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ABSTRACT 
 
This study evaluated the use of machine learning 
techniques in the classification of sentence type. 
7253 structured abstracts and 204 unstructured 
abstracts of Randomized Controlled Trials from 
MedLINE were parsed into sentences and each 
sentence was labeled as one of four types 
(Introduction, Method, Result, or Conclusion). 
Support Vector Machine (SVM) and Linear 
Classifier models were generated and evaluated 
on cross-validated data.   Treating sentences as 
a simple "bag of words", the SVM model had an 
average ROC area of 0.92.    Adding a feature of 
relative sentence location improved 
performance markedly for some models and 
overall increasing the average ROC to 0.95. 
Linear classifier performance was significantly 
worse than the SVM in all datasets. Using the 
SVM model trained on structured abstracts to 
predict unstructured abstracts yielded 
performance similar to that of models trained 
with unstructured abstracts in 3 of the 4 types.  
We conclude that classification of sentence type 
seems feasible within the domain of RCT's. 
Identification of sentence types may be helpful 
for providing context to end users or other text 
summarization techniques.  

INTRODUCTION 
 
With increasing availability to large stores of 
online text data, automated text categorization 
continues to be an important area of research.   
As this field matures, several important 
questions about classifier performance have 
been answered.  However, while several articles 
have been published on text categorization based 
on content1,2,3, few have reported on the 
categorization of contextual information (e.g., 

whether the text is found in the title, abstract or a 
particular section of the article).  
 
The fact that information about the text context 
is related to the content is of no surprise.   Many 
have noted, for example, the common practice of 
busy clinicians reading the last few sentences of 
the abstract first to determine if the rest of the 
article is worth reading.  The determination of 
the context from content has great benefit since 
in many situations the contextua l information 
may be difficult to obtain, ambiguous, or just 
plain missing.   
 
Yet, some programs depend on these contextual 
clues for adequate performance. For example, 
beyond simple classification, work is proceeding 
at the National Library of Medicine (NLM) to 
abstract conceptual relations from text with a 
tool SemRep4.  SemRep uses natural language 
processing techniques and does well when given 
conclusion type sentences, but has more 
difficulty with any general sentence. Therefore 
information about the type of sentence would be 
helpful as a preprocessing step.   
  
This study addresses the possibility of using 
machine-learning techniques to identify 
contextual information directly from free text.  
Specifically, we examine the feasibility of 
classifying sentences into general high-level 
categories that would be found in a structured 
report.  This classification task differs from 
other reports of text categorization in that the 
class labels are fewer, but the determinates of a 
given class label may be broader and more 
abstract.   Additionally, previous reports of text 
classification have generally involved larger 
units of analysis such as abstracts or documents.  
The use of sentences as the unit of analysis leads 
to increased sparseness in an already sparse data 



vector.  This makes feature limiting more 
problematic. 

METHODS 
 
To test the efficacy of machine learning 
techniques on sentence classification, we 
designed an experiment to train SVM’s and 
linear classifiers on a random sampling of 
medical abstracts of randomized control trials 
(RCTs). We limited our studies to RCTs to build 
on previous work5. In the past RCTs had been 
chosen because of their high volume, relative 
consistency.  
 
Approximately 12 million MedLINE abstracts 
from 1976 to 2001 were evaluated for criterion 
matching the Haynes6 filter for Randomized 
Control Trials on medical therapy along with the 
subheads "drug therapy" and "therapeutic use." 
This yielded 37,151 abstracts. From this sample, 
7253 abstracts were marked as "structured" 
based on the presence of structure labels. A 
preliminary study identified 362 structure labels 
though iterative passes with regular expression 
matches looking for short phrases (1-4 words) 
followed by a colon or dashes.   Reviewing this 
technique on independent structured and 
unstructured abstracts indicated an error rate of 
less than 1% for this technique. 
 
Both structured and unstructured abstracts were 
then parsed into 334,623 sentences (90,655 
structured, 243,958 unstructured) using Adwait 
Ratnaparkhi's mxTerminator 7. MxTerminator is 
an entropy based sentence tagger that is 
trainable. The results reported here used 
mxTerminators default model, trained on a large 
corpus of text from the New York Times. We 
found   accuracy of sentence breaks using this 
model to be 93.5% on the MedLine abstracts in 
our experiment. Retraining mxTerminator using 
the corrected sentences generated in this 
evaluation (1532 sentences) and testing on 400 
fresh sentences, accuracy increased to 97%. 
However, this retrained sentence model was 
generated after the experiments were performed, 
and therefore could not be used for results 
presented here.  
 

From the 30,182 unstructured abstracts, 204 
(1629 sentences) were randomly chosen and 
manually reviewed and classified as one of the 
following four types: ‘introduction’, ‘method’, 
‘result’, or ‘conclusion’. Criteria were set for 
identifying these types as follows. An 
‘introduction’ sentence was defined as a 
sentence that describes the need for the study or 
prior work. A ‘method’ was defined as 
something the investigators did. A ‘result’ was 
defined as something the investigators found in 
the study. A ‘conclusion’ was defined as a 
statement of fact that applies to cases outside of 
the study population, or a sentence that was 
specifically states itself to be a conclusion. In 
ambiguous cases the later type was assigned.  
For example, if a sentence had both a result and 
a conclusion the sentence was marked as a 
conclusion. In the process of labeling, we also 
identified and fixed many sentence break errors. 
This reduced the total number of labeled 
sentences to 1,532.  
 
Next, we labeled the sentences in the structured 
abstracts based on the most immediate structure 
label. The vast majority of the 362 labels were 
categorized into one of the 4 types and all 
sentences from the label to next label (or end of 
the abstract) were marked with that category.   
Some of the labels were ambiguous however, 
leaving approximately 4% of the sentences not 
categorized. 
 
The labeled sentences were converted to a vector 
format for use with the linear classifier and 
support vector machine by creating a lexicon of 
unique words in the corpus and labeling each 
word with a unique feature number. Experiments 
were run both treating the sentence as a simple 
"bag of words", and also by adding an additional 
feature that indicated the sentence location in the 
abstract (ie. 0=first sentence, 0.5=midway 
through, 1=last sentence) Several word 
weighting schemes were tried however all 
performed similarly, so later experiments were 
taken using the simple binary presence of the 
word, without respect to its document or corpus 
frequency.  
 
Support Vector Machine models were trained 
and evaluated using Joachams'  svm_light 



software3. In preliminary studies linear, 
polynomial and radial bias kernels were tried.  In 
nearly all cases the linear kernel outperformed 
the others and were therefore used for this 
evaluation.   
 
Linear models were trained and evaluated using 
code written by Miguel Ruiz8.   In preliminary 
experiments Widrow-Huff (WH), Rocchio, and 
EG learning algorithms were evaluated, however 
models generated by Rocchio and EG performed 
more poorly than those from the WH so 
subsequent evaluation was only performed using 
this WH.   Preliminary experiments with feature 
limitation showed generally decreased 
performance below 300 features, but minimal 
performance improvement for greater than 300 
features. For experiments reported here, features 
were limited to 300.  
 
With exception of the final experiment, all 
machine learning performance tests were 
conducted using 10 fold cross-validation, using 
random splits in the data. For each holdout test 

set, sensitivity and specificity were calculated 
based on thirteen discrete threshold values that 
were subsequently used to calculate estimates of 
ROC area using the method described by 
Pollack and Norman9. The F-measure10 is 
reported as a composite measure of precision 
and recall using a ß of 1. This is listed as F1 in 
the results.  Measures of simple accuracy, 
precision, recall and F1 were taken from the 
threshold that yielded the highest simple 
accuracy.   Results reported for the cross-
validated data represent the average of the 10 
testing sets.  
 
A series of experiments were performed. The 
first consisted on a simple learning of the 
unstructured (hand labeled) sentences. Next, 
models were constructed and tested for the 
larger sample of structured abstracts (labels 
assigned from regular expression match). Next, 
a smaller random subset of the structured 
sentences was selected to match the unstructured 
dataset in size and character. This dataset was 
manually reviewed and sentence break errors 

Training 
Cases* 

Linear Classifier 
(Widrow-Huff) 

SVM Abstract 
type 

Total Positive 

Model 
Type 

Sentence 
Location 
Feature 

ROC Acc P/R F1 ROC Acc P/R F1 
N 0.863 0.889 0.71/0.34 0.465 0.910 0.921 0.82/0.49 0.616 196 

(12.8%) 
Intro 

Y 0.867 0.890 0.71/0.30 0.423 0.957 0.947 0.88/0.72 0.789 
N 0.851 0.829 0.85/0.48 0.611 0.935 0.894 0.87/0.74 0.800 430 

(28.1%) 
Method  

 Y 0.854 0.832 0.86/0.48 0.612 0.954 0.909 0.84/0.84 0.837 
N 0.672 0.737 0.82/0.57 0.672 0.920 0.863 0.85/0.85 0.851 686 

(44.8%) 
Result 

 Y 0.650 0.730 0.80/0.55 0.650 0.930 0.860 0.83/0.86 0.845 
N 0.877 0.888 0.77/0.33 0.457 0.911 0.903 0.67/0.60 0.639 

U
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1,532 

220 
(14.4%) 

Concl 
 Y 0.883 0.891 0.77/0.33 0.457 0.965 0.936 0.81/0.74 0.773 

N 0.832 0.854 0.69/0.41 0.518 0.912 0.888 0.75/0.62 0.679 314 
(18.8%) 

Intro 
Y 0.841 0.857 0.71/0.43 0.534 0.980 0.969 0.94/0.88 0.908 
N 0.758 0.764 0.76/0.40 0.524 0.910 0.867 0.80/0.78 0.790 547 

(32.8%) 
Method 

 Y 0.754 0.755 0.75/0.39 0.511 0.909 0.858 0.81/0.75 0.778 
N 0.822 0.782 0.80/0.47 0.591 0.894 0.845 0.79/0.73 0.762 554 

(33.2%) 
Result 

Y 0.826 0.785 0.80/0.46 0.586 0.905 0.846 0.77/0.76 0.763 
N 0.820 0.870 0.75/0.19 0.306 0.851 0.882 0.68/0.42 0.520 

1,669 

249 
(14.9%) 

Concl 
 Y 0.823 0.868 0.70/0.20 0.307 0.974 0.954 0.86/0.82 0.840 

N 0.876 0.890 0.80/0.41 0.545 0.933 0.924 0.80/0.92 0.746 14,248 
(15.7%) 

Intro 
Y 0.873 0.890 0.79/0.41 0.541 0.975 0.967 0.92/0.97 0.892 
N 0.846 0.813 0.77/0.49 0.600 0.939 0.891 0.80/0.82 0.811 25,826 

(28.5%) 
Method  

 Y 0.832 0.811 0.77/0.48 0.594 0.942 0.895 0.81/0.83 0.820 
N 0.831 0.786 0.78/0.61 0.687 0.929 0.871 0.81/0.86 0.835 34,671 

(38.2%) 
Result 

 Y 0.816 0.783 0.78/0.60 0.678 0.922 0.860 0.81/0.83 0.821 
N 0.880 0.893 0.73/0.36 0.478 0.939 0.918 0.74/0.63 0.682 

St
ru

ct
ur
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90,665 

12,805 
(14.1%) 

Concl 
 Y 0.850 0.889 0.72/0.35 0.469 0.991 0.970 0.88/0.91 0.895 

Table 1 – Model performance on cross validated data. 
* Data tested using 10 fold cross validation.  For any given model 90% of all cases of numbers reported were used in 
model generation and 10% were used for holdout test set. 



were fixed similar to the other hand labeled 
dataset. Models were evaluated on both the 
reviewed and un-reviewed, smaller, structured 
datasets. However, model performance was 
nearly identical so only the reviewed dataset is 
reported. Finally, models trained on the larger 
corpus of sentences from structured abstracts 
were tested on sentences from unstructured 
abstracts. The hope was that we might be able to 
leverage the larger set of tagged, but un-
reviewed data from the structured dataset to 
reliably identify sentences in larger body of 
unstructured abstracts, avoiding costly manual 
tagging to build the initial model. 

RESULTS 
 
Table 1 outlines the results of the experiment on 
the models tested on cross-validated data.  
Several important trends are worth noting.  First, 
in all experiments, the support vector machine 
performs better (often dramatically better) than 
the linear classifier on equivalent training data.  
Next, in all nearly all experiments, the increased 
number of training data improves SVM 
performance.  The addition of the sentence 
location feature improved classification for the 
‘introduction’ and ‘conclusion’ types but is of 
little help for the ‘methods’ and ‘results’ types.   
Interestingly, the addition of sentence location 
did not seem to help the linear classifier models. 
 
Table 2 outlines the performance of models 
trained with the larger, structured abstracts 
tested on the unstructured abstracts.  In all cases 
except the ‘introduction’ type performance is 
similar to that of models trained on unstructured 
abstracts. 

DISCUSSION 
 
This study demonstrates several important 
findings.   As has been found by several others, 
the SVM models performed dramatically better 
than traditional linear classifiers.  This 
difference is probably more dramatic in our 
study due to the sparseness of the vectors and 
increased abstraction of the class labels.   While 
the domain of this study was deliberately quite 
small and the generalizability to other domains 
may be tenuous, it is important to note that 

machine learning techniques can be successfully 
used to learn contextual information from 
content.  It provides further evidence for the 
robust performance of support vector machine in 
text domains.    
 
The addition of a sentence location feature made 
significant improvement in performance of 
several SVM models.   In nearly all cases 
training on more data generated better models, 
however this effect was often less dramatic than 
adding the sentence location feature.  This 
supports the idea that traditional text 
categorization might be improved by adding 
additional relevant features using human insight 
into the problem.  
 
Similarly, our model provides a way to add a 
relevant feature of sentence context that may be 
useful for other processing techniques. In our 
case, we use the sentence classifier to help 
choose processing models for natural language 
processing and summarization.  It may also be 
useful as a screening tool in other text search 
processing.  For example, users of MedLINE 
might be interested in searching for trials where 
the ‘Methods’ section contains the word 
‘randomized’ to exclude introductory or 
conclusion statements that refer to other trials.  
 
Future work using a combination of statistical 
and natural language approaches might 
substantially improve performance. For 
example, supplementation of the vector of words 

SVM Model 
Type 

Sentence 
Location ROC Acc P R F1 

Intro N 0.838 0.874 0.75 0.02 0.030 

 Y 0.871 0.896 0.63 0.45 0.524 

Method  N 0.899 0.877 0.89 0.64 0.744 

 Y 0.921 0.897 0.88 0.73 0.799 

Result N 0.905 0.820 0.78 0.83 0.804 

 Y 0.935 0.872 0.84 0.88 0.861 

Concl N 0.918 0.909 0.70 0.63 0.665 

 Y 0.946 0.941 0.83 0.75 0.785 

 
Table 2 – Performance of models trained on 
Structured data, tested on unstructured data. 
 
 



with word pairs or simple parse trees might 
significantly enhance performance.   
 
We were excited to find that models trained on 
structured abstracts are robust enough to provide 
reasonable performance on data from 
unstructured abstracts.  In half of the models, 
performance of the model trained on structured 
data was actually better than that of the model 
trained on unstructured data.  The poor recall ( 
and therefore F-measure) on the ‘introduction’ 
model was due to the use of thresholds.  This 
technique sacrifices recall for accuracy and is 
magnified in relatively weak models. 
 
The use of models trained on similar but 
different datasets provides hope for less 
expensive model development.  A process might 
be used beginning with model training on a 
dataset that has some similarity but in which 
class labels have either already been assigned or 
can more easily be assigned.  The crude model 
trained on the similar dataset to screen could be 
used to assign preliminary class, thus facilitating 
manual label assignment.  Iteratively, this 
process could build progressively larger and 
more robust datasets where class labels must be 
assigned manually.  

CONCLUSION 
 
The use of machine learning techniques for 
sentence type identification seems feasible 
within the domain of both structured and 
unstructured abstracts about Randomized 
Control Trails.  The use of this contextual 
information may help other text summarization 
techniques. 
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