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3.1 Introduction 

Biomedical terminologies and ontologies are frequently described as enabling 
resources in text mining systems [e.g., 1, 2, 3]. These resources are used to 
supports tasks such as entity recognition (i.e., the identification of biomedical 
entities in text) and relation extraction (i.e., the identification of relationships 
among biomedical entities). Although a significant part of current text mining 
efforts focuses on the analysis of documents related to molecular biology, the use 
of lexical, terminological and ontological resources is mentioned in research 
systems developed for the analysis of clinical narratives (e.g., MedSyndikate [4]) 
or the biological literature (e.g., BioRAT [5], GeneScene [6], EMPathIE [7] and 
PASTA [7]). Of note, some systems initially developed for extracting clinical 
information have later been adapted to extract relations among biological entities 
(e.g., MedLEE [8] / GENIES [9], SemRep / SemGen [10]). Commercial systems 
such as TeSSIi also make use of such resources. 

Entity recognition often draws on lists of entity names collected in lexicons, 
gazetteers and, more generally, terminology resources. Lists of disease names, for 
example, can be easily extracted from disease resources such as the International 
Classification of Diseases (ICD), from the disease component of general resources 
such as the Medical Subject Headings (MeSH) and from specialized resources such 
as the Online Multiple Congenital Anomaly / Mental Retardation (MCA/MR) 
Syndromes©. Relation extraction, on the other hand, may benefit from the 
relationships represented among terms in terminologies (e.g., Parkinson’s disease 
child of Neurodegenerative diseases in MeSH) and in ontologies (e.g., Basal 
ganglia finding site of Parkinson’s disease in SNOMED CT). 

Biomedical lexicons such as the UMLS SPECIALIST lexicon collect lexical items 
(words and multi-word expressions) frequently observed in biomedical text 
corpora and record information about them, including part of speech (e.g., noun, 
adjective), inflectional variants (e.g., singular/plural), spelling variants (e.g., 
American vs. British English). This information is useful not only to natural 
language processing (NLP) tools such as part-of-speech taggers and parsers, but 
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also to entity recognition systems as it can help identify variants of entity names in 
text [11]. 
The purpose of biomedical terminology is to collect the names of entities 
employed in the biomedical domain. Most biomedical terminologies record 
synonymous terms (e.g., Parkinson’s disease and Paralysis agitans) and have 
some kind of hierarchical organization, often tree or graph-like [12]. Terminology-
driven approaches to text mining have been explored in [13]. 
In contrast, biomedical ontology aims to study not names, but kinds of entities 
(i.e., substances, qualities and processes) of biomedical significance and the 
relations among them. Examples of such entities include substances such as the 
mitral valve and glucose, qualities such as the diameter of the left ventricle and the 
catalytic function of enzymes, and processes such as blood circulation and 
secreting hormones. Fundamental relations in biomedical ontologies include not 
only is a and part of, but also instance of, adjacent to, derives from, etc. [14]. 
In practice, the distinction between lexicons, terminologies and ontologies is not 
always sharp. On the one hand, although ontologies mostly focus on relations 
among entities, some of them also record the names by which entities are referred 
to. On the other, although terminologies essentially collect the names of entities, 
their hierarchical organization also reflects relations among such entities. Finally, 
the very names of these resources can be misleading. For example, despite its 
name, the Gene Ontology (GO) defines itself as a controlled vocabulary (i.e., a 
terminological resource), but like ontologies, its terms are linked by relationships 
such as is a and part of. However, the definition and use of such relations is not 
consistent throughout GO [15], as would be expected from ontologies. 
 
The objective of this chapter is to present some of the resources (lexicons, 
terminologies and ontologies) of interest for entity recognition and relation 
extraction tasks. Providing an exhaustive list of these resources is beyond the 
scope of this paper. Moreover, many of these resources are highly specialized and 
would therefore be of little interest to most readers. Instead, we selected general, 
publicly available resources that have been shown to be useful for biomedical text 
mining. Furthermore, this review is purposely limited to resources in English. 
We start by presenting an extended example illustrating biomedical terms in two 
pieces of text. We then give a brief description of the major resources available, 
with a particular emphasis on the Unified Medical Language System® (UMLS®) 
[16]. Finally, we discuss some issues related to biomedical terms and biomedical 
relations. The reader is referred to chapters 4 and 6 for a detailed presentation of 
the tasks of entity recognition and relation extraction. 

3.2 Extended example 

In this example, we consider two short pieces of text related to the genetic disease 
neurofibromatosis 2. Neurofibromatosis 2 is an autosomal dominant disease 
characterized by tumors called schwannomas involving the acoustic nerve, as well 
as other features [17]. The disorder is caused by mutations of the NF2 gene 



resulting in absence or inactivation of the protein product. The protein product of 
NF2 is commonly called merlin (but also neurofibromin 2 and schwannomin) and 
functions as a tumor suppressor. The first fragment of text (1) is extracted from the 
abstract of an articleii. The second is the definition of neurofibromatosis 2 in the 
Medical Subject Headings (MeSH) vocabularyiii . 
 
Neurofibromatosis type 2 (NF2) is often not recognised as a distinct entity 
from peripheral neurofibromatosis. NF2 is a predominantly intracranial 
condition whose hallmark is bilateral vestibular schwannomas. NF2 results 
from a mutation in the gene named merlin, located on chromosome 22. 
 

(1) 

Neurofibromatosis type 2: An autosomal dominant disorder characterized 
by a high incidence of bilateral acoustic neuromas as well as schwannomas 
of other cranial and peripheral nerves, and other benign intracranial tumors 
including meningiomas, ependymomas, spinal neurofibromas, and gliomas. 
The disease has been linked to mutations of the NF2 gene on chromosome 
22 (22q12) and usually presents clinically in the first or second decade of 
life. 

(2) 

 

3.2.1Entity recognition 

Many biomedical entities can be identified in these two fragments. Underlined 
expressions correspond to terms present in the UMLS Metathesaurus. This is the 
case, for example, of the disease neurofibromatosis 2 and the protein merlin. 
Interestingly, vestibular schwannomas in (1) and acoustic neuromas in (2), 
although lexically distinct, name the same tumor. While a lexicon is useful to 
identify these disease names, a terminology (or ontology) is required to identify 
them as synonymous. These two terms are names for the same disease concept in 
the UMLS Metathesaurus (C0027859). The list of UMLS concepts that can be 
identified in the two text fragments is given in Table 3.1. 
 

Table 3.1 – UMLS concepts (identifier [CUI], preferred name and semantic types 
[see Table 3.4 for the full names]) identifiable in text fragments (1) and (2). 
Column ‘M’ indicates the type of match (s: single simple match, m: multiple 
simple matches, a: approximate match, -: no direct match) 

Source String in text M CUI Preferred name S. Types 
(1) (2) Neurofibromatosis 

type 2 
s C0027832 Neurofibromatosis 2 neop 

(1) NF2 s C0085114 Neurofibromatosis 2 
genes 

gngm 

(1) peripheral 
neurofibromatosis 

s C0027831 Neurofibromatosis 1 neop 

(1) {intracranial - C0007682 Central Nervous dsyn 



condition} System Diseases 
(1) [bilateral] vestibular 

schwannomas 
a C0027859 Neuroma, Acoustic neop 

(1) (2) mutation / mutations s C0026882 Mutation genf 
(1) gene s C0017337 Genes gngm 
(1) merlin m C0254123 Neurofibromin 2 aapp, bacs 

(1) (2) chromosome 22 s C0008665 Chromosomes, 
Human, Pair 22 

celc 

(2) autosomal dominant 
disorder 

a C0265385 Autosomal dominant 
hereditary disorder 

dsyn 

(2) bilateral acoustic 
neuromas 

s C1136042 Neuroma, Acoustic, 
Bilateral 

neop 

(2) schwannomas s C0027809 Neurilemmoma neop 
(2) cranial and peripheral 

nerves 
- C0010268 

C0031119 
• Cranial Nerves 
• Peripheral Nerves 

bpoc 
bdsy 

(2) [benign] intracranial 
tumors 

a C0750978 Neoplasms, 
Intracranial 

neop 

(2) meningiomas s C0025286 Meningioma neop 
(2) ependymomas s C0014474 Ependymoma neop 
(2) neurofibromas s C0027830 Neurofibroma neop 
(2) gliomas s C0017638 Glioma neop 
(2) disease s C0012634 Disease dsyn 
(2) NF2 gene s C0085114 Neurofibromatosis 2 

genes 
gngm 

 
Many expressions extracted from the two text fragments can be mapped to the 
UMLS Metathesaurus through a simple match (i.e., exact match or after 
normalization). Except for merlin, which maps to both a protein and a bird, the 
mapping is unambiguous. In contrast, expressions in the dotted boxes also 
correspond to biomedical entities, but the name found in the text cannot be 
mapped directly to a UMLS concept. Expressions such as intracranial condition in 
(1) are vague compared to the corresponding concept names in the UMLS (e.g., 
central nervous system diseases). Complex phrases such as cranial and peripheral 
nerves in (2) refer to two concepts (i.e., cranial nerves and peripheral nerves) 
present in the Metathesaurus. Conversely, some expressions in the text convey 
more precision than the corresponding concepts found in biomedical terminologies 
(e.g., bilateral vestibular schwannomas in (1) vs. vestibular schwannomas and 
benign intracranial tumors in (2) vs. intracranial tumors). In these cases, while 
terminological resources are useful for identifying entities in text, they may not be 
sufficient for capturing all nuances present in the text. Term variation and 
management issues are discussed extensively in chapter 2. 

3.2.2Relation extraction 

Once entities have been identified in text fragments, the next step consists of 
identifying the relationships among them such as vestibular schwannomas 



manifestation of neurofibromatosis 2 and NF2 gene located on chromosome 22. 
Such relations may be explicitly represented in biomedical ontologies. For 
example the relation schwannomas associated morphology of neurofibromatosis 
2 is asserted in SNOMED CT. However, ontologies do not necessarily contain such 
fine-grained assertions but may rather represent higher-level facts such as gene 
located on chromosome. A relation extraction system would first identify NF2 
gene as a kind of gene and chromosome 22 as a kind of chromosome before 
inferring that a particular gene (NF2 gene) is located on a particular chromosome 
(chromosome 22). 
The use of ontologies to support relation extraction often requires the system to 
identify in the text not only entities, but also potential relationships. Clues for 
identifying relationships include lexical items (e.g., the preposition on for the 
relationship located on) and syntactic structures (e.g., intracranial tumors 
including meningiomas for meningiomas is a intracranial tumors), as well as 
statistical and pattern based clues (not presented here). Relations may span several 
sentences and their identification often requires advanced linguistic techniques 
such as anaphora and co-reference resolution. For example, from the last sentence 
of (2), the relation disease associated with mutation can be extracted. While 
accurate, this relation is incomplete in this context because disease actually refers 
not to any disease, but to neurofibromatosis 2 (anaphoric relation). Similarly, 
mutations of the NF2 gene (not mutations in general) is the entity associated with 
the disease. Therefore, the complete relation to be extracted is neurofibromatosis 2 
associated with mutations of the NF2 gene. The potential relations extracted from 
the text can then be validated against the relations explicitly represented in the 
ontology or inferred from it. 

3.3 Lexical resources 

The resources presented under this category provide the lexical and lexico-
syntactic information needed for parsing text. The major resource for biomedical 
text is the SPECIALIST lexicon. Additionally, specialized resources can be useful 
for analyzing subdomains of biomedicine (e.g., lists of gene names for molecular 
biology corpora). Conversely, general resources such as WordNet can also help 
analyze the literature written for less specialized audiences (e.g., for patients). 

3.3.1WordNet 

WordNet® is an electronic lexical database developed at Princeton University that 
serves as a resource for applications in natural language processing and 
information retrieval [18]. The core structure in WordNet is a set of synonyms 
(synset) that represents one underlying concept. For example, the synset 
representing hemoglobin also contains the lexical entries haemoglobin (British-
English spelling) and Hb (abbreviation). A definition is provided for the synset: “a 
hemoprotein composed of globin and heme that gives red blood cells their 



characteristic color; function primarily to transport oxygen from the lungs to the 
body tissues”. There are separate structures for each linguistic category covered: 
nouns, verbs, adjectives, and adverbs. For example, the adjective “renal” and the 
noun “kidney,” although similar in meaning, belong to two distinct structures, and 
a specific relationship, “pertainymy,” relates the two forms. The current version of 
WordNet (2.0) contains over 114,000 noun synsets. In addition to being a lexical 
resource, WordNet has some of the features of ontologies. For example, each 
synset in the noun hierarchy belongs to at least one is a tree (e.g., hemoglobin is a 
protein) and may additionally belong to several part of-like trees (hemoglobin 
substance of red blood cell). Because of its modest coverage of the biomedical 
domain [19, 20], WordNet has been used only in a limited number of projects in 
biomedicine [21] where resources such as the UMLS usually play a more 
prominent role. WordNet is available free of charge from 
http://wordnet.princeton.edu/. Application programming interfaces (APIs) have 
been developed for the major programming languages, making it relatively easy 
for developers to integrate WordNet in applications. 

3.3.2UMLS SPECIALIST lexicon 

The SPECIALIST lexicon is one of three knowledge sources developed by the 
National Library of Medicine (NLM) as part of the Unified Medical Language 
System (UMLS) project. It provides the lexical information needed for processing 
natural language in the biomedical domain [22]. The lexicon entry for each word 
or multi-word term records syntactic (part of speech, allowable complementation 
patterns), morphological (base form, inflectional variants) and orthographic 
(spelling variants) information. It is in fact a general English lexicon that includes 
many biomedical terms. Lexical items are selected from a variety of sources, 
including lexical items from MEDLINE/PubMed® citation records, the UMLS 
Metathesaurus and a large set of lexical items from medical and general English 
dictionaries. Contrary to WordNet, the SPECIALIST lexicon does not include any 
information about synonymy or semantic relations among its entries. This 
information, however, is present in the Metathesaurus, another component of the 
UMLS (see 3.4.3). The record for hemoglobin in the SPECIALIST lexicon, shown 
in Figure 3.1, indicates the base form, one spelling variant, and two inflectional 
classes as hemoglobin is used as both an mass noun (e.g., in “Hemoglobin 
concentration is reported as grams of hemoglobin per deciliter of blood.”) and a 
countable (e.g., in “the study of hemoglobins, both normal and mutant, […]”). 
Additionally, the abbreviation Hb and the acronym Hgb are cross-referenced to 
hemoglobin. The SPECIALIST lexicon is distributed as part of the UMLS and can 
be queried through application programming interfaces for Java and XML. It is 
also available as an open source resource as part of the SPECIALIST NLP tools 
(http://SPECIALIST.nlm.nih.gov). 
 



{
base=hemoglobin (base form)
spelling_variant=haemoglobin
entry=E0031208 (identifier)
cat=noun (part of speech)
variants=uncount (no plural)
variants=reg (plural: hemoglobins , haemoglobins)

}
 

Figure 3.1 – Representation of hemoglobin in the SPECIALIST lexicon 

3.3.3Other specialized resources 

While general resources such as WordNet and the SPECIALIST lexicon provide a 
good coverage of the general biomedical language, they (purposely) fail to cover 
in detail specialized subdomains such as gene and protein names or chemical and 
drug names. The syntactic analyzers and parsers relying on these resources may 
therefore give suboptimal results when analyzing specialized corpora (e.g., 
molecular biology abstracts). One approach to solving this problem is to use 
machine learning techniques to identify the names of specialized entities. 
Alternatively or in conjunction with these techniques, resources such as lists of 
gene, protein, chemical and drug names can be exploited [23]. In molecular 
biology, for example, the Human Genome Organization (HUGO) has established 
through its Gene Nomenclature Committee (HGNC) a list of over 20,000 approved 
gene names and symbols, called Genew [24]. Recorded in this database are the 
symbol NF2 and the name neurofibromin 2 (bilateral acoustic neuroma) for the 
gene merlin, whose mutation causes the disease neurofibromatosis 2. More 
generally, lists of names for specialized entities can be extracted from specialized 
resources. Examples of publicly available specialized resources for genes, 
proteins, chemical entities, and drugs are given in Table 3.2. Finally, acronyms and 
abbreviations harvested from the biomedical literature [25, 26] and collected in 
databases [27] can also benefit entity recognition applications. This issue is 
discussed extensively in chapter 5. 
 

Table 3.2 -- Examples of publicly available specialized resources for genes, 
proteins, chemical entities, and drugs 

Domain Resources URL 
Genew http://www.gene.ucl.ac.uk/nomenclature/ 
Entrez Geneiv http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene 

Genes and 
proteins 

UniProt http://www.ebi.uniprot.org/index.shtml 
PubChem http://pubchem.ncbi.nlm.nih.gov/ 
ChemIDplus http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp 

Chemical 
entities 

ChEBI http://www.ebi.ac.uk/chebi/ 



RxNorm http://www.nlm.nih.gov/research/umls/rxnorm_main.html 
Drugs National 

Drug Code 
http://www.fda.gov/cder/ndc/ 

3.4 Terminological resources 

The purpose of terminology is to collect the names of entities employed in the 
biomedical domain [28]. Terminologies typically provide lists of synonyms for the 
entities in a given subdomain and for a given purpose. As such, they play an 
important role in entity recognition. Additionally, most terminologies have some 
kind of hierarchical organization that can be exploited for relation extraction 
purposes. Many terminologies consist of a tree where nodes are terms and links 
represent parent-to-child or more-general-to-more-specific relationships. Some 
terminologies allow multiple inheritance and have the structure of a directed 
acyclic graph. The Gene Ontology and MeSH provide examples of terminological 
systems created to support different tasks. Because it integrates a large number of 
terminologies, the UMLS Metathesaurus is the terminological system most 
frequently used in the analysis of biomedical text. 

3.4.1Gene Ontology 

The Gene Ontology™ (GO) is a controlled vocabulary developed by the Gene 
Ontology Consortium for the annotation of gene products in model organisms. GO 
is organized in three separate hierarchies for molecular functions (6,933 terms), 
biological processes (9,053 terms) and cellular components (1,414 terms), as of 
February 1, 2005 [29]. For example, annotations for the gene NF2 in the GOA 
databasev include the molecular function term cytoskeletal protein binding, the 
biological process term negative regulation of cell proliferation and the cellular 
component terms plasma membrane and cytoskeleton. Each of the three 
hierarchies is organized in a directed acyclic graph in which the nodes are GO 
terms and the edges represent the GO relationships is a and part of. For example, 
as illustrated in Figure 3.2, the relations of the cellular component cytoskeleton to 
its parent terms include cytoskeleton is a intracellular non-membrane-bound 
organelle and cytoskeleton part of intracellular. GO terms may have synonyms 
(e.g., synonyms for plasma membrane include cytoplasmic membrane and 
plasmalemma). Most terms have a textual definition (e.g., for plasma membrane: 
“The membrane surrounding a cell that separates the cell from its external 
environment. It consists of a phospholipid bilayer and associated proteins.”). 
Both the names and the relations comprised in the Gene Ontology can benefit text 
mining applications. The names of molecular functions, biological processes and 
cellular components are frequently used in the biomedical literature [30]. For 
example, the biological process activation of MAPK and the cellular component 
adherens junction can be identified in the title “Erbin regulates MAP kinase 
activation and MAP kinase-dependent interactions between merlin and adherens 



junction protein complexes in Schwann cells”. As illustrated in the following text 
fragment, hierarchical relations can help resolve anaphora and interpret associative 
relations. 
 
The organization of the actin cytoskeleton in prefusion aligning myoblasts 
is likely to be important for their shape and interaction. We investigated 
actin filament organization and polarity by transmission electron 
microscopy (TEM) in these cells. 

(3) 

 
The terms actin cytoskeleton and actin filament identified in the first two sentences 
of (3) are present in GO. Moreover, a relation between them is explicitly recorded 
in GO (actin filament part of actin cytoskeleton), which helps link together the two 
sentences. However, many concepts and relations are not represented in GO or 
other biomedical terminologies. For example, a relation between myoblasts and 
these cells – namely myoblast is a cell – is needed to resolve the anaphoric relation 
between the two terms in (3). Such a relation cannot be found in GO where the 
term myoblast is not even represented. 
Finally, GO terms constitute an entry point to annotation databases, providing a 
wealth of relations between gene products and the molecular functions, biological 
processes and cellular components with which they are associated (e.g., NF2 has 
biological process negative regulation of cell proliferation). GO is available from 
http://geneontology.org/ and is distributed in various formats including XML and 
database formats. Perl and Java application programming interfaces are also 
available. GO is one of the source vocabularies included in the UMLS 
Metathesaurus. GO is a member of a family of controlled vocabularies called 
Open Biomedical Ontologies (OBO). These resources can be useful in text mining 
applications as a source of specialized vocabulary (e.g., for chemicals or 
experimental conditions). OBO resources are available at 
http://obo.sourceforge.net/. 
 



 
 

Figure 3.2 – Representation of the gene product merlin (MERL_HUMAN). Solid 
lines represent some of its annotations to the Gene Ontology; solid and dashed 
arrows represent the Gene Ontology relationships is a and part of, respectively. 



3.4.2Medical Subject Headings 

The Medical Subject Headings (MeSH®) thesaurus is a controlled vocabulary 
produced by the National Library of Medicine and used for indexing, cataloging 
and searching for biomedical and health-related information and documents [31]. 
It consists of 22,995 descriptors (main headings) organized in fifteen hierarchies. 
Additionally, a set of about 150,000 “supplementary concept records” provides a 
finer-grained representation of biomedical entities including chemicals and 
proteins. A list of entry terms (synonyms or closely related terms) is given for each 
descriptor. Entry terms for the disease Neurofibromatosis 2 include 
Neurofibromatosis Type II, Bilateral Acoustic Neurofibromatosis, Bilateral 
Acoustic Schwannoma and Familial Acoustic Neuromas. A scope note often 
provides a definition of the descriptor (see (2) for an example). In the MeSH 
thesaurus, descriptors are related by parent/child relations; each descriptor has at 
least one parent and may have several. For example, Neurofibromatoses and 
Neuroma, Acoustic are the two parents of the descriptor Neurofibromatosis 2. The 
arrangement of MeSH descriptors in hierarchies is intended to serve the purpose of 
indexing and information retrieval and does not always follow strict classificatory 
principles. In addition to hierarchical relations, cross-references may link a 
descriptor to descriptors from other hierarchies. For example, the disease 
Neurofibromatosis 2 is linked to the protein Neurofibromin 2 and to the gene 
Genes, Neurofibromatosis 2. The MeSH thesaurus is used by NLM for indexing 
articles from 4,600 biomedical journals for the MEDLINE/PubMed database. Like 
GO, MeSH can be used in text mining applications for the many names and 
relations it provides. Its scope is broader than GO’s, but its granularity is coarser. 
MeSH is available from http://www.nlm.nih.gov/mesh/ in various formats 
including XML. MeSH is one of the source vocabularies included in the UMLS 
Metathesaurus. 

3.4.3UMLS Metathesaurus 

The UMLS Metathesaurus is one of three knowledge sources developed and 
distributed by the National Library of Medicine as part of the Unified Medical 
Language System (UMLS) project [16]. Version 2005AA of the Metathesaurus 
contains information about over 1 million biomedical concepts and 5 million 
concept names from more than 100 controlled vocabularies and classifications 
(some in multiple languages) used in patient records, administrative health data, 
bibliographic and full-text databases and expert systems. The Metathesaurus also 
records over 16 million relations among these concepts, inherited from the source 
vocabularies or specifically generated. While the Metathesaurus preserves the 
names, meanings, hierarchical contexts, attributes, and inter-term relationships 
present in its source vocabularies, it also integrates existing terminologies into a 
common semantic space. Like in WordNet, synonymous names are clustered 
together to form a concept. Additionally, the Metathesaurus assigns a unique 



identifier to each concept and establishes new relations between terms from 
different source vocabularies as appropriate. Each concept is also categorized with 
at least one semantic type from the UMLS Semantic Network (see 3.5.2), 
independently of its hierarchical position in the source vocabularies. The scope of 
the Metathesaurus is determined by the combined scope of its source vocabularies, 
including – in addition to Gene Ontology and MeSH – disease vocabularies (e.g., 
International Classification of Diseases), clinical vocabularies (e.g., SNOMED CT), 
nomenclatures of drugs and medical devices, as well as the vocabularies of many 
subdomains of biomedicine (e.g., nursing, psychiatry, gastrointestinal endoscopy). 
 
Examples of Metathesaurus concepts are given in Table 3.1. C0254123 identifies 
the protein neurofibromin 2, whose synonyms include merlin, NF2 protein, and 
schwannomin. Its semantic types are Amino Acid, Peptide, or Protein and 
Biologically Active Substance. The following source vocabularies contributed 
names to this concept: MeSH, SNOMED CT and the NCI Thesaurus. Once 
integrated in the Metathesaurus, neurofibromin 2 has multiple parents including 
membrane proteins (from MeSH), tumor suppressor proteins (from both MeSH 
and SNOMED CT) and signaling protein (from the NCI Thesaurus). Its only 
descendant is merlin, Drosophila (from MeSH). Beside hierarchical relations, 
associative relations link the protein neurofibromin 2 to the gene 
neurofibromatosis 2 genes and to the disease neurofibromatosis 2. Also recorded 
in the Metathesaurus are the frequencies of co-occurrence of MeSH descriptors in 
MEDLINE/PubMed citations. For example, during the last ten years, the descriptors 
Neurofibromin 2 and Neurofibromatosis 2 occurred together 13 times as major 
descriptors. Other descriptors frequently co-occurring with Neurofibromin 2 
include Membrane Proteins (8 times), Phosphoproteins and NF2 gene (7 times) 
and Cell Transformation, Neoplastic (5 times). 
Section 3.2 illustrated how the Metathesaurus can be used in entity recognition 
and relation extraction tasks. Used in many biomedical entity recognition studies, 
the MetaMap (MMTx) program has been specially designed to take advantage of 
the features of the UMLS Metathesaurus and SPECIALIST lexicon [32]. MMTx is 
available from http://mmtx.nlm.nih.gov/. Besides text mining, the Metathesaurus 
is used in a wide range of applications including linking between different clinical 
or biomedical vocabularies, information retrieval and indexing, and biomedical 
language processing. The Metathesaurus is available from 
http://umlsks.nlm.nih.gov/ (or on DVD) in relational database format. Users are 
required to complete the License Agreement for the Use of UMLS Metathesaurus. 
Java and XML application programming interfaces are available for the 
Metathesaurus. 

3.5 Ontological resources 

Biomedical ontology aims to study the kinds of entities (i.e., substances, qualities 
and processes) of biomedical significance. Unlike biomedical terminology, 
biomedical ontology is not primarily concerned with names, but with the 



principled definition of biological classes and their interrelations. In practice, 
however, as most terminologies have some degree of organization and many 
ontologies also collect names for their entities, the distinction between ontological 
and terminological resources is somewhat arbitrary. Because they share many 
characteristics with ontologies, we will list under this rubric two broad resources 
(SNOMED CT and the UMLS Semantic Network). Other ontologies will be briefly 
discussed. 

3.5.1SNOMED CT 

The Systematized Nomenclature of Medicine (SNOMED®) Clinical Terms® 
(SNOMED CT), developed by the College of American Pathologists, was formed 
by the convergence of SNOMED RT and Clinical Terms Version 3 (formerly known 
as the Read Codes). SNOMED CT is the most comprehensive biomedical 
terminology recently developed in native description logic formalismvi. The 
version described here (January 31, 2004) contains some 270,000 concepts, named 
by over 400,000 names. SNOMED CT consists of eighteen independent hierarchies 
reflecting, in part, the organization of previous versions of SNOMED into axes, 
such as Diseases, Drugs, Living organisms, Procedures and Topography. Each 
SNOMED CT concept is described by a variable number of elements. For example, 
the concept Neurofibromatosis, type 2 has a unique identifier (92503002), several 
names (Bilateral acoustic neurofibromatosis, BANF - Bilateral acoustic 
neurofibromatosis, Neurofibromatosis, type 2 and Neurofibromatosis type 2) and 
has multiple is a parents including Congenital anomaly of inner ear, Neoplasm of 
uncertain behavior of cranial nerve and Acoustic neuroma. Additionally, 
Neurofibromatosis, type 2 participates in a complex network of associative 
relations to other concepts. The relations (called roles), shown in Table 3.3, 
indicate, for example, that the lesions encountered in Neurofibromatosis, type 2 
include neurofibromatosis of the vestibulocochlear nerve (group 1) and 
neurilemoma of the vestibular nerve (group 3). SNOMED CT is available as part of 
the UMLS (from http://umlsks.nlm.nih.gov/), at no charge for UMLS licensees in 
the U.S. The structure of the UMLS Metathesaurus has been modified to 
accommodate the level of detail provided by ontological resources like SNOMED 
CT. Because SNOMED CT has only become available through the UMLS in 2004, 
the number of studies reporting its uses is still limited. 

Table 3.3 – Some of the roles present in the definition of Neurofibromatosis, type 
2 

Group Role Value 
Associated morphology Neurofibromatosis 
Finding site Skin structure 1 
Finding site Vestibulocochlear nerve structure 
Associated morphology Neurilemoma 

3 
Finding site Vestibular nerve structure 



 

3.5.2UMLS Semantic Network 

The UMLS Semantic Network is one of three knowledge sources developed and 
distributed by the National Library of Medicine as part of the Unified Medical 
Language System (UMLS) project. It was created in an effort to provide a semantic 
framework for the UMLS and its constituent vocabularies [33]. Unlike the 
Metathesaurus, the Semantic Network is a small structure composed of 135 high-
level categories called semantic types. It is organized in two single-inheritance 
hierarchies: one for Entity and one for Event. In addition to is a, 53 kinds of 
relationships are defined in the Semantic Network, which are used to represent 
over 6,700 relations – hierarchical and associative – among semantic types. 
Semantic types from the Semantic Network are linked to Metathesaurus concepts 
by the categorization link established by the Metathesaurus editors: Each concept 
is categorized with at least one semantic type from the Semantic Network, 
independently of its hierarchical position in the source vocabularies. Fifteen 
collections of semantic types, called semantic groups, have been defined in order 
to partition Metathesaurus concepts into a smaller number of semantically 
consistent groups [34]. 
Semantic types for the Metathesaurus concepts listed in Table 3.1 are presented in 
Table 3.4, along with the corresponding semantic groups. For example, the 
concept Neurofibromatosis 2 is categorized as Neoplastic Process, a semantic type 
from the semantic group Disorders. In addition to mutation, Metathesaurus 
concepts categorized with Genetic Function include alternative splicing, loss of 
heterozygosity and ribonuclease activity. Examples of relations among semantic 
types include Body Part, Organ, or Organ Component location of Neoplastic 
Process, Pharmacologic Substance treats Neoplastic Process and Neoplastic 
Process manifestation of Genetic Function. A relationship between two semantic 
types indicates a possible link between the concepts categorized with these 
semantic types. In natural language processing and text mining applications, 
Semantic Network relations are typically used as supporting evidence for the 
candidate predicates (i.e., <concept1, relationship, concept2> structures) extracted 
from the text [35]. For example, in “schwannomas of cranial nerves”, after 
identifying the concepts neurilemmoma (from “schwannoma”) as a Neoplastic 
Process and cranial nerves as a Body Part, Organ, or Organ Component, the 
preposition of can be interpreted as indicating the location of the neoplastic 
process to the body part. This candidate predicate is supported by the Semantic 
Network relation Body Part, Organ, or Organ Component location of Neoplastic 
Process. Many relation extraction systems rely on correspondences established 
between semantic relations and linguistic phenomena [e.g., 36]. Semantic Network 
relations can also be exploited in conjunction with relations among concepts in the 
Metathesaurus [e.g., 37]. The Semantic Network is distributed as part of the UMLS 
and is available from http://umlsks.nlm.nih.gov/. Like the other UMLS knowledge 



sources, it can be queried through application programming interfaces for Java and 
XML. 

Table 3.4 – Semantic types and semantic groups for the Metathesaurus concepts 
listed in Table 3.1 

ST abbr. ST name Semantic group 
aapp Amino Acid, Peptide, or Protein Chemicals & Drugs 
bacs Biologically Active Substance Chemicals & Drugs 
bdsy Body System Anatomy 
bpoc Body Part, Organ, or Organ Component Anatomy 
celc Cell Component Anatomy 
dsyn Disease or Syndrome Disorders 
genf Genetic Function Physiology 
gngm Gene or Genome Genes & Molecular Sequences 
neop Neoplastic Process Disorders 

 

3.5.3Other ontological resources 

In addition to SNOMED CT and the UMLS Semantic Network, several ontological 
resources can be used to support text mining. The Foundational Model of 
Anatomyvii (FMA) is a large reference ontology of anatomy developed at the 
University of Washington [38]. In addition to NLP applications [39], the FMA has 
been used in entity recognition tasks [40] as well as relation extraction tasks [41]. 
Ontologies such as OpenGALENviii  have been developed to support terminological 
services [42] and may be less useful for text mining applications. For example, 
unlike terminologies, OpenGALEN does not record lists of synonyms for 
biomedical entities. For more information about biomedical ontologies, we refer 
the interested reader to [43]. 

3.6 Issues related to entity recognition 

The biomedical domain has a long tradition of collecting and organizing terms as 
well as building classifications, dating back the seventeenth century. The dozens of 
terminological resources resulting from this effort now benefit entity recognition 
tasks. Moreover, the terminology integration system Unified Medical Language 
System (UMLS) mentioned earlier has contributed to make existing terminologies 
both easier to use by providing a common format and distribution mechanism and 
more useful by identifying synonymy and other semantic relations across them. As 
part of this effort, the National Library of Medicine (NLM) also developed the 
lexical resources (lexicon and lexical programs) used to detect lexical similarity 
among biomedical terms and, more generally, to process biomedical text. This is 
the reason why the UMLS is used in a large number of text mining systems in 
biomedicine. 



The properties of biomedical terms have been studied. For example, [44, 45] found 
matches for 10-34% of the UMLS strings in MEDLINE/PubMed (depending on the 
matching criteria used) and [44] developed a model for identifying the UMLS 
terms useful in natural language processing (NLP) applications. In the domain of 
molecular biology, researchers have investigated the lexical properties of the Gene 
ontology (GO): 35% of GO terms have been found in the biomedical literature [30] 
and 66% of GO terms are composed of other GO terms [46]. A model of 
compositionality in GO has even been proposed [47]. These studies have 
confirmed the interest of using existing terminological resources in entity 
recognition tasks. 
There are, however, some remaining challenges in biomedical entity recognition, 
including limited coverage of terminological resources and ambiguity in 
biomedical names. 

3.6.1Limited coverage 

First, some subdomains remain only partially covered by existing resources. One 
example is given by genes and proteins and, more generally, chemical entities. 
Names for such entities have proved difficult to compile in terminologies in an 
exhaustive manner. Vocabularies extracted from specialized databases may 
complement traditional terminologies here. Moreover, while variant formation has 
been studied and effectively modeled for clinical terms [48], normalization 
techniques for the less regular names of entities employed in genomics have only 
be recently researched [49]. For these reasons, entity recognition techniques in this 
subdomain often include machine learning approaches rather than the rule-based 
approach traditionally employed in biomedical NLP. Many gene names 
identification systems have been developed in the last five years (see [50-53] for 
examples). Entity recognition systems in molecular biology texts may include 
algorithms rather than (or in addition to) static resources [23]. However, the 
product of some of these algorithms is made available to the research community 
by their authors. For example, [54] share the lexicon of over one million gene and 
protein names they have extracted from the biomedical literature. Coverage issues 
have been explored in clinical terminologies as well [55], and techniques have 
been developed to extend the coverage of terminologies to specialized subdomains 
[e.g., 56] or from specific corpora [e.g., 57]. More generally, relation extraction 
may also benefit from term extraction techniques resulting from research in 
terminology [58]. 

3.6.2Ambiguity 

The second issue is the ambiguity of many names in biology. This phenomenon is 
common in natural language but poses specific challenges to biomedical entity 
recognition. Polysemy (several meanings for the same name) is illustrated by NF2, 
which simultaneously names the gene, the protein it produces and the disease 



resulting from its mutation. While polysemy does not usually pose problems for 
domain experts, it makes it difficult for entity recognition systems to select the 
appropriate meaning. The ambiguity resulting from polysemous gene names has 
been quantified by [59]. These authors found modest ambiguities with general 
English words (0.57%) and medical terms (1.01%), but high ambiguity across 
species (14.20%). Ambiguity across species may be difficult to resolve, for 
example when only capitalization conventions differentiate between gene names in 
various model organisms (e.g., NF2 in Homo sapiens vs. Nf2 in Mus musculus). 
Various disambiguation strategies have been applied to biomedical language 
processing [e.g., 60, 61]. But further research is needed to develop strategies 
adapted to the specificity of molecular biology (e.g., ambiguity across species). 
Moreover, the limited availability of annotated resources such as the GENIA 
corpus [62] hinders the development of unsupervised disambiguation techniques. 

3.7 Issues related to relation extraction 

3.7.1Terminological vs. ontological relations 

Not only do terminologies contain a large number of names for biomedical entities 
useful for entity recognition tasks, but they also represent a similarly considerable 
number of relations. For example, over sixteen million relations are recorded in the 
UMLS Metathesaurus. While not all of them represent well-defined predicates or 
assertions as would be expected from ontologies, these relations are essentially 
beneficial to applications such as relation extraction, especially when used in 
combination with lexico-syntactic clues and additional ontological relations. 
The relations found in the most recent terminologies – often developed using 
knowledge representation techniques such as description logics – are generally 
better specified and principled, and therefore more directly useful for relation 
extraction. However, a careful inspection of these and other ontological resources 
through the prism of formal ontology reveals some limitations, especially in terms 
of consistency [15, 63, 64]. Applying formal ontological principles to biomedical 
ontologies results in clarifying the relations [65], which, in turn, is expected to 
result in more consistent ontologies and more accurate inferences. 
Recent experiments in reengineering terminologies have shown both the benefit 
and the cost (in terms of human resources) of such efforts [66, 67]. However, 
improving ontologies is likely to benefit relation extraction as the candidate 
assertions extracted from text must be checked not necessarily against relations 
explicitly represented in ontologies, but most often against inferred relations. 

3.7.2Interactions between text mining and terminological resources 

This chapter deliberately looks at ontologies and other resources as enabling 
resources for text mining and relation extraction in particular. It is worth 
mentioning that, conversely, the relations extracted from text corpora and other 



knowledge sources (e.g., annotation database) can help identify additional 
ontological relations. For example, lexico-syntactic patterns have been used to 
extract hypernymy relations from text corpora [68] and statistical methods have 
helped identify associative relations among Gene Ontology terms [69]. In other 
words, the relations between text mining techniques and terminological resources 
are not unilateral: there is rather a virtuous cycle in which applications and 
resources benefit from one another. Studying this symbiotic relation is, however, 
beyond the scope of this chapter. More generally, various existing resources can be 
combined in order to create new resources. For example, semantic lexicons have 
been derived from lexicons, terminologies and text corpora [70, 71]. 

3.8 Conclusion 

This chapter has presented the various kinds of enabling resources used in 
biomedical text mining applications. Lexicons support basic natural language 
processing tasks such as parsing. Additionally, along with terminologies, lexicons 
provide lists of names (including variants) for biological entities, supporting entity 
recognition tasks. Finally, the relations represented in ontologies and terminologies 
often serve as a reference for relation extraction algorithms. 
Because it integrates these three kinds of resources, the Unified Medical Language 
System (UMLS) plays a central role in biomedical text mining. This chapter 
illustrated the use of its three components (SPECIALIST lexicon, Metathesaurus 
and Semantic Network) in entity recognition and relation extraction tasks. The role 
of other resources, either more specialized or more general, was also discussed. 
Despite the existence of these resources, there remain many challenges to entity 
recognition and relation extraction in biology. Existing biomedical lexicons and 
terminologies fail to provide adequate coverage of specialized subdomains (e.g., 
genes and proteins for the various model organisms). Approaches to normalizing 
the names of genomic entities and to resolving the ambiguity introduced by some 
of them need to be further researched. Finally, the development of large, 
consistent, principled sources of biomedical knowledge – namely ontologies – will 
benefit not only text mining applications, but more generally the wide range of 
tasks relying upon biomedical knowledge (e.g., database interoperability, decision 
support, etc). 
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