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AbstractÐWhile numerous page segmentation algorithms have been proposed in the literature, there is lack of comparative

evaluationÐempirical or theoreticalÐof these algorithms. In the existing performance evaluation methods, two crucial components are

usually missing: 1) automatic training of algorithms with free parameters and 2) statistical and error analysis of experimental results. In

this paper, we use the following five-step methodology to quantitatively compare the performance of page segmentation algorithms:

1) First, we create mutually exclusive training and test data sets with groundtruth, 2) we then select a meaningful and computable

performance metric, 3) an optimization procedure is then used to search automatically for the optimal parameter values of the

segmentation algorithms on the training data set, 4) the segmentation algorithms are then evaluated on the test data set, and, finally,

5) a statistical and error analysis is performed to give the statistical significance of the experimental results. In particular, instead of the

ad hoc and manual approach typically used in the literature for training algorithms, we pose the automatic training of algorithms as an

optimization problem and use the Simplex algorithm to search for the optimal parameter value. A paired-model statistical analysis and

an error analysis are then conducted to provide confidence intervals for the experimental results of the algorithms. This methodology is

applied to the evaluation of five page segmentation algorithms of which, three are representative research algorithms and the other two

are well-known commercial products, on 978 images from the University of Washington III data set. It is found that the performance

indices (average textline accuracy) of the Voronoi, Docstrum, and Caere segmentation algorithms are not significantly different from

each other, but they are significantly better than that of ScanSoft's segmentation algorithm, which, in turn, is significantly better than

that of X-Y cut.

Index TermsÐDocument page segmentation, OCR, performance evaluation, performance metric, statistical significance, paired

model, direct search, simplex method.

æ

1 INTRODUCTION

OPTICAL Character Recognition (OCR) is the automated
process of translating an input document image into

a symbolic text file. The input document images can come
from a large variety of media, such as journals, news-
papers, magazines, memos, etc. The format of a document
image can be digitally created, faxed, scanned, machine
printed, or handwritten, etc. The output symbolic text file
from an OCR system can include not only the text content
of the input document image but also additional
descriptive information, such as page layout, font size
and style, document region type, confidence level for the
recognized characters, etc.

Page segmentation is a crucial preprocessing step in an

OCR system. It is the process of dividing a document image

into homogeneous zones, i.e., those zones that only contain

one type of information, such as text, a table, a figure, or a

halftone image. In many cases, OCR system accuracy

heavily depends on the accuracy of the page segmentation

algorithm. While numerous page segmentation algorithms

have been proposed in the past, relatively little research
effort has been devoted to the comparative evaluationÐ
empirical or theoreticalÐof these algorithms.

The paper is organized as follows: In Section 2, we

conduct a survey of related literature. In Section 3, we

provide the problem definition for page segmentation, error

measurements, and a metric. In Section 4, we outline our

five-step empirical performance evaluation methodology.

In Section 5, automatic algorithm training is posed as an

optimization problem and a simplex algorithm is described.

In Section 6, our paired model statistical analysis method is

presented. In Section 7, the segmentation algorithms that

we evaluated are described. In Section 8, the experimental

protocol for conducting the training and testing experi-

ments is presented. In Section 9, we report experimental

results and provide a detailed discussion. Finally, in

Section 10, we give our conclusions. We have reported part

of the work presented in this paper in [21], [22], [23]. The

software used for generating the results in this paper is

described in [25], [24]. The performance metric proposed in

this paper deals with text regions only. We plan to extend it

to include nontext regions as well.

2 LITERATURE SURVEY

Page segmentation algorithms can be categorized into three

classes: top-down approaches, bottom-up approaches, and
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hybrid approaches. Top-down algorithms start from the

whole document image and iteratively split it into smaller

ranges. The splitting procedure stops when some criterion

is met and the obtained ranges constitute the final

segmentation results. Bottom-up algorithms start from

document image pixels and cluster the pixels into con-

nected components which are then clustered into words,

lines, or final zone segmentations. To some extent, hybrid

algorithms are a mix of the above two approaches. The

Docstrum algorithm of O'Gorman [28], the Voronoi-

diagram-based algorithm of Kise et al. [17], the run-length

smearing algorithm of Wahl et al. [37], the segmentation

algorithm of Jain and Yu [13], and the text string separation

algorithm of Fletcher and Kasturi [5] are typical bottom-up

algorithms, while the X-Y cut by Nagy et al. [26] and the

shape-directed-covers-based algorithm by Baird et al. [1]

are top-down algorithms. Pavlidis and Zhou [30] proposed

a hybrid algorithm using a split-and-merge strategy. A

survey of OCR and page segmentation algorithms can be

found in O'Gorman and Kasturi [29] and Jain and Yu [13].

A recent workshop [3] was devoted to addressing issues

related to page segmentation.
While many segmentation algorithms have been pro-

posed in the literature, relatively few researchers have

addressed the issue of quantitative evaluation of segmenta-

tion algorithms. Several page segmentation performance

evaluation methods have been proposed in the past.

Kanai et al. [14] proposed a metric that is a weighted sum

of the number of edit operations (insertions, deletions, and

moves). They used this performance metric in their

comparative evaluation of the automatic zoning accuracy

of four commercial OCR products. The advantage of this

method is that it requires only ASCII text groundtruth and,

hence, does not require zone or textline bounding-box

groundtruth. The limitations of this method are that it

cannot specify the error location in the image, it is

dependent on the OCR engine's recognition accuracy, and

the metric cannot be computed for languages for which no

OCR engine is available. Vincent et al. [35] proposed a

bitmap-level region-based metric. The advantages of the

Vincent et al. approach are that it can evaluate both text

regions and nontext regions, it is independent of zone

representation schemes, and the errors can be localized and

categorized. A limitation of this method is that the metric is

dependent on pixel noise. Liang et al. [20] described a

region-area-based metric. The overlap area of a groundtruth

zone and a segmentation zone is used to compute this

performance metric.
In the computer vision area, numerous researchers

have presented methods for empirical performance

evaluation. For example, Hoover et al. [12] proposed an

experimental framework for quantitative comparison of

range image segmentation algorithms and demonstrated

the methodology by evaluating four range segmentation

algorithms. Kanungo et al. [15] described a four-step

methodology for the evaluation of two detection algo-

rithms. Phillips and Chhabra [32] presented a methodol-

ogy for empirically evaluating graphics recognition

systems. These methodologies have not addressed the

issues of either automatic training of algorithms with free

parameters or statistical analysis of experimental results.

Phillips et al. [33] proposed the FERET evaluation

methodology for face recognition algorithms. However,

the problem addressed here is only face classification and,

in particular, not face segmentation. A special issue of

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence (vol. 21, 1999) was devoted to empirical evaluation

of computer vision algorithms. Two workshops have been

devoted to empirical evaluation techniques and meth-

odologies in computer vision [2], [8].
In research segmentation algorithms that have user-

specifiable parameters, typically the default parameter

values are selected and no training method is explicitly

specified [17], [1], [28], [13], [30], [5]. Similarly, in performance

evaluation literature where the algorithm parameters can be

set by evaluators, a set of parameter values are usually

selected manually in the training procedure [12], [15], [32]. A

common aspect of these parameter value selection methods

and training methods is that a set of ªoptimal parameter

valuesº are manually selected based on some assumption

regarding the training data set. To objectively optimize a

segmentation algorithm on a given training data set, a set of

optimal parameter values should be automatically found by a

training procedure. Automatic training of any algorithm with

free parameters is actually an optimization problem. In the

optimization area, there are a number of classes of optimiza-

tion problems based on the properties of the given objective

function. An in-depth discussion and classification of

optimization problems can be found in Gill et al. [6]. In our

case, the objective function corresponding to a performance

metric for page segmentation algorithms cannot be rigor-

ously defined mathematically. Instead, only function evalua-

tions are possible. Hence, automatic training is posed as a

multivariate nonsmooth nonlinear function optimization pro-

blem. Direct search algorithms are typically used for solving

optimization problems involving this kind of objective

function [19], [38], [34]. We chose the simplex search method

proposed by Nelder and Mead [27]. ªSimulated annealingº

[18] and ªgeneticº [7] algorithms are possible global search

algorithms that could have been used instead.

3 THE PAGE SEGMENTATION PROBLEM AND

ERROR METRICS

We provide the definitions of our proposed textline-based

error measures and metric based on set theory and

mathematical morphology [10]. Let I be a document image,

and let G be the groundtruth of I. Let Z�G� � fZG
q ; q �

1; 2; . . . ;#Z�G�g be a set of groundtruth zones of document

image I, where # denotes the cardinality of a set. LetL�ZG
q � �

flGqj; j � 1; 2; . . . ;#L�ZGq �g be the set of groundtruth textlines

in groundtruth zone ZG
q . Let the set of all groundtruth

textlines in document image I beL � [#Z�G�
q�1 L�ZGq �. LetAbe a

given segmentation algorithm and let SegA��; �� be the

segmentation function corresponding to algorithm A. Let
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R � SegA�I;pA� be the segmentation result of algorithm A,

where pA is a parameter vector associated with algorithm A

and Z�R� � fZRk jk � 1; 2; . . . ;#Z�R�g. Let D��� � Z2 be the

domain of its argument. The groundtruth zones and textlines

have the following properties: 1) D�ZGq � \D�ZGq0 � � � for

ZG
q ; Z

G
q0 2 Z�G� and q 6� q0 and 2) D�lGi � \D�lGi0 � � � for

lGi ; l
G
i0 2 L and i 6� i0. In our evaluation method, we evaluate

deskewed document images with rectangular zones and

textline groundtruth.

A meaningful and computable performance metric is

essential for evaluating page segmentation algorithms

quantitatively. While a performance metric is typically not

unique and researchers can select a particular performance

metric to study certain aspects of page segmentation

algorithms, a set of error measurements is necessary. Let

TX; TY 2 Z� [ f0g be two length thresholds (in number of

pixels) that determine if the overlap is significant or not.

Each of these thresholds is defined in terms of an absolute

threshold and a relative threshold as:

TX � minfHPIX; �100ÿHTOL� � h=100g;
TY � minfV PIX; �100ÿ V TOL� � v=100g:

The absolute thresholds,HPIX and V PIX, are in number of

pixels and the relative thresholds, HTOL and V TOL, are in

percentage, h; v are the minimum width and height (in

number of pixels) of two regions that are tested for significant

overlap. In our experiments, we set the thresholds as

HTOL � 90, V TOL � 80, HPIX � 11, and V PIX � 8. Let

E�TX; TY � � fe 2 Z2j ÿ TX � X�e� � TX;ÿTY � Y �e� � TY g
be a rectangle centered at �0; 0� with a width of

2TX � 1 pixels and a height of 2TY � 1 pixels, where X���
and Y ��� denote the X and Y coordinates of the argument,

respectively. We now define two morphological operations:

dilation and erosion [10]. Let A;B � Z2. Morphological

dilation of A by B is denoted by A�B and is defined as

A�B � c 2 Z2jc � a� b for some a 2 A; b 2 B� 	
. Morpho-

logical erosion of A by B is denoted by A	B and is defined

as A	B � c 2 Z2jc� b 2 A for every b 2 B� 	
. We now de-

fine four types of textline-based error measurements:

1. Groundtruth textlines that are missed:

CL �
lG 2 Lj�D�lG� 	 E�TX; TY �� � �[ZR2Z�R�D�ZR��c
� 	

:

2. Groundtruth textlines whose bounding boxes are
split:

SL �
lG 2 Lj�D�lG� 	 E�TX; TY �� \D�ZR� 6� �;
�
�D�lG� 	E�TX; TY �� \ �D�ZR��c 6� �;
for some ZR 2 Z�R�	:

3. Groundtruth textlines that are horizontally merged:

ML �
lGqj 2 Lj9lGq0j0 2 L; ZR 2 Z�R�; q 6� q0; ZGq ; ZGq0 2 Z�G�
n
such that �D�lGqj� 	E�TX; TY �� \D�ZR� 6� �;
�D�lGq0j0 � 	 E�TX; TY �� \D�ZR� 6� �;
��D�lGqj� 	E�0; TY �� � E�1; 0�� \D�ZGq0 � 6� �;
��D�lGq0j0 � 	 E�0; TY �� � E�1; 0�� \D�ZGq � 6� �

o
:

4. Noise zones that are falsely detected (false alarm):

FL �
ZR 2 Z�R�jD�ZR� � �[lG2L�D�lG� 	 E�Tx; TY ���c
� 	

:

Let the number of groundtruth error textlines be #fCL [
SL [MLg (misdetected, split, or horizontally merged) and

let the total number of groundtruth textlines be #L. A

simple performance metric ��I;G;R� is given below:

��I;G;R� � #L ÿ#fCL [ SL [MLg
#L : �1�

A more general metric can be defined as:

��I;G;R� � �#L ÿ wErr�=#L;
where

wErr �
wCL �#CL � wSL �#SL � wML �#ML � wFL �#FL

is the weighted sum of various error measurements,

wCL;wSL; wML, and wFL are the weights (between 0 and

1) of the corresponding error measurements. In this paper,

we use the definition given in (1). Fig. 1 gives a set of

possible errors as well as an experimental example. We see

that this textline-based performance metric has the follow-

ing features:

1. it is rigorously defined using set theory and
mathematical morphology,

2. it is independent of zone shape,
3. it is independent of OCR recognition error,
4. it ignores the background information (white space,

salt and pepper noise, etc.),
5. segmentation errors can be localized, and
6. quantitative evaluation of lower-level (e.g., textline,

word, and character) segmentation algorithms can be
readily achieved with little modification. This perfor-
mance metric, however, does not deal with nontext
regions and requires textline-level groundtruth.

4 PERFORMANCE EVALUATION METHODOLOGY

We now introduce a five-step methodology and identify

three crucial components: automatic training, statistical

analysis, and error analysis.
A large and representative data set is desirable in any

performance evaluation task in order to give objective
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performance measurements of the algorithms. A typical

page segmentation algorithm has a set of parameters that

affect its performance. The performance index is usually a

user-defined performance metric that measures an aspect of

the algorithm that the user is interested in. In order to

evaluate a page segmentation algorithm on a specific data

set, a set of optimum parameters has to be used. The

optimum parameter set is a function of the given data set,

the groundtruth, and the performance metric. The set of

optimum parameters for one data set may be a nonoptimal

parameter set for another data set. Hence, the choice of

parameters is crucial in any performance evaluation task.

When the size of the data set gets very large, parameter set

training on the whole data set becomes computationally

prohibitive and, therefore, a representative sample data set

of much smaller size must be used as a training data set.

After the training step, the page segmentation algorithms

with the optimal parameters should be evaluated on a test

data set that is different from the training set. Finally, in

order to interpret the significance of the experimental

results, statistical analysis should be performed. The

relative strengths and weaknesses of the algorithms can

then be understood by analyzing the errors. Let D be a

given data set containing document image and groundtruth

pairs �I;G�. The steps in our methodology for evaluating

page segmentation algorithms are as follows:

1. Randomly partition the data set D into a mutually
exclusive training data set T and test data set S.
Thus, D � T [ S and T \ S � �, where � is the
empty data set.

2. Define a meaningful and computable performance
metric ��I;G;R�, where I is an document image, G is
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Fig. 1. (a) This figure shows a set of possible textline errors. Solid line rectangles denote groundtruth zones, dashed-line rectangles denote
OCR segmentation zones, dark bars within groundtruth zones denote groundtruth textlines, and dark bars outside solid lines are noise blocks. (b) A
document page image from the University of Washington III data set with the groundtruth zones overlaid. (c) OCR segmentation result on image in
(b). (d) Segmentation error textlines. Notice that there are two horizontally merged zones just below the caption and two horizontally merged zones in
the middle of the text body. In OCR output, horizontally split zones cause reading order errors, whereas vertically split zones do not cause such
errors.



the groundtruth of I, and R is the segmentation
result on I.

3. For a selected segmentation algorithm A, specify its
parameter vector pA and automatically find the
optimal parameter setting p̂A for which an objective
function f�pA; T ; �; A� assumes the ªbestº measure
on the training data set T . In our case, this objective
function is defined as the average textline error rate
on a given data set.

4. Evaluate the segmentation algorithm A with opti-
mized parameters p̂A on the test data set S
by � f��G; SegA�I; p̂A��j�I;G� 2 Sg

ÿ �
, where � is a

function of the performance metric � on each
document image and groundtruth pair �I;G� in the
test data set S, and SegA��; �� is the segmentation
function corresponding to A. The function � is
defined by the user. In our case,

� f��G; SegA�I; p̂A��j�I;G� 2 Sg
ÿ � �

1ÿ f�p̂A;S; �; A�;
which is the average of the performance metric
��G;SegA�I; p̂A�� (textline accuracy) on each docu-
ment image and groundtruth pair �I;G� in the test
data set S.

5. Perform statistical analysis to find the significance of
the evaluation results and analyze the errors to
identify/hypothesize why the algorithms perform at
the respective levels.

The above methodology can be applied to any segmentation
algorithm that has free parameters. If the algorithm does not
have free parameters, as is the case with many commercial
algorithms, we do not perform the training step.

5 AUTOMATIC ALGORITHM TRAINING:
THE OPTIMIZATION PROBLEM

Any automatic training or learning problem can be posed as
an optimization problem. An optimization problem has
three components: the objective function that gives a single
measure, a set of parameters that the objective function is
dependent on, and a parameter subspace that defines
acceptable or reasonable parameter values. The acceptable
or reasonable parameter subspace defines the constraints on
the optimization problem. The purpose of an optimization
procedure is to find a set of parameter values for which the
objective function gives the ªbestº (minimum or maximum)
measure values.

5.1 The Objective Function

In this section, we identify the objective function. Let pA be
the parameter vector for the segmentation algorithm A, let
T be a training data set, and let ��I;G; SegA�I;pA�� be a
performance metric where �I; G� 2 T . We define the
objective function f�pA; T ; A; �� to be minimized as the
average textline error rate on the training data set:

f�pA; T ; A; �� � 1

#T
X
�I;G�2T

1ÿ ��G; SegA�I;pA��
24 35; �2�

where � is defined in (1). This objective function has the
following properties:

1. It is dependent on the values of the algorithm
parameters.

2. The function value is the only information available.
3. The function has no explicit mathematical form and

is nondifferentiable.
4. Obtaining a function value requires nontrivial

computation.

This objective function can be classified as a multivariate
nonsmooth function [6]. In the following section, we describe
an optimization algorithm to minimize this objective
function.

5.2 The Simplex Search Method

Direct search methods are typically used to solve the
optimization problem described in Section 5.1. We choose
the simplex search method proposed by Nelder and Mead
[27] to minimize our objective function. Let q0 be a starting
point in segmentation algorithm parameter space and
let �i; i � 1; . . . ; n be a set of scales. Let ei; i � 1; . . . ; n be
n orthogonal unit vectors in n-dimensional parameter space,
let p0; . . . ;pn be �n� 1� ordered points in n-dimensional
parameter space such that their corresponding function
values satisfy f0 � f1 �; . . . ;� fn, let �p �Pnÿ1

i�0 pi=n be the
centroid of the n best (smallest) points, let �pipj� be the
n-dimensional Euclidean distance from pi to pj, let �, �, 
,
and � be the reflection, contraction, expansion, and shrinkage
coefficient, respectively, and let T be the threshold for the
stopping criterion. We use the standard choice for the
coefficients: � � 1, � � 0:5, 
 � 2, � � 0:5. We set T to 10ÿ6.
For a segmentation algorithm with n parameters, the
Nelder-Mead algorithm works, as shown in Fig. 2.

5.3 Starting Point Selection

The objective function corresponding to each segmentation
algorithm need not have a unique minimum. Furthermore,
direct search optimization algorithms are local optimization
algorithms. Thus, for each (different) starting point, the
optimization algorithm could converge to a different
optimal solution. We constrain the parameter values to lie
within a reasonable range and randomly choose six starting
locations within this range. The optimal solution corre-
sponding to the lowest optimal value is chosen as the best
optimal parameter vector.

6 STATISTICAL ANALYSIS: A PAIRED MODEL

APPROACH

In comparative performance evaluation frameworks, statis-
tical analysis plays a crucial role in objectively interpreting
the experimental results. In our experiments, we compare
the performance metric values (average textline accuracy)
of page segmentation algorithms against each other. In
doing so, some basic questions are immediately raised: 1) If
the performance metric of one algorithm is better than that
of another algorithm, is the result statistically significant?
2) What is the uncertainty in the estimated performance
metric? To answer such questions, a statistical model needs
to be constructed for the experimental observations. In this
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section, we describe a paired model analysis approach
proposed by Kanungo et al. [16] for their evaluation of
Arabic OCR engines and adapt it to analyze our experi-
mental results.

6.1 Modeling Experimental Data Using the
Paired Model

Let A1; A2 . . . ; Ak denote the k algorithms we evaluate and
let Xij; i � 1; . . . ; k; j � 1; . . . ; n be the observation (textline
accuracy) corresponding to algorithm Ai and document
image Ij in test data set S. In our experiment, the number of
algorithms k is five and the total number of images n in test
data set S is 878. We assume that the observations from
different images are statistically independent, i.e., that Xij

and Xi0j0 are independent when j 6� j0. We also assume for a
fixed algorithmAi, that observationsXij; j � 1; . . . ; n; are iid
random variables with finite mean �i and finite variance �2

i .
However, the observations Xij and Xi0j corresponding to
two different algorithms, i.e., i 6� i0, on the same image Ij are
statistically dependent since the two algorithms use the
same image as input. We assume that the correlation
coefficient �ii0 of observations of algorithm Ai and Ai0 on the
same page is constant. This �ii0 is positive since a document
image that causes an algorithm to generate a bad
performance metric generally will also cause other algo-
rithms to generate bad performance metrics. Finally, let
cov�Xij;Xi0j� � �ii0�i�i0 be the covariance of observations Xij

and Xi0j, where i 6� i0.
Now, construct a new random variable

Wii0j � Xij ÿXi0j; i 6� i0;
where Wii0j and Wii0j0 are independent. Based on our
assumptions, it is easily seen that Wii0js are iid random
variables for fixed i and i0. Let �Wii0 and V 2

ii0 be the sample
mean and sample variance of Wii0j and let �ii0 be true mean
difference such that �ii0 � �i ÿ �i0 . An unbiased estimator
of �ii0 is �̂ii0 � �Wii0 � �Xi ÿ �Xi0 since

E��̂ii0 � � E� �Wii0 � � E� �Xi ÿ �Xi0 � � �i ÿ �i0 � �ii0 :

The variance of the estimator �̂ii0 is

V ar��̂ii0 � �
V ar� �Wii0 � � V ar� �Xi ÿ �Xi0 � � ��2

i � �2
i0 ÿ 2�ii0�i�i0 �=n:

6.2 Confidence Intervals and Hypothesis Testing

We first address the issue of uncertainty in performance
estimates. SinceWii0j are iid random variables, for fixed i and
i0, where i 6� i0, by the Central Limit Theorem, we have (3),
where �ii0 is the true standard deviation of �̂ii0 . When �ii0 is
not available as it is in our case, the sample standard deviation
Vii0 is typically used in place of �ii0 in (4). The new formula has
an approximate t distribution with nÿ 1 degrees of freedom.
Thus, for a given significance level �, we can compute a
confidence interval, as shown in (5).

lim
n!1

�̂ii0 ÿ�ii0

�ii0=
���
n
p � lim

n!1

�Wii0 ÿ ��i ÿ �i0 �
�ii0=

���
n
p � N�0; 1�; �3�

�̂ii0 ÿ�ii0

Vii0=
���
n
p �

�Wii0 ÿ ��i ÿ �i0 �
Vii0=

���
n
p � tnÿ1; �4�

�ii0 2 �̂ii0 �
t�=2;nÿ1Vii0���

n
p : �5�

The second problem we want to address is whether or
not one algorithm is performing significantly better than
another. That is, we want to test the hypothesis that the true
means of the observations from two different algorithms are
significantly different. Let f�t� be the probability density
function (pdf) of the t distribution with nÿ 1 degrees of
freedom. Let T �Xi1; . . . ; Xin;Xi01; . . . ; Xi0n� be the test statis-
tic, which is a function of the observations. For a given
significance level �, the corresponding hypothesis test can
be formulated as follows: Let the null hypothesis be
H0 : �ii0 � �i ÿ �i0 � 0, the alternative hypothesis be
Ha : �ii0 � �i ÿ �i0 6� 0, and the test statistic be

T � T �Xi1; . . . ; Xin;Xi01; . . . ; Xi0n� � ��̂ii0 ÿ 0�=�Vii0=
���
n
p �:

Under the null hypothesisH0, the test statisticT is distributed
approximately as a t distribution with nÿ 1 degrees of
freedom. Now, define Pval �

RÿT
ÿ1 f�t�dt�

R1
T f�t�dt. For a

test with a significance level of�, reject the null hypothesisH0

if Pval < �.

6.3 Advantages of the Paired Model Analysis

This paired test is valid even if �2
i 6� �2

i0 , where i 6� i0. We do
not need to assume a distribution for observation Xij. Since
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Fig. 2. The Nelder-Mead optimization algorithm.



the correlation of observations on the same image is
considered, a smaller variance of ��2

i � �2
i0 ÿ 2�ii0�i�i0 �=n is

obtained for the estimator �̂ii0 of �ii0 than the variance of
��2

i � �2
i0 �=n in the case where this correlation is ignored, i.e.,

the two samples Xi1; . . . ; Xin and Xi01; . . . ; Xi0n are assumed
to be independent. In other words, a more precise estimate
of �ii0 is obtained if we use the paired model.

7 PAGE SEGMENTATION ALGORITHMS

Page segmentation algorithms can be categorized into three

classes: top-down approaches, bottom-up approaches, and

hybrid approaches. We implemented the X-Y cut algorithm (a

top-down algorithm) and the Docstrum algorithm (a bottom-

up algorithm). Kise et al. [17] provided us with a

C implementation of their Voronoi-based algorithm (a

bottom-up algorithm). Two commercial products, Caere's

segmentation algorithm [4] and ScanSoft's segmentation

algorithm [36], were selected for evaluation. They are

representative state-of-art commercial products. Both are

black-box algorithms with no free parameters. In the

following sections, we describe the three research algorithms.

7.1 The X-Y Cut Page Segmentation Algorithm

The X-Y cut segmentation algorithm [26] is a tree-based,

top-down algorithm. The root node of the tree represents

the entire document page image I, an interior node

represents a rectangle on the page, and all the leaf nodes

together represent the final segmentation. While this

algorithm is easy to implement, it can only work on

deskewed document pages with Manhattan layout and

rectangular zones. The algorithm works, as shown in Fig. 3.

7.2 The Docstrum Page Segmentation Algorithm

Docstrum [28] is a bottom-up page segmentation algorithm
that can work on document page images with non-
Manhattan layout and arbitrary skew angles. This algo-
rithm is not designed to handle nontext regions and text
zones with irregular font sizes and spacings and tends to
fragment them. Moreover, it does not perform well when
document images contain sparse characters. The basic steps
of the Docstrum segmentation algorithm are shown in Fig. 4.
In our implementation, we did not estimate orientation
since all pages in the data set were deskewed. Furthermore,
we used a resolution of 1 pixel/bin for constructing the
within-line and between-line histograms and did not
perform any smoothing of these histograms.

7.3 The Voronoi-Diagram-Based Page
Segmentation Algorithm

The segmentation algorithm in [17] is also a bottom-up
algorithm based on the Voronoi diagram. This method can
work on document page images that have non-Manhattan
layout, arbitrary skew angles, or nonlinear textlines. A set of
connected line segments are used to bound text zones. Since
we evaluate all algorithms on document page images with
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Fig. 3. The X-Y Cut segmentation algorithm.



Manhattan layouts, this algorithm has been modified to

generate rectangular zones. This algorithm has design

limitations similar to those of the Docstrum algorithm.

The algorithm steps are shown in Fig. 5.

8 EXPERIMENTAL PROTOCOL

The experiment we conducted has a training phase and a

testing phase for the three research algorithms and only a

testing phase for the two commercial products since they do

not have user-specifiable free parameters. We used textline

accuracy as our performance metric. For each document

page, we obtained a performance metric value. In the

training phase, we computed an average error rate, which is

equal to 1 minus the average performance index, over all

document pages in the training data set T . In the testing

phase, we computed an average performance index over all

document pages in the test data set S and report it as the

algorithm performance index.
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Fig. 4. The Docstrum segmentation algorithm.

Fig. 5. The Voronoi-based segmentation algorithm.



8.1 Data Set Specification

We selected the University of Washington Data Set [31] for

the performance evaluation task since it is the only data set

currently available that has textline-level groundtruth for

each document page. All pages in the data set are journal

pages from a large variety of journals in diverse subject

areas and from different publishers. The data set also has

geometric textline and zone groundtruth for each page. The

textline and zone groundtruth are represented by non-

overlapping rectangles. The University of Washington III

data set has 1,601 deskewed binary document images at

300 dpi resolution. We chose a subset of 978 pages that

correspond to the University of Washington I data set pages

as our experimental data set. A training data set T of

100 document pages was randomly sampled from the

selected 978 documents; the remaining 878 document pages

are considered as the test data set S.

8.2 Algorithm Training and Testing

We fix the parameters that the algorithm is insensitive to

and automatically train the ones that the algorithm is

sensitive to on the 100-page training data set T . Nelder-

Mead simplex optimization procedure [27] is used to search

for the optimal parameter value for each algorithm. Based

on information about the document page style, a reasonable

working range can be selected for each parameter of each

algorithm. Six different starting points within the reason-

able working parameter subspace for each research algo-

rithm were randomly selected and the corresponding six

convergence points were obtained. Then, we selected the

parameter values corresponding to the minimum of the six

optimal values attained in the six searches. Since the two

commercial products are black-box algorithms without any

parameters, we do not perform the training step for them.

All five algorithms were tested on the 878-page test data set

S. We trained the three research algorithms on the same

type of UNIX machine and tested all five segmentation

algorithms on the same type of PC machine.

8.2.1 X-Y Cut Algorithm Parameters

The X-Y cut algorithm [26] has four free parameters. Since

the algorithm is very sensitive to all four parameters, we

searched for the optimal value for each of the four

parameters over the reasonable working ranges: Vertical

noise removal threshold TnX: {20-250 pixels}; Horizontal

noise removal threshold TnY : {20-200 pixels}; X widest zero

valley width threshold TCX : {20-100 pixels}; Y widest zero

valley width threshold TCY : {20-100 pixels}. In most cases,

since the vertical cut is longer than the horizontal cut, we set

the maximum of TnX to be larger than that of TnY .

Furthermore, since most interline gaps are less than 100

pixels, we set the maximum of TCX and TCY to 100 pixels. We

set the simplex scales to be �i � 20, where i � 1; 2; 3; 4.

8.2.2 Docstrum Algorithm Parameters

O'Gorman, in his paper, specified eight parameters for the
Docstrum algorithm [28]. We introduced two additional

parameters for textline segmentation control and character
grouping: 1) a superscript-subscript character distance
threshold factor for correctly handling textline segmenta-
tion and 2) a character size ratio threshold to separate larger
characters from dominant characters. The algorithm is
insensitive to six of the ten parameters. We fixed these six
parameters as follows: number of nearest connected
components for clustering, K � 9; low and high connected
component size-thresholds (height or width), l � 2 pixels,
h � 200 pixels; horizontal and vertical angle tolerance
thresholds, �h � 30�, �v � 30�; superscript and subscript
character distance threshold factor, fs � 0:4. The values for
the four parameters that the algorithm is sensitive to were
searched for in the reasonable working ranges: nearest-
neighbor threshold factor ft: {1-5}, Parallel distance thresh-
old factor fpa: {2-10}, perpendicular distance threshold
factor fpe: {0.5-5}, and character size ratio factor fd: {2-10}.
We set the simplex scales to be �i � 1, where i � 1; 2; 3; 4.

8.2.3 Voronoi-Diagram-Based Algorithm Parameters

The Voronoi diagram-based algorithm has eleven free

parameters and is insensitive to seven of them [17]. Six of

these eleven parameters are related to removing noise

connected components and blocks. The algorithm is

insensitive to another of these eleven parameters, sw. We

fixed the seven parameters as follows: maximum height and

width thresholds of a connected component, Ch � 500 pixels

and Cw � 500 pixels, maximum connected component

aspect ratio threshold, Cr � 5, minimum area threshold of

a zone, Az � 50 pixels2 for all zones and minimum area

threshold, Al � 40; 000 pixels2 and maximum aspect ratio

threshold, Br � 4, for the zones that are vertical and

elongated. The last parameter is the size of the smoothing

window, which is fixed at sw � 2. The optimal values for

the other four parameters are searched for in the following

ranges recommended by Kise:1 sampling rate sr: {4-7}, max

size threshold of noise connected component nm: {10-

40 pixels}, margin control factor for Td2 fr: {0.01-0.5}, and

area ratio threshold ta: {40-200}. We set the simplex scales to

be �1 � 1; �2 � 10; �3 � 0:1, and �4 � 40.

8.3 Hardware and Software Environments

We implemented the X-Y cut and Docstrum algorithms based
on [26], [28]. We used the PSET software package [25], [24] for
training and testing the algorithms. The platform used for the
implementation and algorithm training was Ultra 10 Sun
workstations running the Solaris 2.6 operating system. The
clock rate of the machine reported by the command
ªfpversionº was 440MHz. The main memory is 512 MB.
The compiler used was GNU gcc 2.7.2. Kise et al. [17]
provided us with a C implementation of the Voronoi-based
segmentation algorithm. The platform used for the testing
was a Gateway PC with a 400 MHz Pentium II CPU and
128 MB main memory. To test the three research algorithms,
we ported the PSET software package to the PC running
Linux 7.0 operating system. To test the two products on the
PC, we wrote programs in the Visual C++ 5.0/Windows 95
environment to extract zone coordinates from the OCR
output.
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9 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, four aspects of the experimental results are

reported: training, test, statistical analysis, and error

analysis.

9.1 Training Results

Three research algorithms were trained on a 100-page

training data set T . Table 2 reports the optimum para-

meters, optimum performance index (average textline

accuracy) value, and training time corresponding to each

randomly selected starting point for the X-Y cut, Docstrum,

and Voronoi algorithms. We consider the parameter values

that give the lowest error rate as a set of optimal parameter

values for each research algorithm, as shown in Table 1.

Fig. 6 shows the convergence characteristics for the X-Y cut,

Docstrum, and Voronoi algorithms. The findings from the

training results for each research algorithm are summarized

as follows:

. The X-Y cut algorithm. From Table 2a and Fig. 6a,
we can make the following observations:

1. The error rates for all starting points converge in
the range of 14.71 percent to 18.96 percent.

2. The convergence rate before the first 30 function
evaluations is much faster than that beyond
30 function evaluations.

3. Most optimum values of parameter TnX are
larger than those of parameter TnY .

4. All optimum values of parameter TCX are smaller
than those of parameter TCY .

5. There is smaller variation in the optimal values
of parameter TCX than that in optimal values of
other parameters.

6. There is a fair amount of variation in the optimal
parameter values.

From the above observations, we can see that the
X-Y cut algorithm objective function has multiple

local minima and the performance at these local
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TABLE 2
Optimization Results of (a) the X-Y Cut Algorithm, (b) the Docstrum Algorithm, and (c) the Voronoi-Based Algorithm for Six

Randomly Selected Starting Points within a Reasonable Working Parameter Subspace

Note that the timings in (b) do not include the processing time for generating connected components. Since the generated connected components
are the same for each algorithm run in the training procedure, they are generated only once before starting the training procedure.

TABLE 1
Optimal Parameter Values for Each Research Algorithm



minima varies a lot. The algorithm only needs about
30 function evaluations to reach stable performance.
The vertical cuts are generally longer than horizontal
cuts. The vertical interzone gaps are generally wider
than horizontal interzone gaps. There is relatively
small variation in the horizontal interzone gaps.

. Docstrum algorithm. From Table 2b and Fig. 6b, we
can make the following observations:

1. The error rates for all starting points converge in
the range of 5.00 percent to 6.30 percent

2. The convergence rate before the first 70 function
evaluations is much faster than that beyond
70 function evaluations.

3. The parameters ft, fpa, and fpe converge to very
similar values from most starting points.

4. There is a relatively large variation in the
optimal values of parameter fd.

5. The number of function evaluations is gener-
ally larger than those for the X-Y cut and
Voronoi algorithms.

From the above observations, we can see that the
Docstrum algorithm objective function has multiple
local minima and the variation in the optimal error
rates is the smallest among the three research
algorithms. The performance of the algorithm
stabilizes after about 70 function evaluations, which
is much larger than those for the X-Y cut and
Voronoi algorithms. The performance of the Doc-
strum algorithm is insensitive to large ( > 5) values
of parameter fd, since for small fd, more connected
components are grouped into the sparse connected
component group where the intercharacter and
interline gap estimation is not accurate and, hence,

more errors will occur. However, for the other three
parameters, the fact that most of the optimal values
are very close implies the objective function may
have a single ªvalleyº in the neighborhood of these
parameter values.

. The Area-Voronoi-Diagram-Based algorithm. From
Table 2c and Fig. 6c, we can make the following
observations:

1. The error rates for all starting points converge in
the range of 4.74 percent to 5.52 percent.

2. The convergence rate before the first 40 function
evaluations is much faster than that beyond
40 function evaluations.

3. The value of the parameter nm for most starting
points converges to 11 pixels.

From the above observations, we can see that the
Voronoi algorithm objective function has multiple
local minima. The variation in performances at these
local minima is much smaller than that of the X-Y cut
algorithm. The algorithm needs only about 40 func-
tion evaluations to reach a stable performance. The
optimal algorithm performance is insensitive to the
value of parameter fr. The fact that the optimal
value of parameter ta is large implies that the text
and nontext connected components are well-sepa-
rated. The fact that the values of parameter fr are
generally small indicates that we should choose a
conservative (large) interline spacing threshold.

9.2 Testing Results

All five algorithms were tested on a 878-page test data set S
with their respective optimum parameters. Table 3 reports

the performance index (average textline accuracy) and
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Fig. 6. Convergence curves corresponding to six randomly selected starting points in the training of (a) the X-Y cut algorithm, (b) the Docstrum

algorithm, and (c) the Voronoi-based algorithm. Note that the scales for error rate in the three figures are not the same.

TABLE 3
Algorithm Testing Results and the Corresponding 95 Percent Confidence Intervals

The average time per page, the platform type, and the operating system are also reported.



average algorithm timing on the test data set S. Fig. 7 gives

a bar-chart representation of the testing results for each

evaluated algorithm.

From the testing results, we see that the Voronoi-based,

Docstrum, and Caere algorithms have similar performance

indices (average textline accuracy) which are better than
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Fig. 7. The first three algorithms in the bar chart are reseach algorithms, and the last two algorithms are commercial products. (a) Shows the testing

results of the performance index (average textline accuracy) for each algorithm. (b) Shows the algorithm testing time results for each algorithm.

Fig. 8. This figure shows the segmentation results of the Voronoi algorithm (a), the Docstrum algorithm (b), the X-Y cut algorithm (c), the Caere
segmentation algorithm (d), and the ScanSoft segmentation algorithm (e) using their corresponding optimal parameters on a document page. Note
that the Voronoi and the Docstrum algorithms split titles due to inaccurate parameter estimation, the X-Y cut algorithm splits page number and footer
that are not aligned with the main text columns, and the ScanSoft segmentation algorithm merged the header and page number.



that of ScanSoft's algorithm, which in turn is better than

that of the X-Y cut algorithm. From the fastest to the

slowest, the algorithms are ranked as: Caere, X-Y cut,

Voronoi, ScanSoft, and Docstrum. The connected compo-

nent labeling method we used for Docstrum may not be the

optimum one and, hence, its timing may be further

improved. Fig. 8 shows the segmentation results of all

algorithms on a document page. For comparison purposes,

an evaluator always likes to know if the performance index

(average textline accuracy) and processing time differences

between algorithms are statistically significant or not,

especially for those algorithms with similar performance

index values. This is addressed in the following section.

9.3 Statistical Analysis of Results

We employed a paired model [16] to compare the
performance index and testing time differences between
each possible algorithm pair and then computed their
confidence intervals. The analysis results for performance
index (average textline accuracy) and processing time are
reported in matrix form in Table 4. If we denote by Tij, the
value of the table cell in the ith row and jth column,
Tij � ai ÿ aj, where ai is the performance index or proces-
sing time of the algorithm in the ith row, and aj is the
performance index or processing time of the algorithm in
the jth column. Algorithm timing performance depends on
hardware and software factors, such as machine type,
operating system, memory size, network protocol [11], etc.
In our case, we assume that the timing difference
contributed by different compiler and operating systems
is negligible.

From Table 4, we find that a 5 percent level t-test

indicates that the differences between the performance

indices (average textline accuracy) of the Voronoi diagram-

based algorithm, Caere's segmentation algorithm, and

Docstrum are not statistically significant, but they are

significantly better than those of ScanSoft's segmentation

algorithm and the X-Y cut algorithm. Moreover, the

performance index of ScanSoft's segmentation algorithm

is significantly better than that of the X-Y cut algorithm. We

find that the processing times of all algorithms differ

significantly from one another. From the fastest processing

time to the slowest processing time, the algorithms are

ranked as Caere, X-Y cut, Voronoi, ScanSoft, and Docstrum.

9.4 Error Analysis

Error analysis is crucial to interpreting the functionalities of
the evaluated algorithms. Each algorithm has different
weaknesses. Fig. 9 shows the error analysis results of three
error types for each algorithm.

We can see that among the research algorithms, X-Y cut
has a much larger split textline error rate than the Voronoi
and Docstrum algorithms. This is mainly due to the fact that
the two zone cut thresholds (or widest zero valley
thresholds) TCX and TCY and the two noise removal thresh-
olds TnX and TnY are global thresholds that are fixed for each
document image, whereas in the Voronoi and Docstrum
algorithms, the intercharacter and interline spacings are
estimated for each individual document image. Titles with
wide intercharacter and interword spacings, numbered text
lists, and textlines with irregular character spacings in some
document images make the spacing parameter estimation
inaccurate in both the Voronoi-based and Docstrum
algorithms and, hence, contribute to the split textline error
rates in these two algorithms. However, these split textline
error rates are much smaller than that of X-Y cut. We can
see that among the research algorithms, X-Y cut has the
largest horizontally merged textline error rate, Docstrum
has the second highest such error rate, and Voronoi has the
lowest. This occurs primarily for the following reasons:
1) There are pages that have ªLº-shaped thick, long noise
blocks at the edges, which cannot be cut through in either
the X or Y direction by the noise removal thresholds TnX
and TnY of the X-Y cut algorithm, so that many text regions
under these noise blocks are merged together. 2) In
Docstrum's implementation, the huge noise blocks encoun-
tered by the X-Y cut algorithm are filtered out in a
preprocessing step, so that they do not affect connected
component and textline clustering procedures. 3) In the
Voronoi-based algorithm's implementation, in addition to
what has been done for Docstrum, Kise et al. not only use
the spacing of the connected components, but also their area
ratios to generate zone boundaries. Hence, lines or large
noise blocks between text regions do not cause horizontal
merges, whereas they do cause horizontal merges in the
Docstrum and the X-Y cut algorithm. We can see that
among the research algorithms, the X-Y cut has the highest
misdetected textline error rate while Voronoi and Docstrum
have negligible such error rates. This is again due to the
global thresholds of the X-Y cut algorithm which cause
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TABLE 4
Paired Model Statistical Analysis Results

Paired model statistical analysis results and the corresponding 95 percent confidence intervals on the difference between a pair of performance
indexes (in percent) (a) and the difference in processing time (seconds) (b). A (*) indicates that the difference is statistically significant at � � 0:05,
and no (*) indicates that the difference is not significant.



textlines such as headers, footers, authors, or page numbers
that are not aligned with text blocks to be considered as
noise regions and, hence, not to be detected.

9.5 Recommendations

Based on the discussion in the last section, we feel that some
recommendations may be useful to users who can make a
choice among page segmentation algorithms. We summar-
ize our recommendations about the three research algo-
rithms as follows:

1. For segmentation of document pages with large
skew angles or large noise blocks (especially
ªLº-shaped or ªUº-shaped thick noise bars), the
X-Y cut algorithm is a bad choice.

2. For segmentation of document pages with lines
separating zones, the Voronoi-based algorithm is a
better choice than either the Docstrum, or X-Y cut
algorithm.

3. For an easy to implement algorithm that is also fast,
the X-Y cut algorithm is a good choice.

4. For the X-Y cut algorithm, first remove large noise
blocks by labeling connected components and then
removing the larger ones.

5. If the given data set is similar to the data set used in
this paper, users can choose segmentation algo-
rithms according to their error characteristics shown
in Fig. 9.

6. A fast connected component generation algorithm
can make the Docstrum faster.

10 CONCLUSIONS

We have proposed a five-step performance evaluation
methodology for evaluating page segmentation algorithms.
We identify three crucial components of this methodology:
automatic training posed as an optimization problem, paired
model statistical analysis of experimental results, and error
analysis of experimental results in terms of misdetection,

split, and horizontal merge error types. We found that the

performance indices (average textline accuracy) of the
Voronoi, Docstrum, and Caere segmentation algorithms are

not significantly different from one another, but they are

significantly better than that of ScanSoft's segmentation
algorithm, which in turn is significantly better than that of

X-Y cut. We also found that the timings of all algorithms are
significantly different from one another. From the fastest to

the slowest, the algorithms are ranked as Caere, X-Y cut,

Voronoi, ScanSoft, and Docstrum. In the error analysis, we
found that X-Y cut has the most split and horizontally merged

textline errors due to its global thresholds, Voronoi has the
least horizontally merged textline errors partly due to its

usage of area ratio information of connected components, and

Caere has the least split textline error. We intend to extend this
work to evaluation of tables, graphs, and half-tone images.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Paul Smith for

discussions on various statistical issues, Dr. Kise for provid-
ing us with a software implementation of his segmentation

algorithm, Mindy Bokser for providing us with the Caere

page segmentation software, Greg Marton for his help in
obtaining experimental data, and Dr. Henry Baird, Dr. Azriel

Rosenfeld, and Dr. Jeffrey K. Hollingsworth for their
comments. This research was funded in part by the

US Department of Defense and the Army Research Labora-

tory under contract MDA 9049-6C-1250, Lockheed Martin
under Contract 9802167270, the Defense Advanced Research

Projects Agency under contract N660010028910, and the
US National Science Foundation under grant IIS9987944.

REFERENCES

[1] H.S. Baird, S.E. Jones, and S.J. Fortune, ªImage Segmentation by
Shape-Directed Covers,º Proc. Int'l Conf. Pattern Recognition,
pp. 820-825, June 1990.

MAO AND KANUNGO: EMPIRICAL PERFORMANCE EVALUATION METHODOLOGY AND ITS APPLICATION TO PAGE SEGMENTATION... 255

Fig. 9. This figure shows three types of errors. (a) Shows the page error rate as the ratio of the number of groundtruth textlines whose bound boxes
are split and the total number of groundtruth textlines. We denote this error category as split textline error. A 5 percent level t-test indicates that the
split textline error rates of all algorithms differ significantly from one another. (b) Shows the page error rate as the ratio of the number of groundtruth
textlines that are horizontally merged and the total number of groundtruth textlines. We denote this error category as horizontally merged textline
error. A 5 percent level t-test indicates that the horizontally merged textline error rates of X-Y cut and ScanSoft are not significantly different, but they
are significantly higher than those of the other three algorithms. Moreover, the horizontally merged textline error rates of Voronoi, Docstrum, and
Caere are significantly different from each other. (c) Shows the page error rate as the ratio of the number of groundtruth textlines that are missed and
the total number of groundtruth textlines. We denote this error category as misdetected textline error. We can see that Caere has the smallest split
textline error rate, Voronoi has the smallest horizontally merged textline error rate, and Docstrum has the smallest misdetected textline error rate.
Note that the misdetected textline error rates are much smaller than the other two types of error rate for all algorithms and the scales for different type
of error rate in the three figures are not the same.



[2] Empirical Evaluation Techniques in Computer Vision, K.W. Bowyer
and P.J. Phillips, eds., Santa Barbara, Calif. June 1998.

[3] Document Layout Interpretation and Its Applications, T. Breuel and
M. Worring, eds., Bangalore, India, Sept. 1999.

[4] Caere Developer's Kit 2000. Caere Co. http://www.caere.com/
1998.

[5] L.A. Fletcher and R. Kasturi, ªA Robust Algorithm for Text String
Separation from Mixed Text/Graphics Imagesº IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 10, pp. 910-918, 1988.

[6] P.E. Gill, W. Murray, and M.H. Wright, Practical Optimization,
chapter 4, London and New York: Academic Press, 1993.

[7] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, Mass.: Addison-Wesley, 1989.

[8] Performance versus Methodology in Computer Vision, R.M. Haralick
and P. Meer, eds., Seattle, June 1994.

[9] R.M. Haralick and L.G. Shapiro, Computer and Robot Vision.
Reading, Mass.: Addison-Wesley, 1992

[10] R.M. Haralick, S.R. Sternberg, and X. Zhuang, ªImage Analysis
Using Mathematical Morphology,º IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 9, pp. 523-550, 1987.

[11] J.K. Hollingsworth, E. Guven, and C. Akinlar, ªBenchmarking a
Network of PCs Running Parallel Applications,º Proc. Int'l
Performance, Computing, and Communications Conf., pp. 447-453,
Feb. 1998.

[12] A. Hoover, G. Jean-Baptiste, X. Jiang, P.J. Flynn, H. Bunke, D.B.
Goldof, K.W. Bowyer, D.W. Eggert, A. Fitzgibbon, and R.B. Fisher,
ªAn Experimental Comparison of Range Image Segmentation
Algorithms,º IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 18, pp. 673-689, 1996.

[13] A.K. Jain and B. Yu, ªDocument Representation and Its Applica-
tion to Page Decomposition,º IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 20, pp. 294-308, 1998.

[14] J. Kanai, S.V. Rice, T.A. Nartker, and G. Nagy, ªAutomated
Evaluation of OCR Zoning,º IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 17, pp. 86-90, 1995.

[15] T. Kanungo, M.Y. Jaisimha, J. Palmer, and R.M. Haralick, ªA
Methodology for Quantitative Performance Evaluation of Detec-
tion Algorithms,º IEEE Trans. Image Processing, vol. 4, pp. 1667-
1674, 1995.

[16] T. Kanungo, G.A. Marton, and O. Bulbul, ªOmniPage vs. Sakhr:
Paired Model Evaluation of Two Arabic OCR Products,º Proc.
SPIE Conf. Document Recognition and Retrieval VI, vol. 3651, pp. 109-
120, Jan. 1999.

[17] K. Kise, A. Sato, and M. Iwata, ªSegmentation of Page Images
Using the Area Voronoi Diagram,º Computer Vision and Image
Understanding, vol. 70, pp. 370-382, 1998.

[18] V. Laarhoven and E.H.L. Aarts, Simulated Annealing: Theory and
Applications. Dordrecht, The Netherlands: Reidel Publishing, 1989.

[19] R.M. Lewis, V. Torczon, and M.W. Trosset, ªWhy Pattern Search
Works,º OPTIMA, vol. 59, pp. 1-7, 1998.

[20] J. Liang, I.T. Phillips, and R.M. Haralick, ªPerformance Evaluation
of Document Layout Analysis Algorithms on the UW Data Set,º
Proc. SPIE Conf. Document Recognition IV, vol. 3027, pp. 149-160,
Feb. 1997.

[21] S. Mao and T. Kanungo, ªA Methodology for Empirical Perfor-
mance Evaluation of Page Segmentation Algorithms,º Technical
Report CAR-TR-933, Univ. of Maryland, College Park, Dec. 1999.
http://www.cfar.umd.edu/~kangungo/pubs/trsegeval.ps.

[22] S. Mao and T. Kanungo, ªAutomatic Training of Page Segmenta-
tion Algorithms: An Optimization Approach,º Proc. Int'l Conf.
Pattern Recognition, pp. 531-534, Sept. 2000.

[23] S. Mao and T. Kanungo, ªEmpirical Performance Evaluation of
Page Segmentation Algorithms,º Proc. SPIE Conf. Document
Recognition and Retrieval VII, vol. 3967, pp. 303-314, Jan. 2000.

[24] S. Mao and T. Kanungo, ªPSET: A Page Segmentation Evaluation
Toolkit,º Proc. Fourth IAPR Int'l Workshop Document Analysis
Systems, pp. 451-462, Dec. 2000.

[25] S. Mao and T. Kanungo, ªSoftware Architecture of PSET: A Page
Segmentation Evaluation Toolkit,º Technical Report CAR-TR-955,
Univ. of Maryland, College Park, Sept. 2000. http://www.cfar.
umd.edu/~kanungo/pubs/trpset.ps. Software is available at
http://www.cfar.umd.edu/~kanungo/software/software.html.

[26] G. Nagy, S. Seth, and M. Viswanathan, ªA Prototype Document
Image Analysis System for Technical Journals,º Computer, vol. 25,
pp. 10-22, 1992.

[27] J. Nelder and R. Mead, ªA Simplex Method for Function
Minimization,º Computer J., vol. 7, pp. 308-313, 1965.

[28] L. O'Gorman, ªThe Document Spectrum for Page Layout
Analysis,º IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 15, pp. 1162-1173, 1993.

[29] L. O'Gorman and R. Kasturi, Document Image Analysis. Los
Alamitos, Calif.: IEEE CS Press, 1995.

[30] T. Pavlidis and J. Zhou, ªPage Segmentation and Classification,º
Graphical Models and Image Processing, vol. 54, pp. 484-496, 1992.

[31] I. Phillips, User's Reference Manual, CD-ROM, UW-III Document
Image Database-III, July 1996.

[32] I.T. Phillips and A.K. Chhabra, ªEmpirical Performance Evalua-
tion of Graphics Recognition Systems,º IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 21, pp. 849-870, 1999.

[33] P.J. Phillips, H. Moon, S.A. Rizvi, and P.J. Rauss, ªThe FERET
Evaluation Methodology for Face-Recognition Algorithms,º IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 22, pp. 1090-
1104, 2000.

[34] M.J.D. Powell, ªDirect Search Algorithms for Optimization
Calculations,º Acta Numerica, vol. 7, pp. 287-336, 1998.

[35] S. Randriamasy, L. Vincent, and B. Wittner, ªAn Automatic
Benchmarking Scheme for Page Segmentation,º Proc. SPIE Conf.
Document Recognition, vol. 2181, pp. 217-230, Feb. 1994.

[36] Application Programmer's Interface, ScanSoft Co., Dec. 1997. http://
www.scansoft.com.

[37] F. Wahl, K. Wong, and R. Casey, ªBlock Segmentation and Text
Extraction in Mixed Text/Image Documents,º Graphical Models
and Image Processing, vol. 20, pp. 375-390, 1982.

[38] M.H. Wright, ªDirect Search Methods: Once Scorned, Now
Respectable,º Numerical Analysis 1995, pp. 191-208, D.F. Griffiths
and G.A. Watson, eds., Addison Wesley, Longman (Harlow),
1996.

Song Mao received the BEng and MEng
degrees from the Department of Precision
Instrument Engineering, Tianjin University, Tian-
jin, China in 1993 and 1996, respectively, and
the MS degree in electrical and computer
engineering from the University of Maryland at
College Park in 1999. He is currently pursuing a
PhD degree in electrical and computer engineer-
ing at the University of Maryland at College Park.
His research interests include document image

analysis, pattern recognition, and computer vision.

Tapas Kanungo received the MS and PhD
degrees in electrical engineering from the Uni-
versity of Washington, Seattle, in 1990 and
1996, respectively. From March 1996 to October
1997, he worked at Caere Corporation, Los
Gatos, California, on their OmniPage OCR
product. During the summer of 1994, he worked
at Bell Labs, Murray Hill, New Jersey, and during
the summer of 1993, he worked at the IBM
Almaden Research Center, San Jose, Califor-

nia. Prior to that, from 1986 to 1988, he worked on speech coding and
online handwriting analysis in the Computer Science group at Tata
Institute for Fundamental Research, Bombay, India. He currently serves
as a codirector of the Language and Media Processing Lab at the
University of Maryland, College Park, where he conducts research in the
areas of document image analysis, OCR-based cross-language
information retrieval, pattern recognition, and computer vision. He
cochaired the 1999 IAPR Workshop on Multilingual OCR, was a coguest
editor of the International Journal of Docunment Analysis and Recogni-
tion special issue on performance evaluation, and has been program
committee member of several conferences. He is a member of the IEEE.

256 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 3, MARCH 2001


