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Content-based image retrieval (CBIR) is a promising tech­
nology to enrich the core functionality of picture archiving 
and communication systems (PACS). CBIR has a poten­
tial for making a strong impact in diagnostics, research, 
and education. Research as reported in the scientific 
literature, however, has not made significant inroads as 
medical CBIR applications incorporated into routine clinical 
medicine or medical research. The cause is often attributed 
(without supporting analysis) to the inability of these ap­
plications in overcoming the “semantic gap.” The seman­
tic gap divides the high-level scene understanding and 
interpretation available with human cognitive capabilities 
from the low-level pixel analysis of computers, based on 
mathematical processing and artificial intelligence meth­
ods. In this paper, we suggest a more systematic and 
comprehensive view of the concept of “gaps” in medical 
CBIR research. In particular, we define an ontology of 14 
gaps that addresses the image content and features, as 
well as system performance and usability. In addition to 
these gaps, we identify seven system characteristics that 
impact CBIR applicability and performance. The frame­
work we have created can be used a posteriori to compare 
medical CBIR systems and approaches for specific bio­
medical image domains and goals and a priori during the 
design phase of a medical CBIR application, as the sys­
tematic analysis of gaps provides detailed insight in sys­
tem comparison and helps to direct future research. 
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INTRODUCTION 

C ontent-based image retrieval (CBIR) is a tech­
nology that accesses pictures by image patterns 

rather than by alphanumeric-based indices.1 Using 
various visual query mechanisms, such as the query­
by-example (QBE) paradigm,2 the user presents a 
sample image, image region of interest (ROI), or 
pattern to the system, which responds with images 

similar to the given example. Although this approach 
was originally developed for multimedia repositories 
such as those on the World Wide Web, techniques 
for content-based access to medical image repositories 
are a subject of high interest in recent research, and 
remarkable efforts have been reported.3–5 In particu­
lar, CBIR for picture archiving and communication 
systems (PACS) discussed in Qi and Snyder,6 Müller 
et al.,7 and Lehmann et al.8 can make a significant 
impact on health informatics and health care. In spite 
of these innovations, however, routine use of CBIR 
in PACS has not yet been established. The reasons 
are manifold; some of these obstacles, as well as ex­
tensive and detailed discussion of many character­
istics of CBIR systems, can be found in the papers of 
Müller et al.,5,7,9. Our goal is to organize these char­
acteristics in a more formal and systematic approach. 
We seek to provide an organizational and conceptual 
framework for analysis of a particular CBIR system 
or for comparative analysis among CBIR systems, 
with respect to critical technical or implementation 
issues. We have organized the framework by gen­
eralizing and extending a concept that already has a 
somewhat restricted use in CBIR research, namely, 
the concept of a gap: a disparity, break, or dis­

1From the Department of Medical Informatics, Aachen University 
of Technology (RWTH), Pauwelsstr. 30, 52057 Aachen, Germany. 

2From the US National Library of Medicine, US National 
Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, 
USA. 

Correspondence to: Thomas M. Deserno, Department of 
Medical Informatics, Aachen University of Technology (RWTH), 
Pauwelsstr. 30, 52057 Aachen, Germany; tel: +49-241-8088793; 
fax: +49-241-803388793; e-mail: deserno@ieee.org 

Copyright * 2007 by Society for Imaging Informatics in 
Medicine 

doi: 10.1007/s10278-007-9092-x 

Journal of Digital Imaging 

mailto:deserno@ieee.org


DESERNO ET AL. 

continuity in some important aspect or characteristic 
between the potential and the actual realization of 
that characteristic. We attempt to improve on the 
published conceptual approaches to thinking com­
paratively about CBIR systems by: 

•	 Using as one of our main organizing princi­
ples a concept (the gap) that highlights both 
potential deficiencies and how those deficien­
cies can be addressed 

•	 Presenting both the gaps that we have identi­
fied, as well as important system characteristics 
that are not exposed by the gap ontology, as a 
hierarchical structure of related attributes rather 
than as a purely descriptive exposition 

Searching for visual similarity by simply com­
paring large sets of pixels (comparing a query image 
to images in the database, for example) is not only 
computationally expensive but is also very sensitive 
to and often adversely impacted by noise in the 
image or changes in views of the imaged content. 
Therefore, to achieve rapid response and to amelio­
rate the sensitivity to image noise or view changes in 
position, orientation, and scale of the imaged con­
tent, frequent data reduction is carried out as follows: 
First, discriminant numerical features that serve as 
identifying signatures are extracted from each image 
in the repository. Second, the images are indexed on 
these precomputed signatures. Third, at query time, 
the signature extracted from the query example is 
compared with these indices of the images in the 
database (in this paper, we use the term signature to 
denote the (usually ordered) set of all feature values, 
also called the feature vector, which is used to 
characterize a particular image). This abstraction, 
while serving purposes of rapid computation and 
adding robustness to above-mentioned variations in 
imaged content, can potentially introduce a disparity 
(or a gap) between the expected result and the com­
puted result. This gap could be caused by a variety 
of factors, which include discriminant potential in 
the extracted signature in general or for the intended 
query, and the extent to which it was applied to the 
imaged data, among others. It is, therefore, valuable 
to consider characterizing CBIR systems through 
such an itemization of gaps and characteristics. 
In the published literature, two gaps have been 

identified in CBIR techniques: (1) the semantic 
1,5,10gap between the low-level features that are 

automatically extracted by machine and the high-
level concepts of human vision and image under­

standing, and (2) a sensory gap defined by 
Smeulders et al.1 between the object in the world 
and the information in a (computational) description 
derived from a recording of that scene. However, in 
our view, there are many other gaps that hinder the 
use of CBIR techniques in routine medical image 
management. For instance, there is a highly signi­
ficant gap in the level of integration of CBIR into 
the general patient care information system. As 
another example, there is a gap in the automation of 
feature extraction. By means of the concept of 
gaps, we present a systematic analysis of required 
system features and properties. The paper classifies 
some prominent CBIR approaches in an effort to 
spur a more comprehensive view of the concept of 
gaps in medical CBIR research. We also attempt to 
show how our approach can be applied to charac­
terize and distinguish prominent medical CBIR 
methods that have been published in the literature. 

METHODS 

There are several gaps that one can define to 
explain the discrepancy between the proliferation of 
CBIR systems in the literature and the lack of their 
use in daily routine in the departments of diagnostic 
radiology at healthcare institutions, for example. It is 
insufficient, however, to merely define these gaps. 
To benefit from the concept of gaps, it is imperative 
to analyze systems presented in the literature with 
respect to their capability to close or minimize these 
gaps. In addition to the gaps, it is also important to 
be aware of other system characteristics that, al­
though not resulting in a gap, might be critical for 
CBIR system analysis and classification. In this 
section, we address these points systematically. 

Defining an Ontology 

We aim at defining a classification scheme, which 
we will call an ontology, by means of individual cri­
teria, i.e., the so-called gaps. According to Lehmann,11 

such an ontology must satisfy several requirements 
regarding the entities (gaps), the catalog (ontology), 
and the applications of the ontology. 

Requirements for the entities 

Any ontology is an abstract complex of terms, 
and concrete criteria for requirements of the entities 
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must be defined on a meta-level of abstraction. In 
particular, such terms must be 

Y	 Abstract. They are formulated in a general 
manner that allows their instantiation to any ap­
proach of a medical CBIR system that has been 
published in the literature. 

Y	 Applicable. They are formulated in such a way 
that they can be used in a variety of semantic 
contexts of medicine, where CBIR systems are 
applied. In particular, the instantiation of the 
entities of the ontology should not be affected by 
the person using the ontology. 

Y	 Verifiable. They are formulated in such a way 
that there exists a method to evaluate each 
individual criterion. 

Requirements for the Catalog 

A system of abstract, applicable, and verifiable 
entities is called an ontology. However, in addition to 
the characteristics that are required for the entities of 
the ontology, the ontology itself must satisfy certain 
criteria. In particular, the collection of criteria must be 

Y	 Complete. The ontology covers all characteristics 
of medical CBIR systems and can be mapped to 
any situation and context of use. In particular, if 
two systems are characterized by the instances of 
the entities of the ontology, these instances must 
differ for different systems. 

Y	 Unique. The ontology is well defined. In other 
words, if a system is characterized by means of 
the ontology, the same system always results in 
the same instantiation. 

Y	 Sorted. The entities of the ontology are ordered 
semantically. For instance, they are grouped to 
support their unique assignment. 

Y	 Efficient. The application of the ontology is pos­
sible within finite time and effort, and all criteria 
can be decided without additional devices or 
computer programs. 

Requirements for the Application 

With respect to CBIR in medicine, an ontology 
characterizes existing system approaches or assists 
the conceptualization and design of a novel system. 
Hence, there are two basic uses of an ontology: 

Y	 A priori. The ontology is used as a guideline for 
system design. 

Y	 A posteriori. The ontology is used as a catalog 
of criteria for system analysis and weak-point 
detection. 

The Concept of Gaps 

In this paper, we aim to build an ontology of gaps. 
The concept of gaps has often been used in CBIR 
literature, and the semantic gap is one of the pro­
minent examples. To elaborate on what we have 
previously mentioned, the semantic gap is the 
disparity or discontinuity between human under­
standing of images and the “understanding” that is 
obtainable from computer algorithms. This gap has a 
direct effect on the evaluation of images as “similar,” 
as judged by humans, versus the same images being 
judged as similar by algorithms. Image similarity is 
defined by a human observer in a particular context 
on a high semantic level. On the other hand, for 
algorithms, image similarity is defined by compu­
tational analyses of pixel values with respect to 
characteristics such as color, texture, or shape. The 
semantic gap is closely connected to not only 
the content (objects) of the image but also to (1) 
the features used for the signature and (2) the 
effectiveness of the algorithms that are used to infer 
the image content. The semantic gap is of high 
importance as a factor affecting the usefulness of 
CBIR systems and is frequently cited by CBIR 
researchers. Three examples are given in this paper: 
First, the work of Enser and Sandom12 who have 
provided a detailed analysis of the semantic gap 
and created a classification of image types and user 
types to further understand categories of semantic 
gaps; second, Eakins and Graham10 who have used 
the idea of semantic content as a way to categorize 
types of CBIR queries—specifically, Eakins defines 
three types of CBIR queries according to their re­
spective levels of semantic content; and, third, the 
recent work of Bosch et al.13 who have created a 
classification of published strategies that attempt to 
bridge the semantic gap by automated methods and 
have illustrated them for the domain of natural 
scene images. 
In this paper, we extend this concept of “gap” to 

apply to other facets or aspects of CBIR systems. 
We may consider the semantic gap to be a break or 
discontinuity in the aspect of image understanding, 
with “human understanding” on one side of the gap 
and “machine understanding” on the other. Simi­
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larly, we may identify breaks or discontinuities in 
other aspects of CBIR systems, including 

•	 The level of automation of feature extraction, 
with full automation on one side and completely 
manual extraction on the other 

•	 The level of support for fast image database 
searching, with optimized algorithms and data 
structures, supported by parallelized hardware 
on one side and exhaustive, linear database 
searching with no specialized hardware sup­
port on the other 

•	 The level to which the system helps the user to 
refine and improve query results, with “intel­
ligent” query refinement algorithms based on 
user identification of “good” and “bad” results, 
on one side and no refinement capability at all 
on the other 

Each gap (1) corresponds to an aspect of a CBIR 
system that is explicitly or implicitly addressed during 
implementation, (2) divides that aspect between what 
is potentially a fuller or more powerful implementa­
tion of that aspect from a less powerful implemen­
tation, and (3) has associated with it methods to 
bridge or reduce the gap. We note that a gap, as 
applied to a particular system, may or may not be 
significant for achieving the goals of that system and, 
when bridged, may or may not add value to the 
system for the particular system purpose. For exam­
ple, a stand-alone CBIR system operating on a small 
database may respond to queries perfectly well with 
an exhaustive, linear search of its database and have 
no need for search optimization, let alone hardware 
parallelization. However, it appears highly likely that 
the use of CBIR systems within clinical routine in 
large treatment centers will require features such as 
the ability to handle multiple image modalities for 
multiple treatment purposes, efficient extraction and 
indexing of clinical-content-rich features, capability 
to exchange information with the patient information 
system, and optimized retrieval algorithms, data 
organization, and hardware support; in other words, 
many of the gaps that we identify will need to be 
bridged for practical application to clinical routine. 
We have created four broad categories of gaps, 

as follows: 

Y	 Content. The user’s view of modeling and 
understanding images 

Y Features. The computational point of view 
regarding numerical features and their limitations 

Y	 Performance. The implementation and the 
quality of integration and evaluation 

Y Usability. Ease of use of the system in routine 
applications 

The gap names, the CBIR system aspect to which 
the gaps apply, and the “sides” of the gaps are given 
in Table 1. 

CBIR Characteristics 

In addition to the gaps, additional characteristics 
are useful to specify and distinguish medical CBIR 
systems. Because we aim at an a posteriori application 
of the gap ontology, we additionally characterize the 

Y	 Intent and data. The goal or intent of the medical 
CBIR approach and the data that is used with it 

Y Input and output (I/O). The level of input and 
output data that is required to communicate with 
the CBIR system 

Y Feature and similarity. The kind of features and 
distance measures applied by the system 

RESULTS 

Figure 1 summarizes the overall results. In total, 
we defined 14 entities in the four groups of CBIR 
system gaps, and six entities in the three groups of 
CBIR system characteristics. The notation “xxx” 
means that the entity description requires addition­
al information that depends on the medical context 
and/or system. 

Gaps Gaps are characterized in “Content Gaps,” 
“Feature Gaps,” “Performance Gaps,” and “Usabil­
ity Gaps.” As we discuss each gap, we categorize 
the ways in which systems attempt to bridge or ame­
liorate the gap, including the case (not addressed) 
in which the system does nothing to respond to the 
gap. We have provided examples for many of these 
categories, drawing on the characteristics of CBIR 
systems or technology closely related to CBIR, as 
reported in the technical literature. For each gap 
listed in this section, we give 

•	 In italics, the CBIR system aspect to which the 
gap applies 

•	 A summary overview of the gap 
•	 Categories of methods to bridge or ameliorate 

the gap and, frequently, examples of the methods 
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Table 1. Gaps for Various Aspects of CBIR Systems 

GAP 

CATEGORY 

CBIR SYSTEM ASPECT 

LESSER REALIZATION GAP NAME FULLER REALIZATION 

Content 

Image Understanding 

Computable, “machine understanding” Semantic Human understanding of image 

Imaging and/or Clinical Context in which a System May Be Used 

Narrow, limited context of modalities, 

protocols, or diagnostic procedures 
Use context 

General or broad context of modalities, 

protocols, or diagnostic procedures 

Feature 

Automation of Feature Extraction 

Fully manual Extraction Fully automated 

Granularity of Image Object Structure Recognized by the System 

Only global structure is recognized Structure 
Local image objects are recognized, 

as well as the global image structure 

Granularity of Image Visual Detail Processed by the System 

Visual detail processed 

at only one level of scale 
Scale 

Visual detail processed 

at multiple levels of scale 

Dimensionality of Spatial and Time Inputs Actually Used to Compute Features 

Not all spatial and time dimensions available 

in the input data are used to compute features 

Space + time 

dimension 

All spatial and time dimensions available 

in the input data are used to compute features 

Dimensionality of Channel Inputs Actually Used to Compute Features 

Not all channel dimensions of input data  

are used to compute the features 

Channel 

dimension 

All channel dimensions of input data 

are used to compute the features 

Performance 

Level of Actual Implementation of the System 

Not implemented; conceptual only Application Online executable in the Internet 

Level of Integration into Patient Care Information System 

System is standalone Integration 
System can interchange information with 

patient care information system 

Level of Support for Fast Database Searching 

Simple linear search of entire database; 

no parallelization of hardware support 
Indexing 

Data organized in spatial trees and/or 

clustered, and an optimized search strategy is 

used; supported by parallelized hardware 

architecture 

Level to Which the System Validity of Retrieval Has Been Evaluated 

No evaluation Evaluation Quantitative evaluation with ground truth data 

Usability 

Level to Which User May Use and Combine Text/Visual Queries 

Query by text only Query 

Query by text, numerical specification of 

features, example, image, selection of 

structures from restricted sets, sketch, or any 

combination of these 

Level to Which the System Helps a User Understand Query Results 

Results are returned without feedback from 

the system 
Feedback 

Results include a similarity measure and cue 

that help the user understand why particular 

results were returned 

Level to Which the System Helps the User to Refine and Improve Query Results 

No refinement capability is provided Refinement 

System “learns” the user’s preferences 

through feedback from the user about which 

specific results best met the user’s goals 

System Characteristics The system characteristics 
are discussed in “Intent and Data,” “Input and 
Output,” and “Feature and Similarity.” This system 
characteristics hierarchy is intended to capture 
important attributes of CBIR systems that are not 
well represented by the gap ontology. 

Content Gaps 

This group of gaps addresses the modeling, un­
derstanding, and use of images from the standpoint 
of a user. We have defined two relevant gaps. 

Semantic Gap 

Image Understanding The similarity of images de­
fined by a human observer in a particular context is 
based on a high level of semantics: Terms that are 
considered useful or “meaningful” for the purpose at 
hand and that may even be restricted to a controlled 
vocabulary are assigned to the imaged, human-
identified objects. In contrast, computational anal­
ysis of image content is based on algorithmic 
processing of pixel values. In our definition, the 
semantic gap is bridged if a relation of image 
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- not addr. 
- manual 
- computer-

assisted 
- automatic 

semantic use contextsemantic use context 

- not addr. 
(specific) 

- narrow 
- broad 
- general 

- not addr. 
- mentioned 
- document. 
- offline 
-

- not addr. 
- passive 
- active 

- not addr. 
- HW-supp. 
- SW-supp. 
- both 

application integration indexing evaluationapplication integration indexing evaluation 

- not addr. 
– xxx 

- qualitative 
– xxx 

- quantitative 
– xxx 

- not addr. 
- feature 
- pattern 
- compos. 
- sketch 
- hybrid 

- not addr. 
- basic 
- advanced 

- not addr. 
- forward 
- backward 
- complete 
- combination 
- learning 

gaps 

- grayscale 
- color 
- shape 
- texture 
- special – xxx 
- hybrid 

- not applicable 
- undeclared –xxx 
- non-metric – xxx 
- metric – xxx 
- hybrid – xxx 

image features distance measureimage features distance measure 

- not addr. 
(global) 

- local 
- relational 

- not addr. 
(single) 

- multi 

- not addr. 
- not appl. 
- complete 

- not addr. 
(manual) 

- computer­
assisted 

- automatic 

query feedback refinement

content performance usabilityfeature

query feedback refinementquery feedback refinement 

content performance usabilityfeature 

characteristics 

intent & data input & outputintent & data input & output feature & similarity 

- not addr. 
- diagnostics 
- research 
- teaching 
- learning 
- hybrid 

- 1D 
- 2D 
- 2D+t 
- 3D 
- 3D+t 
- hybrid 

- free text 
- keyword 
- feature value 
- image 
- hybrid 

input data output datainput data output data 

- image only 
- image & keyword 
- image & text 
- keyword only 
- free text 
- hybrid 

structure scale space+time
dimensionextraction channel

dimensionstructure scale space+time
dimensionextraction channel 

dimension 

- not addr. 
- not appl. 
- complete 

- 1D grayscale 
- 1D other 
- 2D 
- 3D color 
- 3D other 
- >3D 
- hybrid 

system intent data domain data rangesystem intent data domain data range 

online 

Fig. 1. Results. Gap and system characteristics in medical CBIR research. 

structures to medical meaning is established. Cate­
gories and examples for this gap: 

Y	 Not addressed. Meaningful terms are not as­
signed to images or ROIs; images are indexed 
by strictly mathematical measures, such as mea­
sures of color, texture, and shape. 

Y	 Manual. Meaningful terms are manually as­
signed; for X-ray images of the cervical spine, 
a human operator may use interactive software 
to assign vertebrae labels “C1,” “C2”, …“C7” to 
image regions. 

Y	 Computer assisted. A semi-automatic process is 
used to assign meaningful terms; in the above 
example, a computer algorithm may assign the 
labels to the regions on the image; a human 
operator then reviews and corrects them. 

Y	 Automatic. Meaningful terms are automatically 
assigned; in this case, a computer algorithm 
would assign the region labels with no human 
intervention; some experimental work toward 
developing methods to automatically extract 
and associate low-level features to meaningful 
medical semantics has been reported in some 

limited domains, such as the mapping of shape, 
size, intensity, and texture features to radiologist 
semantics used for lung nodules (lobulation, 
malignancy, margin, sphericity, and others) in 
thoracic CT images.14 

Use Context Gap 

Imaging and/or Clinical Context in which a 
System May Be Used By “use context” in this 
study, we refer to the modality of the images, the 
type of gross or fine anatomy captured, the 
presentation, and/or the particular medical intent 
for which they were acquired (“context” might 
also reasonably be used to refer to the associated 
patient history; we treat this latter factor in 
“Integration Gap”). The context in which a CBIR 
system can be used is usually restricted. Medical 
CBIR systems frequently are designed to support 
queries on a certain imaging modality or within a 
certain clinical context, such as a particular medical 
protocol or diagnostic procedure. These restrictions 
allow the use of medical a priori knowledge of the 
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imaging modality or context: Otherwise, the CBIR 
problem may be difficult to formulate so that it is 
computable. Ideally, of course, the system should 
support generalized use with minimal or no user 
limitation and would automatically determine modal­
ity, anatomy, and presentation directly from image 
contents. Categories and examples for this gap: 

Y	 Not addressed. The system is specific to a certain 
context, and the context gap is wide; for example, 
the system may be tailored to the retrieval needs 
of a database of gastrointestinal (GI) tract his­
tology images. 

Y	 Narrow. The system operates only for a small 
number of modalities or protocols or diagnostic 
procedures or on a small number of combina­
tions of these; for example, a cancer-oriented 
system may be designed to operate on histology 
images of breast, lung, and uterine cervix, and 
may support labeling from controlled vocabu­
laries for each of these domains only. 

Y	 Broad. The system operates for a large number 
of modalities or protocols or diagnostic proce­
dures, or on a large number of combinations of 
these; for example, a system may allow the user 
to store segmented shapes from any types of 
digital imaging and communications in medi­
cine images into a database and to query the 
database by sketches of these shapes. 

Y	 General. No restrictions apply at all, neither to 
the modality, the protocol, nor the diagnostics. 

Feature Gaps 

When we consider the implementation steps that 
must occur to derive characterizations of images 
that are computable, we discover feature-related 
gaps. These gaps correspond (1) to the inadequacies 
of the chosen numerical features to characterize the 
image content or (2) to the practical difficulties of 
extracting these features from the images. 

Extraction Gap 

Automation of Feature Extraction Not all medical 
CBIR systems automatically extract the features. 
Some are based on manual indexing of images, such 
as manually marking the boundaries of vertebrae in 
spine X-rays. This manual process is usually labor-
intensive and prone to error. This gap may be bridged 

by computer-assisted or automatic feature extraction 
methods. Categories and examples for this gap: 

Y	 Not addressed. Feature extraction is completely 
interactive or manual, e.g., manually outlined shapes, 
such as cardiac anatomical features (atria, ventricles, 
ascending aorta, and pulmonary artery).15 

Y	 Computer-assisted. Feature extraction is partly 
interactive, e.g., shapes segmented with the “live­
wire” algorithm,16 which completes shape seg­
mentation, such as for vertebrae on spine X-ray 
images, based on a few user-supplied “guiding 
points”; another example is interactive region 
segmentation on histology images by region-
growing or K-means clustering algorithms.17 

Y	 Automatic. There is no human interaction in the 
feature extraction; examples would be extrac­
tion of color or grayscale histograms, Gabor 
wavelet coefficients, or object counts, computed 
from an image with no human intervention.18 

Structure Gap 

Granularity of Image Object Structure Recognized 
by the System The extraction of global parameters 
that describe the entire image is frequently insuf­
ficient for medical applications. Hence, ROIs that 
describe only a certain part of an image must be 
identified and characterized by appropriate param­
eters. Categories and examples for this gap: 

Y	 Not addressed. Features are extracted for the en­
tire image (global case); examples would in­
clude grayscale histograms computed from all 
of the pixels in the image.18 

Y	 Local. Features are extracted for individual 
ROIs; examples include color and texture mea­
sures computed from the interiors of tissue re­
gions of known type, such as from the cervix 
region on images that contain the uterine cervix 
and surrounding anatomy.19 

Y	 Relational. Features are extracted for a certain 
composition of individual ROIs or objects; an 
example is the characterization of the relative 
spatial relationships of cardiac chambers (atria 
and ventricles) on tomography images.15 

Scale Gap 

Granularity of Image Visual Detail Processed by 
the System A fundamental characteristic of a digital 
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image is its resolution or granularity of detail that is 
available in the image. Some image characteristics 
may be best captured at reduced resolution (as a 
human observer may more easily interpret some 
characteristics “at a distance”). The image may be 
processed to produce additional images with lesser 
resolutions. For a particular query task, one 
resolution level may be more suitable than another; 
for this reason, multiscale representations of image 
features are highly desirable. The availability of 
features extracted at multiple image resolution 
levels (multiscale features) adds potentially signif­
icant flexibility to the system, allowing the user to 
search for both gross-level and fine-level character­
istics of the images (note that scale refers to the 
resolution of detail within the image and is not 
identical with structure, which refers to the com­
position of the image from regions or objects of 
interest). Categories and examples for this gap: 

Y	 Not addressed. Features are extracted for a fixed 
single scale; an example would be calculation of 
texture features from co-occurrence matrices 
that are applied to the image only at its original 
spatial resolution. 

Y	 Multi. Features are extracted at multiple scales 
of the image; an example would be a system that 
applies Gaussian blurring and down sampling to 
create multiple spatial resolutions for each 
image, and then applies co-occurrence matrices 
to the image at each of these resolutions; a 
variation of this idea is to use the image at its 
original resolution but to apply mathematical 
operators that output information about the 
image contents at multiple levels of detail, as 
has been done20 for tumor shape, using mathe­
matical morphology operators with multiple 
sizes of structuring elements; another example 
is any approach that includes features based on 
curvature scale space, which is inherently a 
multiscale approach, as has been done to 
characterize masses in mammography images.21 

Space + Time Dimension Gap 

Dimensionality of Spatial and Time Inputs 
Actually Used to Compute Features Features may 
be extracted from data that is different from the 
original given data. It is convenient to speak of a 
mapping from the domain space of the original 
data to the range space containing what we term 

the “feature source data” from which features are 
actually computed. These two spaces may differ in 
spatial dimension. For example, the original data 
may be 3D, such as 2D magnetic resonance 
imaging slices along with information about the 
third spatial dimension; If features are computed 
from the individual 2D images while ignoring the 
third spatial dimension information, there is a 
spatial dimensionality gap between the original 
data and the feature source data or, in terms of the 
mapping described above, a dimensionality gap 
between the domain and range spaces. For full 
generality, we speak of a space + time dimension 
gap to cover the cases where time is also a 
dimension in the original data. As it appears that 
1D and 2D data are always mapped to feature 
source data of the same dimensionality for feature 
extraction, we believe that this gap does not apply 
when the system’s original data is of either of 
those dimensions. Note that when we speak of 
dimension gaps and feature computation in this 
and the following section, the reader should bear in 
mind that we are not speaking of dimensionality of 
feature vectors but only dimensionality of the data 
from which the feature vectors are computed. 
Categories and examples for this gap: 

Y	 Not addressed. The dimension of the data range 
space is less than the dimension of the data domain 
space. 

Y Not applicable. The system handles 1D or 2D 
data only. 

Y Complete range. The dimension of the data 
range space is equal to the dimension of the data 
domain space; an example is the indexing of 
functional imaging data consisting of 3D positron 
emission tomography images plus associated 
temporal information by including the volumetric 
characteristics of the data in the indexing.22 

Channel Dimension Gap 

Dimensionality of Channel Inputs Actually Used to 
Compute Features It is also possible that the original 
system data differs in “channel dimensionality” from 
the feature source data, where the channels corre­
spond to separate image data planes (typically 
colors). With respect to channel dimensionality, for 
example, the original data domain space may have 
three color planes (such as RGB), but features may 
be computed from a single-plane intensity image that 
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is derived from the RGB data by inirreversible, 
dimensionality-reducing transformation, hence, a 
channel dimension gap exists. If the original data is 
single channel (e.g., grayscale), this gap does not 
arise. Categories and examples for this gap: 

Y	 Not addressed. The dimension of the channel 
data range space is less than the dimension of 
the channel data domain space. 

Y	 Not applicable. The original system data is 
single channel. 

Y	 Complete range. The dimension of the channel 
data range space is equal to the dimension of the 
channel data domain space; an example is 
characterizing skin lesions on dermatology 
images by RGB histograms;20 a variation of this 
technique is to first transform the image, with a 
dimensionality-preserving transformation, to a 
different color space, such as the MPEG7 HDS 
space, before calculating the histogram.23 

Performance Gaps 

Not all systems found in the literature are com­
pletely implemented and executable for perfor­
mance evaluation. For those that are implemented 
and testable, the performance criteria include quality 
of integration, level of support for fast database 
searching, and the extent to which evaluation of the 
system for acceptable retrieval has been done. 

Application Gap 

Level of Actual Implementation of the System This 
is a gap between what is described in the published 
literature and what is available for test and use. In 
scientific literature, there is an immense gap 
between the conceptual level of the described 
medical CBIR systems and their implementation. 
Frequently, concepts are published, but a running 
system is not available or the level of imple­
mentation is not clear (Müller et al.5 make this 
same point in the discussion of CBIR in PACS and 
other medical databases). Categories for this gap: 

Y Not addressed. An implementation is not 
mentioned at all. 

Y Mentioned. An implementation is described, but 
no supporting evidence is provided. 

Y	 Documented. Screen shots are shown in the 
publication as evidence of the implementation 
of the system. 

Y Offline. An implementation is available for 
download and installation. 

Y Online. An implementation is directly accessi­
ble and executable via the Internet. 

Integration Gap 

Level of Integration into Patient Care Information 
System Eakins and Graham10 implicitly recognizes 
this gap in the context of general CBIR systems: 

“The experience of all commercial vendors 
of CBIR software is that system accept­
ability is heavily influenced by the extent to 
which image retrieval capabilities can be 
embedded within user’s overall work tasks.” 

This is also true, and may be particularly so, 
within the medical domain. If a system for medical 
CBIR exists, it may or may not satisfy the critical 
need of being integrated with the patient informa­
tion system and may be purely stand-alone. An 
“integration gap” may exist, then, which is bridged 
according to the level of clinical workflow 
integration. At one end of the integration spectrum, 
a stand-alone CBIR system would allow queries 
by image characteristics only; at the other end of 
this spectrum, a CBIR system that is completely 
integrated into the patient care databases would also 
allow queries by any of the patient parameters 
related to medical history, diagnosis, and treatment, 
in combination with queries by image character­
istics. Categories and examples for this gap: 

Y	 Not addressed. The application is not inter­
connected with clinical data; for example, a 
prototype system for retrieval of cervicography 
images by color and texture from a small data­
base of uterine cervix images.24 

Y Passive. The patient/image data is passed to the 
CBIR application. 

Y Active. The application can initiate its own 
access to clinical data. 

Indexing Gap 

Level of Support for Fast Database Searching 
Given a query image, a CBIR system searches the 
database for similar images. A critical performance 
parameter of a medical CBIR system is the response 
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time experienced by the user which, in a large 
database, may depend upon the indexing of multi-
scale image descriptions for efficient data access. 
This indexing is not trivial. Simple strategies like A*­
trees or inverse files (a concept borrowed from the 
document processing community; these files associ­
ate lists of image features with images containing 
those features25) cannot be applied directly, and 
research is required to cope with large image repos­
itories such as those generated in health care. Spe­
cialized hardware architecture may also be critical. 
Categories and examples for this gap: 

Y	 Not addressed. The system is based on a brute 
force approach, where the distance between the 
query feature vector and every feature vector in 
the database is computed; this approach is usual­
ly feasible only for stand-alone CBIR systems 
operating on small databases. 

Y	 Hardware supported. The system is based on 
the brute force approach, but the database search 
is supported by specialized hardware archi­
tecture, such as a parallel computing environ­
ment; an innovation in this area is the use of 
active disk architecture, where some of the 
database search intelligence is placed on pro­
cessors on the disk devices, and an “early 
discard” strategy is used to discard database 
entries that do not satisfy query requirements 
rather than sending them over the system 
connection to the CPU.26 If the active disks are 
operated in parallel, this approach has both the 
advantages of distributed computing and early 
data discard. 

Y	 Software supported. The database of feature 
vectors is organized into clusters or cluster 
trees; the system uses algorithms tailored to this 
tree organization for fast access to feature 
vectors relevant to a particular query; for ex­
ample, data organization based on clustering 
in shape space and a search strategy coupled 
with that organization have been implemented 
for a database of spine X-rays;27 a second ex­
ample are the spatial access methods and spe­
cialized feature extraction developed for a 
database of tumor shapes that are reported in 
Korn et al.28 

Y	 Both. The system incorporates the indexed ap­
proach as described above and supports it with a 
distributed computing environment. 

Evaluation Gap 

Level to which the System Validity of Retrieval has 
been Evaluated In large data bases, the gold 
standard or ground truth is unknown, i.e., it is 
impossible to determine the correct answer for a test 
query. In other words, an expected output of the 
system answering a certain question is unavailable. 
Hence, the comparison of competing approaches for 
global/local feature extraction and distance meas­
ures is difficult and inaccurate. Instead of error 
measures computed from leave-one-out experi­
ments, precision, recall, and the F measure are 
calculated, where the number of correct answers is 
not used. Categories and examples for this gap: 

Y	 Not addressed—xxx. No experiments are de­
scribed; the database contains xxx images. 

Y Qualitative—xxx. Experiments are described but 
without expected output or ground truth based 
on xxx images. 

Y Quantitative—xxx: Experiments are described 
with expected output or ground truth based on 
xxx images; for example, Xu et al.29 report 
results for retrieval of spine vertebrae by shape 
from a ground truth set of 207 images. 

Usability Gaps 

This group of gaps addresses the usability of the 
system. Whereas the performance gaps focus on 
the area in which the system is used, the usability 
gaps describe the ease of use of the system from 
the perspective of the end user. 

Query Gap 

Level to which User May Use and Combine Text 
and Visual Queries To use the QBE paradigm, 
where a visual example is presented to the retrieval 
system, specialized mechanisms and interfaces are 
required. Currently, effective tools to assist the 
user in drawing or composing a search pattern are 
missing, and QBE is difficult and time-consuming. 
Categories and examples for this gap: 

Y	 Not addressed. The user inputs alphanumeric 
text, disregarding the QBE paradigm. 

Y Feature. The user specifies certain intervals of 
feature vectors or vector components. 
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Y	 Pattern. The user specifies an example image or 
a part of an image (ROI); examples include 
systems like image retrieval in medical applica­
tions (IRMA),8 which the user may submit an 
entire image and search for similar images. 

Y	 Composition. The user interactively selects and 
places structures from a given set; for example, 
the uterine cervix CBIR system described in 
Antani et al.30 allows the selection of ROIs, pre-
drawn by medical experts, to be used as part of 
the query. The user selects properties of these 
ROIs, such as color and/or texture, to complete 
the query definition. 

Y	 Sketch. The user interactively creates example 
patterns, including the previous options, but 
without being restricted to choosing from pre­
defined pattern sets (for example, the user may 
create a “freehand drawing” of a query shape); 
examples include the uterine cervix CBIR 
system24 referenced above, which also allows 
freehand drawing of the ROIs to be used in the 
query; another example is the retrieval of spine 
vertebrae by sketching the desired shape.29 

Y	 Hybrid. The user may input text, one of the 
above visual patterns, or a combination of both. 

Feedback Gap 

Level to which the System Helps the User to 
Understand Query Results The result of a CBIR 
query is usually presented by displaying the most 
similar images found in the archive. However, it 
may be difficult to understand how similar the 
system believes the individual results are to the 
query and how the query needs to be altered to 
improve the recall and precision. To close the 
feedback gap, some rationale or cues for the 
retrieved results may be provided by the CBIR 
system. Categories for this gap: 

Y	 Not addressed. The results returned by the 
system are not commented at all. 

Y	 Basic. A similarity or dissimilarity number is 
given for each returned result; for example, the 
spine X-ray CBIR system of Antani et al.30 

returns a dissimilarity (distance) measure for 
each result. 

Y	 Advanced. More sophisticated explanations are 
provided by the system, such as cues indicating 

the relative significance of the various features 
in the returned results. 

Refinement Gap 

Level to which the System Helps the User to Refine 
and Improve Query Results CBIR systems should 
provide the user options to repeat and modify a 
query. Sometimes, they also track the refinement 
process to learn user preferences. Categories and 
examples for this gap: 

Y	 Not addressed. Just one request is answered. 
Y	 Forward. A rudimentary option for query refine­

ment is provided, such as the user being able to 
provide “relevance feedback” to the system by 
ranking individual results returned by the system 
on a scale that ranges from “low relevance” to 
“high relevance” and resubmitting the query.31 

Y	 Backward. In the refinement loop, the user can 
step back if results become worse. 

Y	 Complete. A full history of the interactive 
session is available for restoration of any 
intermediate stage. 

Y	 Combination. Based on the complete history, 
different queries can be performed, and their 
results can be combined; for example, the ex­
tended query refinement approach by the IRMA 
framework, which, additionally, supports set 
combination (such as AND, OR, and NOT) of 
intermediate query results.32 

Y	 Learning. During the usage, the system adapts 
to the user’s need. 

System Characteristics: Intent and Data 

Under this heading, we group the intent or goal of 
the CBIR application, as well as the data domain 
(input data) and range (data used to compute 
features) in use. 

System Intent 

The purpose of a system, as well as the target 
user group, may vary. A medical CBIR system can 
assist the user in various clinical and research 
tasks. Categories for this system characteristic: 

Y	 Not addressed. No information about the pur­
pose is given. 
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Y Diagnostics. For example, the system is 
intended for case-based reasoning. 

Y Research. For example, the system is intended to 
collect data to support evidence-based medicine. 

Y Teaching. For example, the system is intended
 
to find examples for sets of case collections.
 

Y Learning. For example, the system is intended
 
for the self-exploration of medical cases. 

Y Hybrid. The system is intended for at least two 
of the previously mentioned cases. 

Data Domain 

This category defines the input data available to 
the system. A medical CBIR system usually copes 
with 2D images, a sequence of images over time 
(2D + t) or 3D volumes. Categories for this system 
characteristic: 

Y 1D. The system data consists of biomedical signals.
 
Y 2D. The system data consists of images.
 
Y 2D+t. The system data consists of image
 

sequences. 
Y 3D. The system data consists of volumetric 

datasets. 
Y 3D+t. The system data consists of a sequence 

of volumes. 
Y Hybrid. The system data consists of more than 

one of the categories above. 

Data Range 

This category defines the data from which features 
are computed (the “feature source data” of “Space + 
Time Dimension Gap” and “Channel Dimension 
Gap”). Medical image feature source data is 
typically grayscale (1D) or color (3D). However, 
in multispectral imaging, higher data ranges do 
exist. Categories for this system characteristic: 

Y 1D grayscale. The system data consists of 
grayscale images or volumes. 

Y 1D other. The system data has a 1D range other 
than grayscale. 

Y 2D. The system data has a 2D range. 
Y 3D color. The system data consists of color 

images or volumes. 
Y 3D other. The system data has a 3D range other 

than color. 
Y 93D. The system data consists of a multichan­

nel range. 

Y	 Hybrid. The system data consists of more than 
one of the categories above. 

System Characteristics: I/O 

Content-based image retrieval in medical appli­
cations may also be combined with a text-based 
search in the patient health record. According to 
Tang et al., different combinations between text 
and images for input and output might be used.4 In 
general, it is easier to make inferences from text to 
images than from images to text. The first can be 
done from text associated with the image (e.g., 
Google image search), whereas the latter needs 
semantic concepts. 

Input Data 

Categories for this system characteristic: 

Y	 Free text. The system input consists of any 
alphanumerical wording that requires stemming, 
etc. for automatic processing. 

Y	 Keyword. The system input consists of words 
addressing a concept of special semantics, e.g., 
as part of a controlled vocabulary. 

Y	 Feature value. The system input consists of 
instances of an image-based feature, e.g., a 
numerical range. 

Y	 Image. The system input consists of a query 
image, marked region of interest, drawing, or 
any other nonalphanumeric data. 

Y	 Hybrid. The system input consists of more than 
one of the categories above. 

Output Data 

Categories for this system characteristic: 

Y Image only. The system returns similar images. 
Y Image and keyword. The system returns similar 

images and controlled image category information. 
Y Image and text. The system returns similar images
 

and other text, such as in multimedia documents.
 
Y Keyword only. The system returns a restricted
 

set of words based on a controlled vocabulary. 
Y Free text. The system returns alphanumerical 

wording that describes the image. 
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Y	 Hybrid. The system output consists of more 
than one of the categories above, for example, 
images, keywords, and free text. 

System Characteristics: Features and Similarity 

The process of computing the similarity between 
images is dependent on (1) the particular repre­
sentation of the image signature (i.e., the numerical 
features that are used to characterize the image) 
and (2) the distance of similarity measure that is 
being used to compute similarity of signatures. 

Image Features 

The type of features that are used to represent an 
image for content-based retrieval is one of the 
most critical system characteristics. These features 
may be computed from points, lines, or areas. 
Categories for this system characteristic: 

Y Grayscale. The image features are based on 
image intensity only. 

Y Color. The image features are based on color 
and grayscale. 

Y Shape. The image features are based on location 
or delineation of a region. 

Y Texture. The image features are based on 
complex visual pattern related to a ROI. 

Y	 Special—xxx. The image features are based on a 
context-based feature, where xxx denotes the 
name of the feature. 

Y	 Hybrid. The image features are based on more 
than one of the categories above. 

Distance Measure 

Besides the type of features, different methods to 
determine the similarity or dissimilarity between the 
features must be applied. It is of special interest 
whether the distance measure forms a metric, as the 
properties of metric distance functions, in particular, 
the triangle inequality, can be exploited to optimize 
searching of database images. For example, Qian 
and Tagare27 have shown how this can be done for 
shape similarity searches in a database of spine X-
ray images by clustering the database images into 
nodes, with each node corresponding to groups of 
similar images, and then implementing database 

searches by comparing the query image to nodes 
(cluster centers) rather than to all of the images in 
the database. Traina et al. summarize the metric 
distance function axioms in Traina et al.:18 a dis­
tance function d(A,B) of features A≠B≠C, which is 
a metric, must satisfy (1) reflexivity, i.e., d(A,A)=0,  
(2) nonnegativity, i.e., d(A,B)90, (3) symmetry, i.e., 
d(A,B)=d(B,A), and (4) the triangle inequality, i.e., 
d(A,B)+d(B,C)≥d(A,C). Categories for this system 
characteristic: 

Y	 Not applicable. No distance measure is used, e. 
g., the system does retrieval by intervals of 
feature values. 

Y	 Undeclared—xxx. The distance measure is 
named xxx, but it is not asserted to be a metric. 

Y Nonmetric—xxx. A nonmetric distance measure 
is used, where xxx denotes the measure. 

Y Metric—xxx. A metric distance measure named 
xxx is used. 

Y Hybrid. Any combination of the above is used. 

DISCUSSION AND CONCLUSION 

In this paper, we have proposed a nomenclature 
and classification scheme for analysis and assessment 
of medical CBIR systems. We have attempted to 
address the core features and required functionality of 
medical CBIR explicitly, systematically, and com­
prehensively, using the concept of gaps as a unifying 
idea to highlight potential shortcomings in various 
aspects of CBIR systems, as well as to illustrate 
methods for addressing those shortcomings. For 
important CBIR system characteristics that do not 
fit into the gaps ontology, we have provided a 
second, supplementary hierarchical grouping of 
related attributes.It is our intent that this effort will 
contribute to the ongoing research and development 
in medical CBIR by providing a more formal and 
methodical approach to conceptualizing CBIR 
systems in terms of their characteristics, their 
potential shortcomings, and how these shortcomings 
may be addressed, than has hitherto been available. 
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