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ABSTRACT

In this paper we present an OCR validation module, implemented for the System for Preservation of Electronic Resources
(SPER) developed at the U.S. National Library of Medicine.1 The module detects and corrects suspicious words in the OCR
output of scanned textual documents through a procedure of deriving partial formats for each suspicious word, retrieving
candidate words by partial-match search from lexicons, and comparing the joint probabilities of N-gram and OCR edit
transformation corresponding to the candidates. The partial format derivation, based on OCR error analysis, efficiently
and accurately generates candidate words from lexicons represented by ternary search trees. In our test case comprising a
historic medico-legal document collection, this OCR validation module yielded the correct words with 87% accuracy and
reduced the overall OCR word errors by around 60%.

1 Introduction

Optical Character Recognition (OCR) plays an important role in digital preservation systems to transform printed material
into digital format. However, for historical documents, due to somewhat poor quality of the original pages, the accuracy
of the OCR output is not always reliable. Errors in OCR words lead to subsequent performance degradation in index-
ing, archiving and retrieving the scanned documents in a digital preservation system.2 In the System for Preservation
of Electronic Resources (SPER), which has been developed at the U. S. National Library of Medicine for the long term
preservation of biomedical resources,1, 3 errors in OCR output poses problems, since one of the main features of SPER is
to automatically identify and extract descriptive metadata from the textual content of the documents to be preserved. In
SPER, an OCR console module, based on the FineReader OCR Engine, is used to generate features for each segmented
character, which are then used for document layout recognition and descriptive metadata extraction. In contrast to the
highly successful layout recognition based on Support Vector Machine and Hidden Markov Model, metadata extraction
using string matching techniques was less successful - over 50% of errors being caused by the erroneous OCR output.
This highlighted the need for an automated OCR word validation and correction tool as an alternative to costly manual
inspection and editing.

Over the past 20 years many OCR post-processing systems have been developed;4 however, they were not found to
be satisfactory for our purpose. Most of these systems either combine a character confusion matrix with language models
under a probabilistic model,5–7 or use approximate string matching techniques to look up the words from lexicons,8 and are
quite successful in choosing the optimal replacement word from a candidate set. However, to our knowledge none of these
systems have used the confidence features or any OCR error analysis to generate the candidates efficiently. Consequently,
these systems exhibit either slow speed due to a large candidate set, or low accuracy by using small vocabularies. In earlier
work by ISRI,9 the authors proposed an interactive OCR correction model that generates the candidate words directly from
a confusion list and so is less dependent on the lexicons. But their system is semi-automatic in nature, requiring the user to
select the segmentation positions and choose the replacement from the candidate list.

Most commercial OCR software systems provide a set of features for users to tune the OCR engine for their specific
applications; but in our experience the underlying logic and use of these features are unclear. For example, it is very
difficult to use the confidence features of a recognized character in the FineReader OCR engine output since the statistics
of these values are unpredictable due to different qualities of documents. Similarly, the use of dictionary option under
which user is allowed to install domain specific lexicons to improve the OCR quality simply gives a list of possible correct
words chosen from these lexicons for each suspicious word, as determined by some internal metric. There is no automatic
word validation.
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To alleviate the above difficulties, we have developed an OCR word validation module to simultaneously verify and
correct the words marked by the OCR engine as suspect. First, it generates a group of suspicious words according to the
binary confidence feature at the OCR character level. Next, for each such suspicious word, it derives the partial formats that
contain wild cards, and then matches them approximately to the lexicon words organized by a Ternary Search Tree. The
set of matched words constitute the candidates for replacement. To choose an optimal replacement from the candidates,
we built an N-gram language model to compute the probability of the OCR word string of length 5 that is centered with
the suspicious word. In our implementation, we do not consider general segmentation errors but cover the situations when
one token is erroneously converted into another, or two tokens are collapsed into one, which are the most frequent errors
in our application.

This paper is organized as follows: we present the motivation and the framework of our OCR validation module in
Section 1; formulate the partial word format derivation and N-gram model in Section 2; describe the training and testing
methods in Section 3; discuss the system performance in Section 4; and finally, present the conclusions in Section 5.

2 Method

2.1 Generation of Suspicious Words

The FineReader OCR Engine (Ver. 8.1) used by SPER assigns a confidence value to each recognized character by a binary
feature isSuspicious. In addition, OCR words that are not found in the built-in dictionaries may also be indicated by a
binary feature isFromDict. So our target suspicious words are the OCR words that contain characters with positive values
of isSuspicious, and that cannot be found from the built-in dictionary, indicated by negative values of isFromDict.

2.2 Word Partial Format Derivation

A partial format is defined as a word token that contains one or more wild cards “.”, where each wild card represents an
unknown character. In our application we define word partial format derivation as a process to estimate the partial formats
of an OCR word by a combination of the positions of its low confidence characters and certain character transformation
assumptions given below. Then we use the estimated partial formats to generate the candidate words by approximate string
matching.

Errors in a word produced by the OCR may be seen as transformation errors in one or more characters. In our appli-
cation we consider three kinds of erroneous character transformation: a character is transformed into another character, a
character is transformed into two characters, and two characters are transformed into a single character. Considering the
different positions of low confidence characters (marked in the OCR) in the second case, we have five kinds of erroneous
transformations as demonstrated in the examples in Table 1, where c in the left column is the correct character, e is the
error character, and the low confidence character is marked by a “*”.

Table 1. OCR Conversion Assumption
Character Conversions Examples

(1) c → e∗ “CHARGE”→“CHABGE”
(2) c → e∗1e2 “information”→“inforrnation”
(3) c → e1e

∗
2 “Adulteration”→“Aclulteration”

(4) c → e∗1e
∗
2 “Sulphate”→“Siilphate”

(5) c1c2 → e∗ “libellant”→“libeUant”

Based on the above assumptions, the process of partial format derivation is to estimate the partial formats by itera-
tively replacing the low confidence characters and their neighbors with the appropriate number of wild cards. Different
replacements result from different transformation rules shown in Table 1. So a suspicious word with t low confidence
characters could generate up to 4t partial formats, the maximum value occurring when all of the low confidence characters
appear inside the word and none of them either is next to another low confidence character or share the same neighbor
with another low confidence character, i. e., when all of the five rules except for the rule (4) can be applied to each of the
t low confidence characters. For example, the suspicious word “AgricuHure” with two low confidence characters “i” and
“H”will generate the following 42 = 16 partial formats:
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“Agr.cu.ure”, “Agr.c.ure”, “Agr.cu.re”, “Agr.cu..ure”, “Ag.cu.ure”, “Ag.c.ure”, “Ag.cu.re”, “Ag.cu..ure”, “Agr.u.ure”, “Agr..ure”,
“Agr.u.re”, “Agr.u..ure”, “Agr..cu.ure”, “Agr..c.ure”, “Agr..cu.re”, “Agr..cu..ure”

We can see that among these the partial format “Agr.cu..ure” can be matched to the word “Agriculture”.

2.3 Approximate String Matching by Ternary Search Tree

We represent our domain-specific lexicons by Ternary Search Trees. The Ternary Search Tree offers a fast algorithm to
sort and search strings, which are more efficient than hashing and other commonly used search methods. Each node of
the Ternary Search Tree contains a split character and three pointers to its low, high and equal child nodes (based on the
split character). When sorting or searching a query word, the characters of the word are iteratively compared with the split
characters of nodes in the search path to select the next search direction from the three branches; in the case of sorting: new
nodes will be inserted at the end of the search path; in the case of searching: a boolean value “true” will be returned when
the search process ends in comparing the last character of the word and the split character of a leaf node, and finds them
be equal, otherwise “false” will be returned. Appropriate adjustment of the splitting rules can yield more advanced search
methods, such as partial-match search (where the query word is allowed to contain“don’t care characters”), and nearest
search (where the matched words are within a specified Hamming distance from the query word). Details of these search
algorithms appear in literature.10

2.4 Probability of Matching by Edit Transformation

The edit distance between two strings is defined as the minimum number of edit operations to transform a test string to
a reference string by replacement, insertion or deletion of characters. In the original algorithm11 the cost functions of
insertion and deletion are set to 1; the cost of replacement is 0 when one character is replaced by itself, and 1 otherwise.
The edit distance can be computed by Viterbi algorithm, discussed below.

If we substitute the original cost functions of the three edit operations with their probability functions, we can model
the probability that a true word string w is transformed into an OCR word string o by the dynamic programming process:

Pr(o(1,j)|w(1,i)) = max

⎧
⎨

⎩

Pr(o(1,j−1)|w(1,i)) ∗ PI(oj)
Pr(o(1,j)|w(1,i−1)) ∗ PD(wi)
Pr(o(1,j−1)|w(1,i−1)) ∗ PR(wi, oj)

(1)

where PI(oj) is the probability that the oj is inserted; PD(wi) is the probability that wi is deleted; and PR(wi, oj) is the
probability that wi is replaced by oj .

In7 PI(x) is simply taken as the ratio of inserting the character x over the number of appearances of x in the OCR
word set. This estimate will not be accurate unless we know the OCR word and the true word simultaneously. In5 this
probability is estimated by the ratios of inserting x over the the total number of letters in the training set without considering
any context information. In our model, however, we estimate the probability of insertion, deletion and replacement based
on the current character in the path of Viterbi decoding, which, in our experience, is more accurate.

PI(x) = PI(x|y) = num(ins(x)|y)
num(y)

PD(x) = num(del(x))
num(x)

PR(x, y) = num(rep(x,y))
num(x)

(2)

In Equation 2, num(x) is defined as the number of operations applied in transforming true words to the OCR words in a
ground truth set when the current character is x in the path of Viterbi decoding. Note that num(x) is different from the
total number of appearances of x in the ground truth set. And num(ins(x)|y) is the number of insertions of x when the
current character is y.

2.5 N-gram Model Formulation

In order to use the context information around the suspicious word, we choose the OCR word from the candidates such
that the joint probability of true word string W and OCR word string O is maximum, i.e.

wo = arg
w∈C

max Pr(W,O) (3)
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Assuming that the appearance of a specific word solely depends on its previous bi-gram words, we can model the proba-
bility Pr(W,O) as:

Pr(W,O) =
∏

Pr(wi|wi−2, wi−1) ∗ Pr(oi|wi) (4)

Note that in this equation the indexes of w and o refer to their locations in W and O respectively.

Finally, we choose the optimum replacement word by making the assumption that suspicious words occur in isolation;
that is, the OCR words around the suspicious word are true words. This is based upon the following observations pertaining
to our test cases (discussed in Section 4.1).

(a) For only about 10% suspicious words, the neighbor or next nearest neighbor is also a suspicious word.

(b) In over 70% cases, the neighboring suspicious words do not need to be replaced.

Making the above assumption, and ignoring the items not related with suspicious word ws, we use the following
equation to choose the optimum replacement word wo:

wo = arg
w∈C

max P̃ r(W,O|ws = w) (5)

P̃ r(W,O) =
s+2∑

i=s

log Pr(wi|wi−1, wi−2) + log Pr(os|ws) (6)

In the above equations we simply use “ws = w” to denote the assumption that the true form of the OCR word ws is w.
Note that here we ignore the general segmentation errors, (which require the construction of more complicated models as
in12), since the associated cost factor is very high and so treat them them differently as explained in Section 3.3 (a).

Similarly we estimate the N-gram probability when the suspicious word is correct but unknown for the collected
lexicons by the following equation:

P̃ r(W,O|ws = ws) = P̃ r(W,O|ws = “unknown”)
+log Pr(ws is not in the vocabulary)

(7)

In Equation 7 we substitute ws into the probability matching function and substitute “unknown” in the tri-gram model. The
resulting value is corrected by the probability that ws is not in the vocabulary, which we estimate by Lidstone’s Law:

Pr(ws) =
λ

N + Bλ
(8)

where N is the size of the data set and B is the size of the lexicon. We set λ equal to 0.5 in our implementation.

3 Implementation

3.1 Preparing the Data Set and Lexicons

Currently SPER has been applied successfully to extract descriptive metadata from medico-legal historical documents from
the Food and Drug Administration, which record notices of judgment (NJ) of court cases for misbranding and adulteration
of foods, drugs and devices, and cosmetics.1 From this collection of over 40,000 NJ pages, we choose 14,150 processed
pages to train and test the OCR validation module.

The success of the OCR correction module depends heavily on the use of appropriate lexicons.8 The lexicons we
collected from online resources for processing NJ text include the general English lexicon, personal names, U. S. place
names and NLM’s Specialist Lexicon. These are listed in Table 2.

The last entry in Table 2 is a domain-specific lexicon, which we created from the FDA documents in a semi-automatic
fashion; (a) First we OCR the NJ pages in the data set and generate the OCR word set C; (b) then we look up the words in C
in the known lexicons and record their frequencies; (c) we manually validate the unknown words with high frequency (set
as 50 in our implementation); (d) finally, we place the remaining unknown words into the categories of“digit”, “unknown”
and “others” by regular expression checking. Our final FDA lexicon contains about 33,000 known words.
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Table 2. Collected Lexicons.
Lexicons Sources Constitution
General English CMU AI Repository13 around 10,000 words
Personal Names CMU AI Repository 13484 family names

8608 given names
Place Names Census 2000 U.S. Gazetteer14 16964 U.S. places
Specialist NLM/LHC NLP Repository15 360688 words

in biomedical area
FDA NJ FDA NJ documents 33009 words

3.2 Training Algorithms

In order to compute the character transformation probability in Equation 2, it is necessary to obtain a ground truth data
set containing OCR word and true word pairs. We obtain this data set in two phases. In the first phase, we add pepper
salt noise to the original document pages and OCR the noisy pages; then we match the OCR words in the noisy text to
the original text by edit operations at the page, text line, and word token levels; we record the word pairs in which the
original OCR word can be found in the known lexicons; we validate the resulting ground truth pairs and estimate the initial
transformation probabilities based on them. In the second phase we use the initial transformation probabilities to correct
the suspicious words and re-estimate the probabilities based on the corrected results.

For the N-gram model, since we cannot observe all the N-grams in the limited data set, we estimate the frequency of
bi-grams and tri-grams by the Witten-Bell smoothing algorithm described in.16 We also compress tri-gram and bi-gram
lexicon by Pearson’s chi-square test to save space and improve the processing speed. We simply remove all tri-grams and
bi-grams with sample size lower than 20, or between 20 and 40 but having expected value less than 5 in the chi-square
test table according to Snedecor and Cochran.17 We obtain 16,377 bi-grams and 14,304 tri-grams from the data set of
6,697,287 words (drawn from the training set of 14,150 pages).

3.3 Validation Algorithm

We automatically validate the low confidence suspicious word by following the general steps below:

• Step 1: OCR the incoming page, generate the OCR text lines with various font features at the character level.

• Step 2: Generate the suspicious words according to the binary confidence feature.

• Step 3: Look up each suspicious word wocr in the collected lexicons. If found, then return wocr, otherwise go to next
step.

• Step 4: Derive the partial formats of wocr and match the partial words to the domain-specific lexicon. If the matched
word set is not empty, then go to the next step, otherwise return wocr.

• Step 5: Get the optimal matched word wopt according to Equation 5 and 6.

• Step 6: Verify that wocr is a regular word; return wopt if the verification denied wocr, otherwise go to next step.

• Step 7: Reject or accept wopt by comparing the values of P̃ r(W,O|wopt) and P̃ r(W,O|wocr) according to Equa-
tion 6 and 7. If wopt is rejected, return wocr instead.

This validation process is also graphically presented in Figure 1.

In our implementation, this general validation procedure is augmented by a number of practical enhancements. For
example:

(a) If no replacement is found for a suspicious word after the final step, we check if the word is actually two different
words connected by some noisy character. If so, we validate these two words separately. Similarly, if a suspicious word
spans two lines, we determine if it is really two different words, by combining heuristic methods and the established
formulas; if so, we decompose and validate the individual components.
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(b) When the wild cards appear at the beginning of a suspicious word, partial matching of a Ternary Search Tree will
be quite slow, as it would require visiting almost all the nodes in the tree (that is: all the words in the lexicon) repeatedly.
Instead of filtering out such partial words, we set up a ternary tree for this group of partial words first, and then recursively
use the search result of the ascendance nodes over this tree. So we avoid most of the overlapped work.

(c) In Step 6 we use a set of regular expressions to check a suspicious word and determine if we need to replace it.
These regular expressions include“if any non-word character except for some specific symbols appears in the word”, “if
any digit is surrounded by word characters”, “if any lower case is followed by upper case except for some last names” and
so on.

Found? 
Yes

For each 
word  

Return it 

Found? 

OCR

Document 
Page

Return the original  

No

Return/reject it 

ValidationNo

The optimal 
replacement 

Search it in the 
lexicons

Get Suspicious Words 
(From FineReader)

Evaluate the 
similarity between 

the suspect and 
the returns 

Partial-match 
Search

Partial Format 
Derivation

Yes

Figure 1. Framework of Validation

4 Experiments

We design two sets of experiments to evaluate the performance of our module. In the first set, we test the accuracy of
validation by comparing the ground truth words and the validated words, and also measure the speed of validation; in the
second set, we test the overall accuracy of OCR text before and after the validation. These tests are described in Section
4.1 and 4.2 respectively.

4.1 Performance of Word Validation

We apply the validation module to a randomly selected suspicious word set, containing 2028 pairs of OCR word and the
corresponding truth word. The accuracies of verification (that the suspicious word is indeed an invalid one), and validation
(selecting the corresponding valid word) are listed in Table 3. We define the Type I error, or false negative, as correcting
the suspicious word when it is correct, and Type II error, or false positive, as retaining the suspicious word when it is
incorrect. We define the accuracy of verification as the ratio of sum of true positive and true negative over the total number
of suspicious words, and the accuracy of validation as the ratio of correct returns over the total suspicious words. Note
that the accuracy of validation is lower than the verification since the replacement is not always correct. The module is
conservative about correcting a word since we have 139 false positive decisions and only 15 false negative decisions. The
92.41% verification accuracy and 87.82% validation accuracy are satisfactory for our application.

SPIE-IS&T/ Vol. 7534  75340O-6



Table 3. Accuracies.
Total suspicious words 2028

True positive 630

False positive 139

True negative 1244

False negative 15

Correct returns 1781

Accuracy of Verification 92.41%

Accuracy of Validation 87.82%

We evaluate the performance of our approximate string matching method by comparing it to two other commonly
used methods: n-gram matching and cross correlation matching.5,7 In n-gram matching we use the normalized correlation
coefficient to measure the similarity between the bi-gram vector of the query and that of the lexicon word. In cross
correlation matching we use the normalized peak of the cross correlation vector of the words as the similarity measure. For
both of these methods we set the threshold such that the F score is maximum in the validation set. Since we have only one
target word for each search we use the following formulation for F :

F =
1

α × 1
P + (1 − α) × 1

R

=
{ 1

α×‖M‖+(1−α) if true word is among M

0 otherwise
(9)

In the above equation P is Precision (the number of retrieved true words divided by the number of retrieved candidate
words); R is Recall (the number of retrieved true words divided by the number of target words in the lexicon). In our case
the number of retrieved true words is 0 or 1, and the number of target words is always 1. ‖M‖ is the size of the returned
match set M . We set α = 0.01 since we try to keep ‖M‖ below 100. Then we apply the two matching methods to the same
test set, and record the performance as shown in Table 4. According to the experimental result our method outperforms the
other two methods by achieving the maximum retrieval rate and the minimum number of average returned matches. The
speed of search is lower than cross correlation matching by only 28 ms but with a much higher F -score. We implement
the experiments in a PC with Intel(R) Pentium(R) D CPU 3.40GHz and 1.00 GB of RAM.

Table 4. Approximate String Matching Methods (1573 known words)
Methods Retrieval % matches # F-score Speed
Proposed 93.79% 45.3 0.88 79.8 ms
Bi-gram 89.72% 86.4 0.63 510.0 ms
Cross Corr. 85.32% 80.0 0.57 53.2 ms

4.2 Overall Improvement

In addition to evaluating the accuracy of each validation, we compare the OCR accuracies before and after the validation.
We randomly select a test set of 400 pages, each with more than five suspicious words. We generate the ground truth text
of these pages and evaluate the accuracy of OCR text before and after the validation. We apply the UNLV’s OCR Frontier
Toolkit18 to obtain these accuracies at the character level and word level respectively. We list the test results in Table 5.
The detailed algorithm to calculate these accuracies may be found in.19

Table 5. OCR Accuracy in char and word levels(400 pages)
Before After Before After

Total Chars 1451790 1451790 Total words 214909 214909
Errors 8700 5056 Misrecognized 4667 1890
Accuracy 99.4% 99.65% Accuracy 97.83% 99.12%

Error reduction 41.6% 59.45%

Although our test pages are originally of good quality (with average 11 suspicious words per page) and target words
with regular format only, we still find considerable improvement after the application of our OCR validation model. As
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the results show, the word accuracy has been improved by over 1% and the word errors have been reduced by around 60%,
which we consider to be impressive.

5 Conclusions

We have presented an automatic OCR validation module that tries to solve the following problem: “What is the appropriate
replacement for a word marked as low confidence by the OCR engine?”. We develop a word partial format derivation pro-
cess to search the possible replacements in lexicons organized by Ternary Search Trees. The proposed approximate string
matching method is better than other commonly used methods in retrieval accuracy, and it is much faster than the bi-gram
matching method. Then we combine the string character transformation probability and a tri-gram model to measure the
probability that a query word is the truth word. We choose the word from the candidate set such that this probability is
maximized. When considering the original word as a possible candidate we simultaneously realize the functions of verifi-
cation and correction. In our experiment we obtain 92% verification accuracy and 87% validation accuracy for the test set;
the overall word errors have been reduced by around 60%.
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