum Operators in PSI Space 

One potential solution to the problem of constraining 
search is suggested by the analogy drawn between the 
many senses of a term that may be captured by a term 
vector in geometric models of meaning, and the many 
potential states of a particle that are represented by a state 
vector in quantum mechanics (Widdows and Peters, 2003). 
With respect to PSI, the semantic vector representing a 
concept can be viewed as a mixture of elemental vectors 
representing each predicate-concept pair and concept it 
occurs with. This analogy supports the application of the 
operators of quantum logic, as described by Birkhoff and 
von Neumann (Birkhoff and Von Neumann, 1936), to 
semantic vectors, resulting in the definition of semantic 
space operators effecting quantum logical negation and 
disjunction in semantic space (Widdows and Peters, 2003). 

Negation 
Negation in semantic space involves eliminating an 
undesired sense of a term by subtracting that component of 
a term vector that is shared with a candidate term 
representing the undesired sense. For example, the term 
“pop” can be used to eliminate the musical sense of the 
term “rock” (Widdows, 2004). This is accomplished by 
projecting the vector for “rock” onto the vector for “pop” 
(to identify the shared component), and subtracting this 
projection from the vector for “rock”. The resulting vector 
will be orthogonal to the vector for “pop”, and as such will 
not be strongly associated with vectors representing music-
related concepts that are similar to the vector for “pop”, but 
will retain similarity to terms such as “limestone” that 
represent the geological sense of “rock”. 

A similar approach can be applied to the semantic 
vectors generated using PSI, in order to direct the search 
for related concepts away from a nearest neighbor that has 
been identified. As is the case with terms, one would 
anticipate this approach would eliminate not only the 
specific concept concerned, but also a set of related 
concepts. Specifically, we anticipate that this approach 



         
         

           
           
         

          
         

        
         

       
       

        
       
       
        

       

  

            
            
         

         
         

      
          

       
         

        

           
         

         
         

          
          

       
      
           

       
        

         
          

         
 

           
       

         
         

  
           
           

         
            

        
         

 

         
         
        

      
          

          
         

          
         
           

        
          

      
        

          
        

 
         

        
          

          
      

   
     

       
        

       
     

         
       
          

        
        

        
         

      
        

            

 

would identify a new path involving a different middle 
term (or group of terms), without the explicit identification 
of the middle term to be avoided beforehand.   

In order to evaluate the extent to which negation can be 
used to identify new pathways in PSI space, we take the 
same set of 1000 randomly selected concepts as cue 
concepts. For each cue concept, we retrieve the vector for 
the concept (cue_concept), and the vector for the Nearest 
neighbor previously retrieved (nn_previous). We then use 
negation to extract the component of cue_concept that is 
orthogonal to nn_previous, and find the nearest 
neighboring semantic vector to this combined vector 
(nn_current). Finally, we take the vector average of 
cue_concept and nn_current, render this orthogonal to 
nn_previous using negation, and find the nearest 
neighboring elemental vector to this combined vector. We 
then decode the predicates concerned using the 
permutation operator as described previously. 

Table 3: Negation to identify new paths (n=997) 
% new % new middle % accurate 
neighbor term predications 

Quantum 100 94.1 92.3 

Boolean  n/a 27.7 95.9 

The results of this experiment are shown in Table 3. It was 
possible to obtain results for 997 of the set of 1000. One 
concept was included for the same reason as previously, 
and another two were excluded as the negation operator 
produced a zero vector, as these concepts occurred in 
predications exclusively with a single predicate-concept 
pair. As anticipated, in every case negation eliminated the 
concept represented by nn_previous. However, this result 
could have been obtained using boolean negation, which is 
the equivalent of simply by selecting the next-nearest 
neighbor, as we have done for comparison purposes. 

Of greater interest is the extent to which the use of 
quantum negation eliminates the path across a middle term 
that was used to identify a previous neighbor. This 
occurred after quantum negation in 94.1% of cases, as 
oppose to 27.7% in the case of boolean negation. A 
concern with the use of this method is that the 
orthogonalization process may introduce further errors as 
concept vectors are distorted beyond recognition. 
However, as shown in Table 3, this process led to only 
slightly more erroneous predications than were obtained 
with boolean negation. Interestingly, the set of errors 
produced in the original experiment has very few elements 
in common with the set produced after quantum negation – 
erroneous predications were produced for only four of the 
same cue terms. 

Disjunction 
We note that it is possible to select for particular predicate 
types by reversing the permutation operator that 
corresponds to the predicate of interest. For example, the 
predication A TREATS B is encoded by shifting the 

elemental vector for A 38 steps to the right, and adding this 
to the semantic vector for B. Applying the reverse shift to 
the semantic vector for B, to produce B^ should produce a 
vector that retains some remnant of the original elemental 
vector for A. As both B and B^ should contain remnants 
of this unpermuted elemental vector, we can isolate 
concepts that are encoded with this predicate using the 
following procedure, which we will term dissection: 

for each dimension i:

 if sign B[i] == sign B^[i]: 


BB^[i] = min(absolute_val(B[i]),

 absolute_val(B^[i]))
�

else:

 new_vector[i] = 0
�

Admittedly this is something of a blunt instrument with 
which to attempt to dissect out remnants of elemental 
vectors of interest. However, robustness is one advantage 
of hyper-dimensional representations (Kanerva, 2009), and 
as illustrated by the results below this method is somewhat 
successful as a way to isolate desired senses. Once vectors 
representing the desired sense of a concept have been 
isolated using this procedure, it is possible to construct a 
subspace with these vectors as bases. This subspace then 
represents the set {sense1 OR sense2 OR … sense n} and 
can be modeled using quantum disjunction, after ensuring 
the bases of the subspace are orthogonal to one another 
using the Gram-Schmidt procedure. The association 
strength between each semantic vector and this subspace 
can then be measured by projecting a semantic vector into 
the subspace and measuring the cosine between the 
original semantic vector and this projection. 

To demonstrate the effect of disjunction in PSI space, 
we construct two subspaces for each concept considered. 
The first, a biologically oriented subspace, is built from a 
set of basis vectors that attempt to isolate the following 
predicates using the procedure described above: 
AFFECTS, ASSOCIATED_WITH, AUGMENTS, 
CAUSES, DISRUPTS, INHIBITS, INTERACTS WITH, 
LOCATION OF, STIMULATES and PART OF. The 
second, a clinically oriented subspace, attempts to isolate 
the following predicates with the same procedure: 
DIAGNOSES, ISA, TREATS, COEXISTS WITH, 
EVALUATION OF, USES and MANIFESTATION OF. 

Table 4 illustrates the effect of quantum disjunction on 
“logical leaps” in PSI space. A biologically-oriented 
subspace is generated for each cue concept, and search is 
conducted by projecting each semantic vector into this 
subspace, and measuring the cosine between the original 
semantic vector and its projection. Subsequently, the same 
procedure is followed, but vector are projected into a 
clinically-oriented subspace constructed for each cue 
concept. Any middle term retrieved with an association 
strength of more than 0.251 to the vector average of the cue 
concept and nearest neighbor is shown in the table. 

1The strongest between any pair of 1,000 elemental vectors 
(d=500) (Schvaneveldt, Cohen, and Whitfield, in press) 



        

  

 
  

 

 
  

  

 
  

         
          

          
           

          
          

 
        
          
       

          
       

          
        

            
       
       

         
         

        
        

         
         

         
        

       
        

          
      

      
         

          
        

         
        

       
         

       
       

          
        

        
       
         

            
     

           
       

          
          

         

          
        
      

        
          

          
         

       
          

       
   

          
        

          
        

          
          

       
       

 
 

 
 

 

 
  

 
 

 

          
      

Table 4: Dissection and Disjunction. PD = Parkinson 
Disease, AD = Alzheimer's Disease 
Cue 
concept 

Nearest neighbor Middle term(s), 
predication(s) 

PD, 
biological 

0.342 multiple 
system atrophy 

0.431 neuro-degenerative 
disorders (ISA) 
0.278 alpha-synuclein 
(ASSOCIATED_WITH) 

PD, 
clinical 

0.58 huntington 
disease 

0.606 neuro-degenerative 
disorders (ISA) 

AD, 
biological 

0.499 iliac artery 
ectasia 

0.659 app 
(ASSOCIATED_WITH) 

AD, 
clinical 

0.472 dementia, 
vascular 

0.54 dementia 
(ISA) 

The nearest neighbor is influenced by the choice of 
subspace. While it should be possible to also influence the 
choice of middle term by projecting the vector average of 
the cue concept and nearest neighbor into one or the other 
subspace prior to the middle term search, we have not 
implemented this here. Consequently, as is the case in the 
first example, a “clinically” linked middle term may still be 
retrieved using the “biological” nearest neighbor, but this 
neighbor is also linked to the cue term by an above-
threshold connection through a “biological” middle term. 
While further evaluation with a larger test set is required, 
these results suggest the combination between dissection 
and disjunction might form the basis for a selective search 
strategy. In both cases, the biologically oriented subspace 
is close to a neighbor linked through a middle term via a 
predicate, ASSOCIATED WITH, from the biological set. 
Likewise, the clinically-oriented subspaces are close to 
concepts linked appropriately through a middle term via a 
predicate from the clinical set, ISA. The interpretation of 
the biological results is interesting also. Multiple System 
Atrophy is a neurodegenerative disorder that shares several 
symptoms with PD, and like PD involves the accumulation 
of abnormal protein aggregates in nerve cells. These are 
called Lewy Bodies, and Alpha-synuclein is one of their 
major components (Tong et al., 2010). While the 
association between AD and the Amyloid Precursor 
Protein (app) is well established, the predication Iliac 
Artery Ectasia (abnormal dilatation of a major artery in the 
pelvis) ASSOCIATED_WITH AD was extracted by 
SemRep from the following sentence:“Significant CIA 
ectasia or small aneurysm is often associated with AAA.” 
(Kritpracha et al., 2002). The acronym AAA can refer to 
both Amyloid of Aging and Alzheimer's and Abdominal 
Aortic Aneurysm, and this error most likely arose on 
account of the concept recognition component of SemRep 
selecting the contextually inappropriate alternative. 

Combining Negation and Disjunction 
While these experiments do suggest that combining 
dissection and disjunction may be an effective way to 

constrain search according to particular predicates, the 
disjunction operator has the computational disadvantage of 
requiring each candidate vector in a search to be compared 
with each component vector of the subspace. This 
disadvantage can be overcome by the combination of 
vector negation and disjunction (Widdows and Peters, 
2003). When these operators are combined, a cue vector 
can is made orthogonal to all of the vectors in a disjoined 
subspace. Consequently, for biologically-oriented searches 
we now generate a vector for the cue concept that is 
orthogonal to the clinically oriented subspace, and vice-
versa. While not included here, we note that the results 
obtained with this approach were similar to those shown in 
Table 4. As search with this approach only requires vector-
to-vector comparison, it presents an appealing alternative.  

Conclusion 

In this paper, we develop and evaluate a model of 
automated reasoning based on “logical leaps”, in which 
meaningful associations between concepts learned from 
distributional statistics are used to identify candidates for 
connection via a third concept, and a symbolic approach is 
used to identify the nature of the relations involved. On 
account of its economy, this approach is appealing for 
theoretical and practical reasons. Furthermore, the vector 
spaces used for these experiments can be retained in RAM 
to facilitate rapid, dynamic, interactive exploration of 
biomedical concepts to support discovery. Vector operators 
derived from quantum logic show promise as a means to 
direct such searches away from previously trodden paths, 
and exploratory work suggests there may be ways to adapt 
these operators to guide search toward conceptual territory 
of interest. Of particular interest for future work is the 
evaluation of the extent to which these operators might be 
used to model “discovery patterns” (Hristovski, Friedman 
and Rindflesch 2008), combinations of predications that 
have been shown useful for literature-based discovery. 
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