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Abstract

The Gauss map projects surface normals to a unit sphere, providing
a powerful visualization of the geometry of a graphical object. It
can be used to predict visual events caused by changes in lighting,
shading, and camera control. We present an interactive technique
for portraying the Gauss map of polygonal models, mapping sur-
face normals and the magnitudes of surface curvature using a spher-
ical projection. Unlike other visualizations of surface curvature,
we create our Gauss map directly from polygonal meshes without
requiring any complex intermediate calculations of differential ge-
ometry. For anything other than simple shapes, surface information
is densely mapped into the Gaussian normal image, inviting the use
of visualization techniques to amplify and emphasize details hidden
within the wealth of data. We present the use of interactive visual-
ization tools such as brushing and linking to explore the surface
properties of solid shapes. The Gauss map is shown to be simple
to compute, easy to view dynamically, and effective at portraying
important features of polygonal models.
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1 INTRODUCTION

Rendering and modeling of complex objects often requires a deep
understanding of the natural structure of surface shape. Surface
curvature is often a primary characteristic used to describe local
shape, drawing from the rich background of differential geometry,
especially when considering smooth surfaces. Curvature has been
explicitly illuminated using textures and glyphs to promote the un-
derstanding of surface shape [7]. Prinicipal curvature has also been
used as an essential structuring element for non-photorealistic ren-
dering [3]. The Gauss map, the projection of surface normals to a

Figure 1: The Gauss Map – a projection of the normal of every point
on an orientable surface to its corresponding locus on a unit sphere.
In the illustration above, the aggregate normal for each selected
triangle on the surface (left) is mapped to the Gaussian sphere and
shown in blue (right).

unit sphere, can be used to illuminate the natural structure of sur-
face shape[1]. Graphics and vision researchers have used variations
of Gauss maps as domains for comparing objects [5][11] and reg-
ularizing non-manifold surfaces [2]. This visualization of surface
behavior has a complex relationship to the underlying model, sug-
gesting the need for advanced visualization techniques. The appli-
cation described here interactively displays two linked simultane-
ous views under user control; one is the model-view and the other
is the Gauss-view. To aid the exploration, brushing is implemented
permitting the user to focus on local patches of the model. Dynamic
visualization of the Gauss map speeds understanding of complex
surface properties.

2 THE GAUSS MAP

The Gauss map takes points on a 2–D manifold in R3 and sends
them to points on a unit sphere at the origin. Let ~p ∈ S be a point on
a surface S. Also let the surface normal at ~p be N(~p) = n1U1(~p)+
n2U2(~p)+n3U3(~p) where N(~p) is the surface normal in the tangent
space of ~p and Ui(~p) forms the natural frame for the tangent space at
~p. Then the Gaussian map is G(~p) := (n1(~p),n2(~p),n3(~p)). This
mapping can be thought of as moving the normal of a point on a
surface to a congruent parallel vector at the origin.

Consider a polygonal surface with face normals. Each point on
the plane of a polygon will be mapped to the same point in the
Gaussian image because each point has the same surface normal.
Figure 1 show this type of mapping where each triangle is consid-
ered a sample. Instead of merely mapping a point to the sphere,
one can place a weight on the sphere proportional to the surface
area of the polygon. The weighted sphere can be viewed as the dis-
tributions of the surface normals and is referred to as the Extended
Gaussian Image (EGI). The resulting EGI for a surface does not
preserve spatial connectivity, since each face is mapped to a sin-
gle point and no concerns about the edges and vertexes are taken
into consideration. Despite this, the mapping for convex objects
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is injective. That is, if two convex objects mapped to the same
EGI, then those objects must be congruent[9]. For non-convex ob-
jects, the EGI is not unique. Surfaces which are not congruent can
map to the same EGI. Additionally, non-convex objects can occlude
themselves, resulting in ambiguity in the EGI, where self-occluded
surfaces will still be visible. For object identification Ikeuchi and
Hebert use the observed EGI, which consist of only the surface on
the object visible to the viewer [6].

Curvature can be thought of as the magnitude of the second
derivative of a surface, indicating how fast the normal of the sur-
face is changing. Gaussian curvature of a surface is the ratio of the
change in the normal to the surface area, that is, K = dΩ

dA where dA
is a small patch on the surface and dΩ is the change in the normal
[8].

For every point on a smoothly curved surface one can clearly
apply the Gaussian mapping. Horn derives the relationship that the
inverse of the absolute value of the Gaussian curvature for a smooth
surface is the definition of the Extended Gaussian Image, which was
derived by considering the following integration,

∫

Ω

∫

1
K

dΩ =
∫

A

∫

dA = A. (1)

This relationship is critical for deriving other EGIs and interpreting
the resulting images [4].

While there does not appear to be work on directly visualizing
the EGI, previous papers have illustrated EGI to explaining the au-
thor’s work. Horn uses an oriented histogram on a geodesic dome.
Each cell of the histogram represents a discretized normal direc-
tion, with a glyph or color showing the number of normals in that
direction. Tanaka illustrated the EGI of surface metrics by plotting
samples on the Gaussian sphere[11]. In both cases, only normals
are shown, with no indication of connectivity. In his book on Solid
Shape, Koenderink describes the Gaussian image in terms of con-
nectivity, describing surface properties in terms of folds and pleats
of the mapping of surface normals [8]. Much of the inspiration for
this work arises from his observations.

3 GAUSSIAN IMAGE OF A MESH

Mapping triangles in a mesh, rather than just isolated faces, helps
the user understand the relationship between interesting areas on an
EGI and the corresponding triangles. The mapping of triangles is
a straightforward extension of the mapping of the faces. For each
unique edge, the Gaussian image is taken of the two vertexes and
then a line is drawn between them in the Gauss-view. If the surface
is sufficiently sampled, a straight line can be drawn, otherwise the
line needs to be a great arc of the unit sphere. Figure 2 shows a
mesh of a bean-like shape (left) and its Gaussian image (center and
right). Figure 3 shows the same mesh from another angle.

If all the model mesh triangles had the same area, one could use
the size of the matching triangle in the Gaussian image to draw con-
clusion about curvature, but this is not always the case. If presented
varying polygon size in the object mesh, curvature magnitudes can
be calculated explicitly in order for this information to be made
visible in the Gaussian image. There are two places where this in-
formation could be displayed, in the Gaussian mapped edges or in
the triangles themselves. Since the area between the edges is large
and the color of the edges is already used to express orientation, we
chose to use the spaces between the vertices to portray additional
curvature information.

4 SPLATTING THE EGI

We assume the surface to be smooth, continuous, and sufficiently
sampled. What we wish to achieve is an EGI view which is smooth

and clearly shows the curvature of the surface. The Phong shading
model linearly interpolates vertex normal directions across the sur-
face [10], resulting in the appearance of smoothly varying Gaussian
curvature across each mesh triangle. Using an averaged linear cur-
vature to color triangles in the Gauss-view would result in artifacts
at sample boundaries. While these discontinuities are representa-
tive of the shaded appearance, they may give a misleading picture
of the presumably smooth sampled surface. Instead, we wish each
to map each sample (mesh triangle) into the Gaussian image as a
distribution corresponding to the estimated distribution of normals
associated with the sample. Using the Gaussian normal distribution
as a reasonable approximation for the distribution of the normals
for each triangle, we splat each sample onto the Gaussian sphere,
scaled according to curvature [12].

The splatted EGI will be rendered as a texture mapped sphere,
so the composition of the samples occurs in the texture map. For
each sample, the splat kernal hv(d) has spread σ corresponding to
the standard deviation of vertex normals from the polygon normal
G(~p). Specifically,

σ = ∑
3

ρ
3.0

√

1
(Ni ·G(~p))2 −1 (2)

where Ni is the normal at the ith vertex and ρ is a constant. The
splat kernal hnv(d) is a function of distance in the texture map.
Specifically,

d =

√

1
(P

(s,t) ·G(~p))2 −1 (3)

where P
(s,t) indicates coordinates on the texture map. Each splat is

scaled by the triangle area A
~phv(d). After all samples are compos-

ited, the resulting values are scaled to the range [0,1].
We colormap the splatted values using a color scale with redun-

dant hue and brightness variation. This scale has intuitive high and
low values, as well as clear and natural progression from small-
est to largest value. For additional flexibility, we provide a user-
controlled bias function for the scalar range in order to provide ad-
ditional detail in specific portions of the range. Figure 2(right) and
3(right) show the splatted EGI for two views of the bean shape.

5 INTERACTIVE GAUSSIAN IMAGES

Complex, non-convex surfaces can create confusing Gauss-views
because multiple mesh points can map to the same location in the
EGI. Additionally, the correspondence between points on a model
mesh and points in the EGI can be difficult to understand. In order
to address these problems, we propose a new form of Gaussian Im-
age showing both views which is highly interactive. The views are
linked and annotated to clarify correspondences between them. We
call this new form an Interactive Gaussian Image (IGI).

5.1 Color Mapping

When viewing the two views it is difficult to determine where a
point in one view is on the other view. To make this correspondence
clearer, we redundantly map the normal to a color. This mapping
could logically be on the normals in either object space or camera
space. We allow the user to choose which will be used. If the ob-
ject space normals are chosen, a color can be associated with each
vertex based on the normal. Two possible color scales spring to
mind for this task. The most intuitive color scale maps the angle
of the normal to hue, and the saturation to the remaining direction.
Another approach is to vary red, green and blue based on the value
of the x, y and z coordinates respectfully. We implemented both
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Figure 2: The model-view (left) and two different Gauss-views (center – mesh view and the splatted Gauss map – right) of an implicitly
created shape. This viewpoint is a frontal perspective of the saddle-shaped section of a simple bean shape. The highlight on the fold of the
meshed Gauss map indicates that there are three separate locations on the model that share the same normal, showing three highlights (left).

Figure 3: A different perspective on the test shape. Single coverage of the Gauss map at the highlight (right) suggests only one specular
highlight on the model view (left). The object is self occluding in this view (left), indicating a tangential view of the Gauss map fold (center).

approaches. Surprisingly, the RGB-based scale color scale seemed
to work much better then the hue-saturation color scale. The more
intuitive hue-saturation scale suffered from ambiguities in the con-
tribution of colormapping and lighting to the resulting surface color.
The RGB-based color scale is used in the figures shown.

Because the normals are the same across the triangles in both
views, the specular highlights fall onto the same triangles. Dur-
ing interaction, this specular highlight can be used as a pointer to
explore interesting areas of the model and the Gaussian image.

5.2 Linked Camera Control

In an orthographic view, half of the Gaussian Sphere is visible.
Similarly with a convex object, the part of the surface which has a
normal facing toward the viewer is visible. All of the visible points
on the surface are mapped to visible points on the Gaussian sphere.
As the model rotates, the EGI rotates in the same matter, since par-
allel surface normals on both the model and the Gaussian sphere,
remain parallel during rotation[4]. To achieve these properties we
use orthographic views where the camera in the model-view and the
Gauss-view are linked so that the same part of the object is being
seen in each view. Any rotation which is performed on the cam-
era is carried out on both views, but translations and zooming are
carried out on the individual views.

5.3 Brushing

When the model is complex and non-convex (for instance the bunny
shown in Figure 4), the Gaussian image can still be confusing. To
further clarify correspondences between views, we provide a brush-
ing mechanism which allows the user to select parts of the object in

one view and see those parts highlighted in the other view. During
brushing, selected polygons are highlighted, while other polygons
are faded. Brushing enables the user to focus on a local area, while
still showing the whole mesh for context.

6 DISCUSSION

We are investigating dynamic visualization of the Gauss map. In-
teractive control plays an important role in the exploratory power
of visualization, and we apply it here to the study of solid models.
Figures 2 and 3 show still views of these visualization techniques
applied to a simple bean shape which has elliptical and hyperbolic
regions on its surface. In both examples, the model view is on the
left, a mesh representation of the Gauss map is in the center, and the
splatted representation of the Gauss map is on the right. Inspecting
these images, it is clear that the triangle mesh can clearly be seen in
the Gauss map.

Comparing the two views of the same object shows the value of
the Gauss map as a visualization of surface geometry. The view-
point in figure 2 is a frontal perspective of the hyperbolic, saddle
shaped, section. The hyperbolic region on the model corresponds
to the triply covered, folded region on the Gauss map, with the folds
mapping to the parabolic curve separating the elliptical and the hy-
perbolic surface patches. The specular highlight on the fold of the
meshed Gauss map indicates that there are three separate locations
on the model with the same normal. Inspecting the model-view on
the left, there are indeed three separate specular highlights. In figure
3, the highlight is on a singly covered area of the Gauss map, and the
model view correctly shows a single highlight. Specular highlights
will split or annihilate along parabolic curves. These effects can be
easily explained using this spherical projection of surface normals.
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Figure 4: An example of brushing a complex model. When a patch of polygons in the model-view (left) is selected, the corresponding patch
is highlighted in the Gauss maps (center and right). This technique helps disambiguate areas, focusing the visualization or regions of interest.

When viewed under dynamic interactive control, the visualization
can be striking.

Beyond the behavior of specular and environment-mapped re-
flections, the Gauss map also reveals surface properties that lead to
self occlusion events. Being able to view hyperbolic patches along
the normal direction (as in figure 2) and a tangent direction (as in
figure 3) and all the intermediate gradations improves the under-
standing of silhouette management and view-dependent rendering.

Aside from interactive viewpoint control, we had mixed success
with other visualization cues. The splatted EGI does provide useful
information about the object, though the visualization does not lend
itself to immediate comprehension. Brushing of complex models is
effective at focusing the visualization, but it is easy to overwhelm
the user with detail, suggesting new work on navigation strategies.
While the vertex view achieves many of the desired goals, it still
needs refinement and experimentation to see if new methods will
result in better visualizations. The one unanswered question is how
to effectively and clearly deal with areas on the sphere where mul-
tiple areas of the model get mapped.

7 CONCLUSIONS AND FUTURE WORK

Interactive control of the simultaneous views of the model and its
Gauss map create a compelling visualization of the geometric prop-
erties of solid shapes. Dynamic visualization of rendering events
such as the creation and annihilation of specular highlights, partic-
ularly along geometric features such as parabolic curves, lends new
understanding to the polygonal models that approximate smooth
objects. Our Interactive Gaussian Image can be an effective tool for
studying shape. The complexity of surface shape can overwhelm
our representations. Nevertheless, our visualizations are valuable
teaching aids for differential geometry and the exploration of com-
puter graphic models.

We intend both applications and enhancements of these visual-
izations. Separate interactive control of lighting and viewing di-
rection should permit independent explorations of the visual events
that occur through changes in shading and illumination. More im-
portantly, we intend to visualize the process of mesh simplification
using tools such as the Gauss map, exploring different algorithms
through dynamic views.
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