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Abstract 

The general problem of developing algorithms for the automated or computer-assisted indexing of images by 

structural contents is a significant research challenge.  This is particularly so in the case of biomedical images, 

where the structures of interest are commonly irregular, overlapping,  and partially occluded.  Examples are the 

images created by digitizing film x-rays of the human cervical and lumbar spines.  We have begun work toward the 

indexing of 17,000 such spine images for features of interest in the osteoarthritis and vertebral morphometry 

research communities.  This work requires the segmentation of the images into vertebral structures with sufficient 

accuracy to distinguish pathology on the basis of shape, labeling of the segmented structures by proper anatomical 

name, and classification of the segmented, labeled structures into groups corresponding to high level semantic 

features of interest, using training data provided by biomedical experts.  In this paper, we provide a technical 

characterization of the cervical spine images and the biomedical features of interest, describe the evolving technical 

approach for the segmentation and indexing problem, and provide results of algorithms to acquire basic landmark 

data and localization of spine regions in the images. 
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1. Problem 

 

At the Lister Hill National Center for Biomedical Communications, a research and development division of the 

National Library of Medicine, we are developing a prototype multimedia database system to provide access to text 

and related x-ray images over the World Wide Web.  This WebMIRS (Web-based Medical Information Retrieval 

System)1-2 will allow access to databases containing text and images and will allow database query by standard 

Structured Query Language (SQL), by image content, or by a combination of the two.  The WebMIRS results screen 

is illustrated in Figure 1. This beta-level system is capable of retrieving text and reduced resolution cervical spine 

and lumbar spine x-ray images.  However, except for image display, the current WebMIRS  is very similar to many 

other databases that are text-only: no image content information, such as quantitative measures of vertebrae, or 

classifications of the vertebrae for pathology, are currently available in the database; further, all queries are made 

with GUI-assisted, standard SQL.  No query by image example is currently possible. Toward building these more 

advanced capabilities, we are addressing fundamental problems in the required image processing and pattern 

classification. 

 

1.1 Current WebMIRS operation 

 

In the current WebMIRS system, the user manipulates GUI tools to create a query such as, “Search for all records 

for people over the age of 60 who reported chronic back pain.  Return the age, race, sex, and age at pain onset for 

these people.”  In response, the system returns a display of values for these four fields for all matching records, plus 

a display of the associated x-ray images. 

 

1.2 Future WebMIRS operation 

 

A future WebMIRS system is envisioned to have additional capabilities to support queries such as the following:   

 

Example 1:  “Search for all records for people over the age of 60 who reported chronic back pain.  Return the 

age, race, sex, age at pain onset, and ratio of anterior/posterior vertebral heights for the L4 vertebra.” 
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Example 2:  “Search for all records for people over the age of 60 who reported chronic back pain and who have 

an L4 vertebra with shape resembling this one.  Return the age, race, sex, age at pain onset, and ratio of 

anterior/posterior vertebral heights for the L4 vertebra.” 

 

The requirements for a system capable of queries as exemplified by example 1 differ from those exemplified by 

example 2.   In example 1, the query is conventional; the image content data is simply text in relational tables.  

(However, the costs in time and money of acquiring this data by the manual labor of medical experts are prohibitive.  

The implication is that only by means of an automated or sufficiently cost-effective computer-assisted system will 

the image content data be successfully acquired.  Hence, even to populate our RDBMS tables with this type of data, 

research into algorithms to segment and identify anatomy and derive measurements meaningful to the end user are 

needed.) 

 

In example 2, the query itself is non-conventional.  The system is required to accept as input not just SQL, but an 

example image, in addition.  The database tables contain feature descriptors for each image in the database.  The 

feature descriptors for an image consist of data derived from that image that characterize the image contents in a 

manner that allows for retrieval based on visual features meaningful to the user.  In this case, the program has an 

additional  requirement for a record to match the input query:  the feature descriptors for the record being compared 

must satisfy a similarity requirement relative to the input example image.  For an example 2 system to become 

operational, basic problems in indexing image contents, and deriving feature descriptors, must be solved in order to 

populate the RDBMS tables, plus the system must be enabled to accept a fundamentally different type of query; in 

addition, the system must incorporate a concept of similarity measurement for judging the degree to which an image 

in the database resembles an input example image. 

 

Our eventual goal is to have a system that will support not only example 1 but also example 2 queries.  Toward this 

goal we are pursuing research into image processing techniques that will support the hierarchical segmentation of 

the images, first into anatomically-related regions at a level of gross detail, then a fine level segmentation of the 

spine area into individual vertebrae.  This segmentation stage will be followed by a stage of identification of the 
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anatomy within the spine by specific vertebra number, i.e., for the cervical spine, an individual vertebra will be 

identified as one of C1 through C7.   Finally, the features of interest within the segmented, labeled spine anatomy 

will be classified.   For example, the disc spacing for each pair of vertebrae will be classified as “normal” or 

“abnormal”:  a result might be, “C5-6 disc spacing is abnormal”.   

 

The challenges in building biomedical image databases are many and complex, and it is beyond the scope of this 

paper to address them completely.  A comprehensive overview has been authored by Tagare3. 

 

2. Goals, approach, and related work 

 

Our goals are to index the images by specific features of interest identified by biomedical subject matter experts.  

Primarily, these are, for the cervical spines, anterior osteophytes, disc space narrowing, and subluxation; for the 

lumbar spines, these are anterior osteophytes and disc space narrowing.  These features are of interest to the 

osteoarthritis community and were identified in two workshops4 conducted at the National Institutes of Health (NIH) 

and sponsored by the National Institute of Arthrtitis and Musculoskeletal and Skin Diseases (NIAMS).  Additional 

features include basic dimensionality and inter-vertebral geometry measures such as anterior, posterior, and mid-

body heights for each vertebra, and intervertebral spacing measures.  These measures are used within the vertebral 

morphometry research community5-9 and/or are closely related to the features of interest to the osteoarthritis 

community. 

 

In our approach we conceive the problem as (1) a hierarchical analysis and segmentation of the images, beginning at 

gross level (“blob” level) features defined by grayscale and connectivity characteristics, and proceeding through 

deformable template segmentation of vertebrae using statistical anatomical models; (2) classification and labeling of 

the segmented anatomy by structural name; and (3) classification (“indexing”) of the segmented, labeled anatomy 

according to pathology or high-level semantic feature of interest. 

 

To our knowledge, no comprehensive solution to this automated or semi-automated indexing problem has been 

achieved for a large collection of digitized spine x-rays, although progress on sub-problems has been reported in the 
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technical literature by several researchers, either for digitized film of the spine or closely related image modalities 

for the spine or the hand.  An early approach to localizing the spinal canal, intervertebral discs, and other lower 

spine features in magnetic resonance images (MRI) was reported by Chwialkowski10, who achieved good results in 

modeling the spinal canal curvature as a second-order polynomial.  Later, a fundamental and comprehensive 

treatment of the whole field of Active Shape Modeling (ASM), which has given technical direction to a number of 

research efforts, including our own, was provided by Cootes11.  A semi-automated implementation of the ASM 

approach has been achieved for the vertebral segmentation of lumbar spine dual x-ray absorptiometry (DEXA) 

images12; in this implementation, the user must manually identify two “anchor points” for placing a template on the 

target image; the template then deforms according to the ASM algorithm, maintaining invariant location of the 

anchor points, which are placed at the top and bottom of a column of vertebrae.  Gardner13 also developed a semi-

automated system, based on active contour (snake) modeling of the vertebrae, which, in particular, operated on 

digitized lumbar spine x-ray film.  In this system, points on the vertebral boundaries are specified by the user, with 

assistance from the system in point placement.  The selected boundary points then become constraints on the active 

contour that is automatically fit to the vertebra boundary.  This process is carried out vertebra by vertebra. The same 

author has pointed out14 the potential problems in taking dimensional measurements from vertebrae on x-rays, due to 

the projective nature of the imaging modality, which results in overlapping edges and concealed boundaries. A 

comprehensive treatment of x-ray segmentation as applied to hand radiographs has been given by Efford15, and 

additional technical papers are provided in the references16-18. 

 

Previous direct work on the segmentation for this particular x-ray collection has occurred, though it is at an early 

stage. We have previously reported19-20 promising segmentation work for small test sets of these images, using 

manually-acquired vertebral boundary data sampled from 15-20 images and deformed to fit image data by an 

implementation of the ASM algorithm.  Work done independently by Sari-Sarraf21 using similar techniques and 

tools also appeared to give successful results to a first-order level in a significant number of cases.  It should be 

noted that both in our work and the work of Sari-Sarraf a number of problems were observed, and technical issues 

that require resolution were raised.  Among the most outstanding of these are the need for a good method for 

initializing ASM to segment the vertebrae (although Zamora22, and we, in this paper, have done work toward that 

goal), the need to investigate the effects of modeling the image grayscale distribution in the neighborhood of 
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vertebrae boundary points with a mixed Gaussian probability distribution function, and the need to understand 

nonconvergence of the algorithm for certain images even when the template initial conditions are set near known 

truth. 

 

The final indexing and classification step for our images requires taking the segmented images along with expert 

training data, and labeling the anatomy by structural name, as well as dividing the labeled structures into classes of 

normal or abnormal for the conditions of interest. It also generates all of the geometry measures desired from the 

data.  Work toward this step that applies radius of curvature criteria to segmented vertebrae boundaries has been 

reported by Stanley23, who investigated features and classification algorithms for the computer-assisted indexing of 

cervical spine x-rays for normality/abnormality with respect to anterior osteophytes.  Stanley’s work concentrates on 

the feature selection/classification problem; the vertebra boundary determination is done by fitting a B spline to a set 

of manually-selected boundary points (chosen with the aid of Kirsch edge detection and a small number of points 

placed by medical expert).  He measured radius of curvature along the anterior part of the vertebra boundary, and  

examined a total of 31 features, including radius of curvature and its first and second derivatives calculated at the 

boundary point of minimum radius of curvature, and at boundary points in the neighborhood of this minimum radius 

of curvature point; additional gradient-based features were used, including maximum, minimum, mean, and standard 

deviation of gradient at each of the boundary points on the vertebra anterior.  Stanley reported classification results 

using a back propagation neural network, K-means classification, a quadratic discriminant classifier, and Learning 

Vector Quantization 3.  Of the four classifiers, the neural network produced best results with 71% correctly 

classified vertebra on a test set of 35 vertebrae (trained on 83 vertebrae).  

 

 

3. Characterization of the images 

 

3.1 Global characteristics 

 

The 17,000 images in our collection consist of approximately 10,000 cervical spine, and approximately 7,000 

lumbar spine images.  These lateral view images were collected as part of the second National Health and Nutrition 
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Examination Survey 24-25 (NHANES II) in film form, and were digitized at 146 dpi, 12 bits per pixel, with a Lumisys 

laser scanner.  The resulting image dimensions are 1463x1755 for the cervical spine images, and 2048x2487 for the 

lumbar spine images.  No formal study of the bit level significance in these images was conducted, but informal 

analysis of the lower bit planes in these images, plus estimations of bit level significance in similar images in the 

published literature 26-28 strongly suggest that the information content in the images beyond the most significant 8 

bits is likely to be extremely small.  In this paper, we report on work with 8-bit images of the  cervical spine, only.  

These images are 1462x1755x8 (the modification in image width from 1463 to 1462 was done strictly for 

convenience of software in dealing with an even number of pixels in a line).  A summary of the overall 

characteristics of a sample of these images is given in Table 1.   By displaying a sample of the cervical spine 

images, it is straightforward to arrive at the hypothesis that, at a gross level, the images appear to contain two bright 

regions, corresponding approximately to the skull and shoulder, and at least one consistently dark background 

region, corresponding to the region back of the skull.  This observation became the basis for an analysis of basic 

landmarks in these images that is presented later in this paper. 

 

3.2 Spine region 

 

For a small subset (550) of the images we have acquired coordinate data for key points on and around the vertebrae.  

This data was collected under supervision of a board certified radiologist with expertise in bone x-rays.  Up to 9 data 

points were collected per vertebra, as illustrated in Figure 2, with points 1-6 corresponding to the standard 6 points 

commonly collected in the field of vertebral morphometry, point 7 corresponding to the anterior midpoint of the 

vertebra, and points 8 and 9 corresponding to the maximum protrusion of osteophytes on the anterior top and 

bottom, respectively, of the vertebral body.  (An osteophyte is a “bony outgrowth or protuberance”29.)  These data 

points were collected for all of the vertebrae with sufficiently visible boundaries.  Typically, for the cervical spine 

images, these included the vertebrae boundaries from the bottom of C2 through C6, though in a few cases C7 and  

T1 were also visible.    For the lumbar spine boundaries, the collected data typically spanned L1-L5, although in a 

few cases parts of the boundaries for the thoracic T12 and sacral S1 were collected.  Additionally, a few special 

points were collected: for the cervical spine, these included a point marking the approximate center of gravity of the 

C1 vertebra.  The nomenclature for the vertebrae naming and the overall spine anatomy are illustrated in Figure 3.  
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This expert-identified data is very useful for model building for the spine, for use as reference data for evaluating 

performance of algorithms to localize spine structures 21-22, and for setting parameters within algorithms that analyze 

the spine.   For 46 of the cervical spine images, we computed the statistics of basic distance measures both within 

the vertebrae and for intervertebral quantities.  Figure 2 illustrates the geometry for the distance measurements taken 

for the intervertebral and within-vertebra quantities, respectively.  Table 2a gives the statistics for the intervertebral 

quantities: for C1/C2 these numbers characterize the distance from the C1 approximate center of gravity to the C2 

bottom midpoint; for each of the other entries the table values correspond to the distances between neighboring pairs 

of points in adjacent vertebrae.  These distances might be considered in some sense as first-order approximations to 

the intervertebral spacing; however, note that the term “disc spacing” is a high level semantic description applied by 

biomedical experts, and that we are not attempting in this paper to equate that description to these measurements.  

Table 2b gives the statistics for the within-vertebra quantities.  Note that deriving dimensional data from these 

coordinates requires choosing among different computational options, based on the likely use of the computed 

result.  For example, vertebral “height” may be computed as the distance between points 3 and 6 on a vertebra, but 

this essentially treats the vertebra as a rectangle, with the corresponding error in what we may conceive as the “true” 

height of the vertebra.  A more sophisticated approach would be to fit straight lines to the top and bottom of the 

vertebra, and to measure height as the distance between these lines along a perpendicular passing through point 3.  

(In the system described by Gardner13, the user marks the points 1 and 3, then the system automatically places point 

4 so that it lies on a perpendicular to the line determined by points 1 and 3.) Note also that the last two columns 

contain distances related to the extent of the protrusion of anterior osteophytes.  These values correspond to simple 

distance measurements between points 3 and 8, and between points 6 and 9, for top and bottom osteophytes, 

respectively, and may not be “good” characterizations of the extent of the osteophyte protruberance.  For example, 

this extent might be better measured as distance along a perpendicular dropped from point 8 (point 9) to a straight 

line fit to the three points (points 3, 7, and 6) that lie on the front of the vertebra.   

 

The vertebrae grayscale characteristics are complex.  It is easy to find examples in the images of vertebrae with 

interior regions having grayscale values similar to those in regions that are neighboring, but external to, the vertebral 

body. This is illustrated in Figures 4a and 4b.  In the surface plot shown in Figure 4b, the prominent body near the 



 10

center of the image is C4, with parts of C3 and C5 shown at its top and bottom, respectively.  The C4 grayscale 

distribution for the interior region near the center of the vertebral body closely resembles the distribution in the 

region neighboring, but external to, C4, that lies within the C3/C4 disc space.  A sample of grayscale in the two 

regions yielded:  µ = 197.4, σ = 2.2, for the interior region; and µ = 198.1, σ = 1.6, for the external region, within 

the C3/C4 disc space. Hence, segmentation methods for the vertebrae that rely heavily on grayscale value as a 

discriminator of vertebra/non-vertebra regions tend not to be robust. 

 

3.3 Biomedical features of interest: anterior osteophytes, an example 

 

One of the important biomedical features desirable for indexing the cervical spine images is presence/absence of 

anterior osteophytes.  Figures 5-7 illustrate this feature as a localized shape characteristic not susceptible to analysis 

by global indexing methods such as global histogram or global shape analysis available in existing image database 

systems 30-31. Figure 5 shows four cervical spine images with, first, no osteophytes, then the presence of 

progressively more severe osteophytes.  The grading of osteophyte presence and severity in these images was done 

by consensus of three rheumatologists with expertise in interpreting spine x-rays for features related to osteoarthritis 

in a project sponsored by the National Institute of Arthritis and Musculoskeletal and Skin Diseases.  This project 

resulted in the creation of a digital atlas of the cervical and lumbar spines32. Figure 5 illustrates the fact that, at the 

global image level, the available visual information is not of much use in detecting osteophytes.  Figure 6 shows 

subimages cropped from the Figure 5 x-rays where the local shape characteristics of the vertebrae are more 

apparent.  In Figure 5 the progression from a (normal) smooth rounded corner to an irregular, strongly distorted 

corner may be seen on the lower anterior corner of the central vertebra in each subimage.  In Figures 7a-d the 

grayscale in these subimages has been plotted as a surface plot viewed from an elevation of 90 degrees (directly 

above); the vertebral boundaries have been traced by hand to clearly indicate the osteophyte shapes and extents. 

 

4. Multiresolution analysis overview 

 

At full spatial resolution, the cervical spine images exhibit a variability of image characteristics that significantly 

complicates analysis and segmentation of the contents.  The most successful approaches that we have used require 
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statistical or integrative techniques, or similar techniques that analyze the image contents by grouping pixels as 

regions, lines or curves, rather than individual points.  An alternative approach is to begin the image analysis at a 

lower spatial resolution version of the image, produced by blurring and subsampling the original.  Multiresolution 

(or “multiscale”) approaches are widely employed in boundary detection problems within the image processing 

community.  Examples are the work of Cootes11  in ASM segmentation, and of Liang33 and Mignotte34, both for the 

detection of artery boundaries in ultrasound images. 

 

As the resolution of the cervical spine image decreases, the visual distinctions among the individual vertebrae are 

lost, as well as the spinous process anatomy at the back of the vertebrae, and all distinctive anatomical features 

within the skull area (teeth, sinus area, orbits of the eyes, etc.).  At a very low resolution the predominant visual 

features of the cervical spine images are the bright spots in the image corresponding to the approximate skull and 

shoulder regions, and the distinctively dark region corresponding to the background behind the skull.  As shown 

below, it is possible to segment these regions in a very low resolution version of the image, and to map from the 

centers of gravity of these regions to points in the full resolution image that correspond to landmarks in the near 

skull, shoulder and background regions in a reliable manner.  These landmarks can then (presumably) be used to 

refine knowledge of the image anatomy in the full resolution image. 

 

5. Results and discussion 

 

All algorithm work in this paper used 1462x1755x8 cervical spine images with grayscale values normalized to lie 

between 0 and 1, corresponding to the minimum (maximum) grayscale value in the original image. 

 

5.1 Finding basic landmarks in the images 

 

The landmark algorithm that we have developed takes as input one cervical spine image I and outputs three pairs of 

(x,y) coordinates labeled SK,SH, and BG, which correspond to the approximate locations of skull, shoulder, and 

back-of-skull background in the image I.  The algorithm is heuristic in nature and relies on the observation that 
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skull, shoulder and back-of-skull background regions appear to be preserved as recognizable bright or dark “blobs”, 

even when the images are heavily smeared and subsampled.  Steps in the algorithm are described below: 

 

(1) Compute B=G(I).  Produce the blurred image B by filtering the input image I so that the pixels remaining 

after subsequent subsampling represent the grayscale characteristics of  regions, rather than individual pixels, 

in the original image.  For the filtering, we experimented with Gaussian filters with a variety of parameters 

(filter size and sigma) by viewing the filtered images and noting whether the image had been largely reduced 

to the grayscale blob level, and chose a 100x100 filter with sigma of 100 to produce the severe blurring that 

we desired.   

(2) Compute SB=S(B).  Produce the subsampled, blurred image SB by using a subsampling process S on the 

blurred image B to reduce it in spatial dimensions to a size easy to analyze.  One of the areas that we wanted 

to explore was, whether significant information could be obtained from very low resolution versions of the 

images.  With this motivation, we used a subsampling factor of 28, so that the SB matrix is only of size 6x7, 

(as compared to the original image size of 1462x1755).  Figures 8a and 8b show an example of an original 

image I and the resulted subsampled blurred image SB.  In Figure 8b the two bright regions corresponding to 

skull and shoulder, and the dark background region behind the skull, can be observed. 

(3) Identify regions of interest Rs1, Rs2, and Rbg in the subsampled blurred SB image, and compute landmarks 

within each of these regions. The regions Rs1 and Rs2 correspond to the two brightest blobs in SB, which we 

expect to correspond to the skull and shoulder regions.  At this step we do not determine specifically which of 

the Rs1 and Rs2 regions is skull and which is shoulder.  The region Rbg corresponds to the dark image 

background behind and, in some images, on top of the skull.  The identification of Rs1 is accomplished as 

follows:  (a) find the brightest grayscale value gb1 in the image SB; (b) using gb1 as a seed, grow a region 

containing gb1 by iteratively examining the 8-neighbors of pixels already in the region, and adding to the 

region any of these 8-neighbors having a grayscale value within a tolerance of gb1; the resulting connected 

region is Rs1.  The region Rs2 is similarly found by finding the second brightest grayscale value gb2 in SB that 

lies in a region disjoint from Rs1 (i.e. no 8-neighbors of Rs1 boundary pixels lie in this region).  Just as for Rs1, 

the gb2 pixel is used to seed a region-growing operation that results in an 8-connected region of pixels Rs2 that 

have grayscale values within a tolerance.   The tolerances used to define connectivity of Rs1 and Rs2 were 
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found experimentally:  for Rs1, the tolerance gb1-0.05*dr was used, and for Rs2, the tolerance was gb2-0.05*dr, 

where dr is the dynamic range (max – min grayscale value) in the image SB.  While determining useful 

tolerance values that hold across a range of images can be at best problematic in the full resolution images, 

we were able to determine, with relatively few trials of varying the tolerance values and viewing the resulting 

connected regions, that the above values result in connected regions that satisfactorily correspond to skull and 

shoulder.  The background region Rbg was determined by finding all pixels with grayscale value below a 

tolerance empirically determined by visual checks to produce satisfactory connected background regions 

across a range of images.  (An absolute grayscale tolerance of 0.1 was used.)  For each of the regions Rs1, Rs2, 

and Rbg the corresponding centers of gravity L1, L2, and Lbg were computed as landmarks. 

(4) Classify the landmarks L1 and L2 as corresponding to approximate skull or shoulder regions.  These 

landmarks were classified using four different methods.  All classification was done in the low-resolution 

images (though one method uses a resolution one step finer than the SB images).  For each method the 

landmarks were labeled “SK” or “SH”, the labels were mapped to corresponding (x,y) coordinates on the full 

resolution image, and the resulting labeled images were viewed.  The background landmarks were also 

labeled “BG” and similarly mapped to the full resolution images.  We displayed the full resolution, labeled 

images and judged acceptability of the labeling.  We considered a label “acceptable” if it clearly lay within 

the boundaries of the corresponding region on the full resolution image; in addition, we considered a skull or 

shoulder label acceptable if the resulting skull-shoulder line segment lay reasonably close in position and 

orientation to the spine, so that it appeared to be sufficiently accurate to position and orient a spine region 

template for initializing a search for the spine region.  The last criterion is subjective:  the real validation of 

the labeling algorithm comes in the application of the results to the problem of locating the spine region.  

Figures 9a-c show examples of the labeling. Figure 9c illustrates a case of the “SK” landmark being placed 

off the skull region, but we still judged its placement acceptable for getting an approximate spine position and 

orientation by using the line passing through “SH” and “SK” as a reference, along with the knowledge of the 

placement of the background landmark “BG”.   Classifying the L1, L2 landmarks as skull or shoulder:  four 

methods were applied, and the resulting classifications for L1, L2 were compared for correctness.  The first 

method used to classify the L1 and L2 landmarks is based on the observation that, for many full resolution 

images, the brighter pixels occur in the shoulder region.  The second and third methods are based on the 
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observation that in the full resolution images, the grayscale variance in the shoulder region is almost always 

low as compared to the skull grayscale variance:  these methods use variance as a discriminator.  (Of course, 

we are operating on very low-resolution images where the bright and dark pixels lying near object boundaries 

in the full resolution images have been smeared together.)  The fourth method uses the location of the 

background label BG to infer shoulder location.  Details of these four methods used to classify L1 and L2 are 

as follows:  (a) consider the brighter point of L1, L2 to be shoulder; (b) consider the point of L1, L2 with 

smaller grayscale variance in neighboring SB pixels to be shoulder; (c) the same basic idea as (b), but use the 

images at one finer level of resolution, to get a better estimate of variance in a region; each pixel in the image 

SB corresponds to a set of four pixels in the next highest resolution image (increased by a factor of 2 in both 

the x and y directions); map the SB regions Rs1 and Rs2 (which have centers of gravity L1 and L2, 

respectively) into the corresponding regions in the next higher resolution image; find the variance of each of 

these sets of pixels, and consider L1 to be shoulder if the region corresponding to Rs1 in the higher resolution 

image has the smaller grayscale variance, as compared to the variance of the region corresponding to Rs2; else 

consider L2 to be shoulder; (d) for each image, use the background region Rbg to determine the “background 

corner”:  the image corner closest to the background region; once the background corner is found, determine 

the “shoulder corner” of the image:  the image corner expected to be closest to the shoulder region; finally, 

consider L1 to be shoulder if it lies closest to the shoulder corner; else, consider L2 to be shoulder. 

 

Results of  the automatic landmarking are given in Table 3 for a set of 48 cervical spine images, and show that the 

classifications obtained by methods (a)  and  (d)  yielded the identical results of 46 acceptable skull classifications 

and 48 acceptable shoulder classifications.  Method (c) yielded 46 acceptable skull classifications and 47 acceptable 

shoulder classifications.  Method (b) relies on measuring the variance of the image SB in a 3x3 region centered at 

the candidate skull (shoulder) point, and the relatively poor performance of this method is not surprising, 

considering the severe blurring and subsampling used to produce SB.  What is somewhat surprising is that, as 

shown by the performance of method (c), sufficient variance information is preserved in the next highest resolution 

image (of size only 12x14) to discriminate between skull and shoulder.  It should be noted that method (a) relies on 

comparing the differences between grayscale values; in some cases the differences between these values may be 

quite small.  A similar comment may be made about the comparison of the variances in method (c).  This suggests 
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that in a larger test set, some failures may occur with these methods due to outlying cases where the skull grayscale 

(variance) is in fact greater than (less than) the shoulder grayscale (variance) in the low resolution images.   Method 

(d), however, only relies on the suppositions that we can properly classify the background behind the skull, that we 

can identify the corresponding image corner closest to this background region, and, using this information, that we 

can identify the image corner where the shoulder is expected to lie.  The shoulder point is then classified as the 

candidate point closest in Euclidean distance to this “shoulder corner” of the image.  In all of the observed cases, 

the background region, background corner, and shoulder corner were reliably identified, and the differences in the 

Euclidean distance between each candidate point and the shoulder corner are much larger than the differences used 

to discriminate between the candidate points in methods (a) and (c).  Hence, we might expect method (d) to prove to 

be the most reliable method of classifying the landmarks. The two failure cases in skull labelling for methods (a), 

(c) and (d) were for the same two images.  Both of these images show strong leakage of light along the bottom 

border of the original x-ray film, which in each case results in one of the candidate landmarks which should have 

been placed in the skull region, being placed along the bottom border.  The fact that method (a) was able to 

correctly label the shoulder landmark in both of these problem images, and that method (c) correctly labeled the 

shoulder landmark in one of these images, can be attributed to chance, since only method (d) has a rational basis for 

identifying the shoulder landmark in such a case.   The brightness and size of these borders suggest that a method to 

automatically detect and remove them should be achievable and straightforward.  One of these failure cases is 

shown in Figures 10a-b, where Figure 10a shows the labeling obtained when the classification method (c) was used, 

and Figure 10b shows the labeling when method (d) was used.  In each case, there is no acceptably placed skull 

landmark, due to the influence of the bright border region.  Method (d) however is still able to properly label one of 

the landmarks as “SH” (shoulder) since, for shoulder landmarking, method (d) only relies on finding the landmark 

closest to the “shoulder corner” of the image. 

 

5.2 Using the landmarks to locate the spine 

 

The immediate use of the landmarks is to localize the spine region.  We have proceeded by using the landmarks to 

estimate important geometrical characteristics of this region of interest, for the eventual purpose of vertebrae 

segmentation, labeling, and classification. 
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5.2.1 Motivating the search for image surface curves in the spine region 

 

Figure 11a is a surface plot of the Figure 8a image (reduced in spatial resolution horizontally and vertically by a 

factor of 64, for the purpose of looking at the large-scale surface characteristics).  Figure 11a illustrates some of the 

characteristics of the surface corresponding to the image of the spine region: (1) the spine is a ridge in the data 

visually distinguishable from the background, but with less prominence than either the skull or shoulder regions and 

(2) for most of its extent, the spine has a visually distinguishable slope; this slope is observable in Figure 11a on the 

front of the spine; on the back of the spine (not observable in this figure), the slope is even more prominent.  The 

slope on the front side tends to be less distinguishable for the upper part of the spine, where image data for the jaw is 

in close proximity, but it is quite prominent at the lower front of the spine, where the image data frequently has an 

apparent “valley” that shows up on the image (Figure 8a) as a prominent dark area in the throat region.  In some 

images, instead of this “valley” region (where the surface has local minima), the surface data merely appears to 

approximately flatten in this region, without exhibiting local minima. These observations, repeated over some 

dozens of images, suggested that four curves, denoted C1-C4, respectively, as candidates for detection in these 

images.  (Our terminology C1, C2, etc. for these curves should not be confused with the vertebral designations C1, 

C2, etc. for the cervical spine used earlier.)  These curves are  (1) C1:  a boundary curve for the back edge of the 

spine, separating spine from the very dark background; Visual inspection of images suggested that the C1 curve is a 

very good candidate for a detectable feature, owing to the high contrast, running essentially the entire length of the 

spine, between the back-of-spine background, and the spine itself.  It should be noted, of course, that detecting C1 in 

the smeared images yields a curve that would not be expected to mark a significant part of the boundary of any 

anatomical object in the original unsmeared images, since the original images show the protruding, separated bodies 

of the spinous processes on the back of the spine, while these bodies form a largely homogeneous, bright mass in the 

smeared images.  At best, C1 as detected in the smeared images could be expected to be an envelope curve that is 

approximately tangent to the extremities of the spinous processes;  (2) C2:  a curve following the prominent ridge 

within the spine itself; like C1,  C2 appears to be a good candidate for detection, owing to the visually recognizable 

ridge characteristics in the observed spines, usually extending the length of the spine, but particularly visible in the 

region of the lower vertebrae.  Note that one definition for curvature of the spine might be taken as the curvature 
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defined by a curve that is fit to the midpoints of the top and bottom of each vertebral body.  Unfortunately, these 

midpoints do not have any prominent associated visual characteristics, either in grayscale or in shape, and are very 

poor candidates for detection until a later stage of processing when the spine anatomy is already known at a finer 

grained level.  However, the grayscale ridge points, i.e., the points on the C2 curve, appear to lie on the vertebral 

faces, or near the right edges of the vertebral faces, and hence C2 might be conjectured to have approximately the 

same curvature as a curve fit to the vertebral upper and lower midpoints.  Thus the curvature of C2 might be 

conjectured to give a reasonable approximation to the spine curvature;  (3) C3:  a boundary curve following the front 

edge of the spine, separating the spine from non-spine bright tissue, or from background; and (4) C4: a curve lying in 

the prominent valley in front of the spine or, when this valley is not present, lying in the approximately flat region in 

this area.  Curves C3 and C4 are more problematic, since neither the front edges of the vertebrae nor the dark valley 

in front of the vertebrae are prominent features along the entire spine length.  In an original resolution image, it is 

frequently observed that the front vertebral edge adjoins a region of tissue that appears to be a relatively bright, 

narrow strip that merges with this edge.  Ideally, we would be able to detect a curve C3 that would mark the 

boundary between the vertebrae and this tissue; and, in fact, this is a goal of the final stage of the segmentation of 

these vertebrae.  However, in the smeared images, the vertebrae front edges and the background tissue are no longer 

distinct.  C3 for these images may be expected to be a curve that follows the general shape of the front of the spine, 

with best agreement with that shape for the lower spine vertebrae area.  Likewise, the valley used to define C4 in the 

smeared images yields only an approximation of the valley curve in the original image, and, again, the greatest 

agreement with the general shape of this curve in the original images is expected in the lower vertebrae regions. 

 

Examples of these curves, denoted C1-C4, respectively, and hand-drawn for illustration, are shown in Figure 11b, 

superimposed over a smeared version of the Figure 8a image. Capability to compute this curve data robustly would 

provide a means of estimating spine region “side” boundaries (C1 and C3/C4) and of estimating a vertebrae-

traversing curve running within the body of the spine by using C2, or a curve computed from some subset of the 

{Ci}. 

 

5.2.2 Detecting the curves 
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We formulated the general problem of the detection of these C1-C4 curves as an optimization problem, as follows.  

Denote the image we are searching by I=I(x,y); then, for each i, let Ci be parameterized by t, so that Ci=(xi(t),yi(t)).  

Intuitively, we expect that each Ci is constrained to lie within a particular subregion of the image; for example, C2 by 

definition lies along the brightest grayscale within the spine region and therefore within the body of the spine.  

Conceptually, this may be formalized by defining for each Ci a feasible search region Di that constrains the location 

of the solution curve Ci; i.e.  Ci must satisfy Ci ⊂ Di ⊂ I.  In the most general formulation, we would find the Ci by 

minimizing an objective function J(C1,C2,C3,C4), where the form of J would include coupling between the Ci, and 

also include constraints to insure that the solution curves Ci have reasonable geometries for curves representing 

spine boundaries.   The objective would be to minimize J over all curves Ci satisfying Ci ⊂ Di. 

 

To achieve a simpler and implementable result, we posed the more limited problem of finding the optimal Ci 

individually for each i, by formulating separate objective functions, each with simple form and each decoupled from 

the others.  That is, for each i, we defined an objective function Ji=Ji(Ci)=Ji((xi(t),yi(t))).  Note that for a given curve 

Ci in the (x,y) plane, we may denote the corresponding image grayscale profile by I(Ci)=I(Ci(xi(t),yi(t)), and the 

corresponding image grayscale gradient, evaluated along the curve Ci, by ∇ I(Ci)=∇ I(Ci(xi(t),yi(t))).   Then, for 

each i, we seek to minimize the corresponding objective function, i.e., we seek a solution curve iĈ  such that 

)()ˆ( iiii CJCJ ≤  for all Ci ⊂ Di that satisfy reasonable constraints on the Ci properties. 

 

For the individual i, we defined these specific objective functions: 
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where ds is arc length along Ci, and for each i, Ci is constrained to lie in Di.  It should be noted that our description 

of the constraints on the Ci omits features that should be incorporated into a more complete model:  for example, the 
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Ci should be approximately the same lengths, hence, the begin and end points for each Ci should be constrained to lie 

within pre-specified regions. 

 

5.2.3 Motivating the choice of integrands 

 

The choice of integrands in equations (1)-(4) was made with both theoretical considerations and experimental 

observations.  Figure 12 illustrates the expected grayscale characteristics along normals to the spine axis (i.e. 

approximate normals to the solution curves Ci).  From equations (1)-(4) it can be seen that, for the cases where we 

are seeking edges (i=1,3), then, along these normals, we maximize the absolute gradients; for the cases where we are 

seeking a ridge (i=2) we maximize the grayscale value itself.  For case i=4, we found that for some images, there is a 

true “valley” (local minimum) in the D4 region; for these cases, minimizing the grayscale itself (I(C4)) worked well; 

in other cases, however, lines transverse to the spine that pass through D4 have monotonically decreasing grayscale, 

with only an approximate point of inflection instead of a valley.  For these cases, having the absolute gradient also in 

the integrand was necessary.  For the final formulation, we integrated the sum of absolute gradient and grayscale. In 

each of the cases, we penalize this minimization by the length of the minimizing curve, in order to avoid solutions 

where the curve length grows arbitrarily large.  The multiplier λ allows for different weighting of the two terms, for 

example, in order to compensate for different scales of measurement being used for curve length and for gradient 

measurements. 

 

5.2.4 Setup for the discrete problem 

 

We denote the discretized versions of Ci, Di, and Ji with a superscript asterisk (*) on each term.  For solving for each 

of the Ci*, the general approach is the same:  (1) determine a (non-rectangular, in general) grid Di* which will be the 

discrete version of the feasible solution region;  and (2) minimize the objective function Ji*(.) over all paths on this 

grid Di*.  The minimizing path is the desired solution Ci*.  For step 1, the method used is heuristic and requires the 

use of experimentally determined parameters to determine Di* based on expected characteristics of the image 

grayscale.  This is illustrated in Figure 13 for D1* and discussed in detail in Section 5.2.5.  For step 2, the method of 

dynamic programming is used; this enables the global minimization of Ji* to be achieved over the grid Di* within a 
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reasonable amount of computation.  The solutions were computed on the heavily smeared images, but at full spatial 

resolution (1462x1755). The images were smeared with a 100x100 Gaussian filter with standard deviation set to 

100.  The Ji parameter λ  of equations (1)-(4) was set to 0.05 to compensate for the different measurement scales 

between gradient and distance in the images.  For each image, a boundary area of 60 pixels was used on all four 

image sides (left, right, top, bottom); pixels that were within this boundary limit of an edge were not processed.  

This was done to avoid the frequent problems encountered by the presence of very bright pixels due to light leakage 

near the edges of the images. 

  

5.2.5 Determining the Di* 

 

The determination of each of the Di* (i=1,4)  uses a common geometrical framework.  First, we use the landmarks 

results of Section 5.1 to define a line segment S taken to be the tentative “spine axis”.  At this stage of the 

processing, this initial “spine axis” is only expected to lie near enough to the actual spine, with a similar enough 

orientation, so that lines transverse to S will cut the actual spine at an approximately perpendicular angle. We obtain 

S by connecting the points defined by the “skull” and “shoulder” labels (Ssk and Ssh, respectively) of the Section 5.1 

outputs. 

 

The transverse lines Mk (again, see Figure 13) were then defined with the following constraints:  (1) Mk is normal to 

S for all k; (2) M1 intersects S at Ssk;  (3) Mkmax intersects S at Ssh; and  (4) the Mk are uniformly spaced along S.  

After some experimentation, kmax was taken to be 20, but no determination was made of an optimal value. The Mk 

were taken to span the entire width of the image, except for the image border areas noted above. 

 

In Figure 13, the lines Mk are seen to be normal to the “spine axis” S that connects the skull and shoulder landmarks.  

To determine any of the Di*, we proceed through the lines Mk one by one, determining which points belong to Di* 

on the current line before continuing to the next line.  When operating on a particular line, the process is the same 

for each of the Di*:  (1) determine bounds on the interval on the current line expected to contains points of Di*, and 

then (2) sample this interval for the points to actually collect for Di*. Figure 13 illustrates the particular case of 

determining  the grid for D1* (the search region for C1*). For this specific example, we proceed along a particular 
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line Mk:  first we search the grayscale profile along this line, proceeding from the back-of-skull region toward the 

front-of-skull region, and, in informal terms, “look for the first occurrence of a large increase in grayscale that 

occurs over a large spatial span”; i.e., we want to find the approximate point where the grayscale begins climbing 

rapidly from the very dark background values to the relatively bright spine values as we move along the line from 

the back-of-skull region toward the front-of-skull region.  More precisely, we find  the first point p such that  

I(p - ∆1 * u) - I(p)  >=  f * r 

where  

p = p(x,y) = point we are searching for along a particular Mk, 

I(p) = grayscale value of the image I at point p, 

u = unit vector parallel to the Mk segments, pointing toward back-of-skull region; note that we know the 

orientation of u from the skull background landmark BG of Section 5.1; 

∆1 = half-length of interval around p used to define the interval containing D1* points on a particular Mk, 

r = grayscale dynamic range along a particular Mk, 

f = threshold control factor, 0 < f <=1; together, f and r define a threshold for detecting p; 

The detected point p is taken to be a rough indicator or landmark of the center of  the interval of points that 

belong to the D1* region and that lie on the current Mk line; we then sample an interval on the current Mk, centered 

around this landmark point, to get the points from this line for D1*. In the figure, the sampling interval is determined 

by the vectors b1 and b2. This process is repeated for each of the Mk lines.  In general, the resulting set of points 

forms a non-rectangular grid.  This grid of points is taken to be D1*, the discretized search region for the solution 

curve C1*. 

 

Similar methods were used to determine the grids D2*-D4*.  A summary of the heuristics for finding the Di*, 

including parameter values used, was given in previous work35.  

 

5.2.6 Solving for the Ci* 

 

The method for solving for the Ci* by minimizing the Ji* is illustrated in Figures 14a-b, for J1*.   As previously 

noted, we implement D1 as the non-rectangular grid D1* of nodes placed on the lines Mk that are normal to the 
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approximate “spine axis”. Each node has an assigned value gk,r (gradient magnitude) and transition cost ek,r,s 

(Euclidean distance) for moving from node (k,r) to node (k+1,s).  To every path C consisting of an ordered set of 

nodes  

(g 1,j1, g 2,j2,…,g kmax,jkmax), one per line, beginning at M1 and ending and Mkmax, we assign an associated cost: 
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J1* is the objective function that we minimize over all possible paths on the grid D1*.  The illustration in Figure 14a 

suggests the combinatorial expense of directly computing J1* for all paths.  By casting this as a dynamic 

programming problem, however, the computations are made feasible within practical computation time. We take the 

minimizing path 

C1* = arg min J1*( C) 

 to be the discrete, computable solution corresponding to the ideal spine region curve C1. 

 

It should be noted that some of the grids Di* have a dependence on the optimal solution points for other Dj*, j≠i. For 

example, on any line, the points in D2* must lie “to the left” (toward the front of the spine) of the optimal point for 

D1* on that line.  This is a way of specifying the observable fact that the spine ridge point on a line must lie “to the 

left” of the back-of-spine edge point and means, in practical terms, that we must solve for the back-of-spine curve 

C1* before we solve for the spine ridge curve C2*, for example.  The illustration in Figure 14b shows a particular 

solution D1* that has resulted from applying dynamic programming to find the path that minimizes J1* among all 

possible paths on the D1* grid . 

 

  

5.2.7 Results of computing the Ci* 

 

We computed the Ci curves for all  46 of the 48 test images for which the basic landmark data of Section 5.1 was 

obtainable.  Figures 15a-b show examples of the results of the computation of the curves, overlaid on the original 

resolution images (although the curves were computed from the smeared image data).  We evaluated the results by 

displaying and informally inspecting each of the four curves for each of the 46 images, and by using the C2* curves 
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to estimate orientations of the spine which we compared to an independent data source.  From the visual inspection 

of the results, we concluded that, when overlaid on the original unsmeared images, (1) the C1* curves tended to fall  

along the faint boundary separating the non-bony tissue along the back of the neck from the x-ray background; (2) 

the C2* curves strongly tended to follow the spine curvature, and tended to lie along the rightmost edge of the 

vertebral faces; (3) the C3* curves tended to lie along the vertebrae front edges, for the lower spine vertebrae, but 

sometimes fell close to the C2* curves for the upper vertebrae; (4) similarly, the C4* curves tended to fall in the dark 

tissue area in the throat area for the lower vertebrae, but also tended to fall close to the C2* curves for the upper 

vertebrae.  Overall, the visual inspection supported the hypothesis that the C2* curves were the most predictably 

correlated with the spine anatomy over the length of the cervical spine.  To obtain a quantifiable performance 

measure, we computed linear fits to each of the C2* curves.  Figure 16 illustrates linear fits computed for all of the 

Ci* curves of Figure 15a.  For each of the 46 images in our test set we used the expert-collected (x,y) coordinates of 

Section 3.2 (illustrated in Figure 2) for comparison data.  For each image we took the top and bottom midpoints 

(points 2 and 5) for each vertebra, and used them to fit a straight line to the spine for that image.  This procedure 

gave two straight lines for each image, one that was fit to our C2* curve, and one that was fit fit to the manually-

collected point 2 and 5 coordinates.  For each of the two straight lines, the slope angle, which may be taken as an 

estimate of spine orientation, was computed and the absolute difference taken.  The results are plotted in Figure 17 

and show, that, with one exception, the difference in spine orientations between the two methods was less than 15 

degrees.  Areas for improvement in this work include not only possible improvement in the heuristics for computing 

the Di*, but perhaps also improvement in the integrands used in the modeling of the objective functions Ji of 

equations (1)-(4), in particular for the case J4, where the image grayscale characteristics are more variable and less 

understood than in the other cases.  

 

Our next steps will be to evaluate the use of the obtained Ci data for spine template placement, vertebrae counting, 

and obtaining intervertebral boundary marks.  All algorithms were implemented in MATLAB 5.3 and executed on a 

400 MHz PC.   

 

6 Evaluation 
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Evaluation of technology for the content-based retrieval of biomedical images entails the special consideration of the 

need for the involvement of subject matter experts, both in the evaluation of the retrieval precision and in the 

evaluation of the efficiency of the retrieval as compared to conventional methods.  Further complications are the 

inter- and intra-observer variabilities that occur in the execution of any protocol of evaluations done by humans; this 

is particularly true in the medical domain.   In addition, prior to the evaluation of the final retrieval system, 

evaluations of component subsystems may be required:  the classifiers for the various biomedical features of anterior 

osteophytes, disc space narrowing, and subluxation may be considered individual subsystems which will each 

require their own evaluation with the collaboration of medical experts.  For our work to date, as well as the work of 

Stanley and Zamora, evaluation has been done by using reference data collected by one expert radiologist.  More 

comprehensive evaluation of component subsystems and of the final retrieval system, is expected to require the 

assistance of multiple medical experts and a carefully-designed study that will allow comparison of the computer-

assisted results with the results generated by humans, taking into account both inter- and intra-observer variances. 

 

 

7 Emerging multimedia data standards and content based medical image retrieval 

 

Much interest has been generated in the multimedia community by the emerging MPEG-7 standard.  MPEG-7, 

formally called “Multimedia Content Description Interface”, is intended to be a “standardized description of various 

types of multimedia information”36, including “graphics, still images, video, film, music, speech, sounds, text and 

any other relevant AV medium”36.  MPEG-7 is intended to provide a description of multimedia information that 

facilitates rapid search by content.  Although a thorough critique of the MPEG-7 work as it impacts the human and 

software accessibility of digitized spine x-rays is beyond the scope of this paper,  we may make some observations, 

based on the published MPEG-7 documents.  First, the MPEG-7 work explicity takes into account the need for ready 

interchange and access to biomedical images among clinicians and researchers37.  Second, support for key 

capabilities such as spatial searching, including limited region-of-interest searching, shape representation, and 

multiple levels of image representation (such as multiple spatial resolution) are supported; both 2-D and 3-D content 

representations are supported36,37.  Third, the MPEG-7 work is generic in the sense that it is intended to provide a 

broad framework of content description, but does not create a standard for the representation of any particular 
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application’s data.  MPEG-7 includes both a standard set of Descriptors for describing features, and a Descriptor 

Definition Language (DDL) for creating user-defined Descriptors, beyond the standard set.  Relationships among 

the features described are defined by a Description Schema36.  A key issue for creators of biomedical image 

applications is whether the standard Descriptors, the DDL, and the Description Schema are comprehensive enough 

to allow for effective representation of the variable and irregular shapes, object geometries, ill-defined and/or 

occluded boundaries, and vagaries of content interpretation.  For maximum interoperability in use of spine x-rays 

among user groups wanting to do content-based retrieval, it is desirable that the standard features defined in MPEG-

7 include the features important for this particular image type, subject to the need in MPEG to maintain broad-based 

applicability. Current MPEG-7 features defined for images include grid layout for enabling rectangular subimage 

descriptions, bounding box definition for making local regions with arbitrary orientations addressable, and shape 

description using both region-based and curvature scale space representations38.   

 

 

8 Summary 

 

The problem of automating the indexing and retrieval of a large collection of digititized x-ray film for biomedical 

features of interest requires the integration of robust methods for obtaining basic landmarks in the images, 

segmenting to the individual vertebra level with good enough fidelity to preserve the distinctive shapes of irregular 

corner features, and classification of the vertebra by anatomical label and by degree of pathology.  All this must be 

accomplished within a projective data modality where edge boundaries may be ambiguous, and a data quality that 

commonly allows for edge segments to be cloudy or even not visible.  We have shown progress in the fundamental 

initial tasks of obtaining basic landmark data in the images, using this to estimate first-order features of the spine, 

and (in previous work) by ourselves and others it has been shown that the prospects for obtaining automated or 

computer-assisted solutions to this indexing and retrieval task warrant continued effort and investigation. 

 

Many of the resources in this paper, including the WebMIRS system, the Digital Atlas of the Spine, the cervical and 

lumbar spine images, and the radiologist coordinate data, are available via the Web at NLM Communications 

Engineering Branch Web site:  http://archive.nlm.nih.gov 
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Figure Captions 

 

Figure 1. WebMIRS results screen. 

Figure 2.  Data points were expert-collected for points 1-9. Example geometries for distances shown in Table 2 are 

given also. 

Figure 3.  Nomenclature for vertebrae. 

Figure 4a.  A C4 vertebra and neighboring grayscale regions.  Some of the grayscale interior to C4 is distributed 

similarly to the grayscale external to the C4 vertebral body, in the C3/C4 disc space.   

Figure 4b.  Surface plot of the grayscale in the Figure 4a image, illustrating the similarity in interior and exterior 

grayscale for C4.  

Figure 5.  Cervical spine images with graded anterior osteophytes.  The severity progresses from 0 (normal) to 3 

(most abnormal) from left to right in the images. 

Figure 6.  Vertebrae showing the osteophytes on lower anterior corner of center vertebra (grade 0 is normal—no 

osteophyte). 

Figures 7a-d.  Surface plots of the vertebrae with boundary outlines 

Figure 8a.  Cervical spine image 

Figure 8b.  Cervical spine image heavily smeared and subsampled 

Figures 9a-c.  Results of basic landmark labeling 

Figures 10a-b.  Errors in labeling due to heavy light leakage.  (a) shows labeling results using method (a); (b) shows 

results using method (d), which gives correct shoulder labeling. 

Figure 11a.  Surface plot of a cervical spine x-ray. 

Figure 11b.  Conceptual curves C1-C4, drawn on the smeared image of Figure 11a. 

Figure 12.   For points on any particular Ci, the neighboring grayscale curves along intersecting line segments that 
are normal to the spine axis have the expected characteristics shown above.  Note that the above curves are not the 
Ci themselves, but the expected grayscale characteristics along line segments that intersect points on the Ci. 
 

Figure 13. Illustration of heuristic for determining D1*, the discretized search region for C1*.    

Figure 14a.  The grid D1* for searching for C1*, with node and transition costs illustrated. 

Figure 14b.  Illustration of a discrete solution C1* on the grid D1*. 
 
Figures 15a-b.  Example C1-C4 solution curves (two different images). 
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Figure 16.  Example of linear fits from C1-C4 solution curves 

Figure 17.  Comparison of spine angles derived from C2 to independent estimates 

 

Table Captions 

 

Table 1.  Global cervical spine image characteristics 

Table 2a.  Cervical spine interveterbal characteristics 

Table 2b.  Cervical spine within-vertebral characteristics 

Table 3.  Results of classifying landmarks by four methods 
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Figure 1.  WebMIRS results screen. 
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Figure 2.  Data points were expert-collected for points 1-9.  Example 
geometries for distances shown in Table 2 are given also. 
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 Figure 3.  Nomenclature for vertebrae. 
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C3 

C4 

C5 

depression in
grayscale, interior
to C4 

C3/C4
disc space 

Figure 4a.  A C4 vertebra and neighboring grayscale regions.  Some of the grayscale interior to C4 is 
distributed similarly to the grayscale external to the C4 vertebral body, in the C3/C4 disc space.   
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Figure 4b.  Surface plot of the grayscale in the Figure 4a image, illustrating the similarity in interior and 
exterior grayscale for C4.  
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Figure 5.  Cervical spine images with graded anterior osteophytes.  The severity progresses from 0 
(normal) to 3 (most abnormal) from left to right in the images. 
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Figure 6.  Vertebrae showing the osteophytes on lower anterior corner of center vertebra (grade 0 is 
normal—no osteophyte).
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Figures 7a-d.  Surface plots of the vertebrae with boundary outlines 
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Figure 8a.  Cervical spine image 
Figure 8b.  Cervical spine image heavily smeared and subsampled
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Figures 9a-c.  Results of basic landmark labeling 
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Figures 10a-b.  Errors in labeling due to heavy light leakage.  (a) shows labeling results using method 
(a); (b) shows results using method (d), which gives correct shoulder labeling. 
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Figure 11a.  Surface plot of a cervical spine x-ray. 
Figure 11b.  Conceptual curves C1-C4, drawn on the smeared image of Figure 11a. 
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Figure 12.   For points on any particular Ci, the neighboring grayscale curves 
along intersecting line segments that are normal to the spine axis have the 
expected characteristics shown above.  Note that the above curves are not the 
Ci themselves, but the expected grayscale characteristics along line segments 
that intersect points on the Ci. 
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Figure 13. Illustration of heuristic for determining D1*, the 
discretized search region for C1*.    
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Figure 14a.  The grid D1* for searching for C1*, with node and transition costs 
illustrated. 
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Figure 14b.  Illustration of a discrete solution C1* on the grid D1*. 
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Figures 15a-b.  Example C1-C4 solution curves (two 
different images).
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Figure 16.  Linear fits to the data of Figure 15a. 



 50

Figure 17. Differences (in degrees) between estimates from spine orientations 
derived by using (1) linear fits to the C2* curves vs. (2) linear fits to manually-
collected coordinate data for the spines.  Vertical axis:  degrees; horizontal axis:  
image i.d. numbers. 
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WxHxD 1462x1755x8 
Global grayscale  

Min 54 
Max 255 

Dynamic range 201 
Mean 163.7 
S.D. 62.3 

Per image grayscale 
Mean of means 163.7 
S.D. of means 9.5 

Mean dynamic range 194.0 
S.D. of dynamic range 5.1 

 
Border area width 60 (nominal) 

 
Table 1.  Global cervical spine image characteristics. 
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Intervertebral distances (pixels) 
 

µ 204.0   
σ  23.5   

C1/C2 

N     46   
     
  D63 D52 D41 

µ  25.6  35.0  29.5 
σ   5.6   6.7   5.7 

C2/C3 

N     46     46     46 
µ  24.4  34.0  29.4 
σ   5.7   7.1   5.60 

C3/C4 

N     48     48     48 
µ  25.2  34.3  31.9 
σ   9.4   8.4  17.0 

C4/C5 

N     47     47     47 
µ  23.6  30.1  27.3 
σ   8.4   8.9   7.8 

C5/C6 

N     45     45     45 
µ  24.1  28.7  25.8 
σ   8.7   8.2   6.2 

C6/C7 

N     36     36     35 
µ  24.8  32.6  26.3 
σ   5.7   5.6   4.3 

C7/T1 

N     12     12     12 
 

Table 2a.  Cervical spine interveterbal characteristics 
 

Within-vertebra distances (pixels) 
Anterior osteophytes  D13 

(top) 
D46 
(bot) 

D36 
(ant) 

D25 
(mid) 

D14 
(pos) D38 (top) D69 (bot) 

µ 92.2 105.9  85.4  78.5  89.1  19.6  20.8 
σ  10.7  10.7  11.3  10.6  10.2  11.6   8.6 

C2 

N     48     48     48     48     48      2      7 
µ  97.6 107.0  80.9  74.8  85.5  20.2  20.2 
σ  11.5  12.8  10.2   8.6   9.5   4.6   5.1 

C3 

N     48     48     48     48     48      6     18 
µ  97.7 111.3  77.0  74.7  84.8  26.2  24.1 
σ  11.4  16.2  13.3  10.8  10.7   9.8  10.0 

C4 

N     47     47     47     47     47     12     36 
µ 105.2 114.4  75.50  74.7  79.6  25.8  19.5 
σ  13.7  12.1  10.2   8.8   9.4  14.0   6.8 

C5 

N     45     43     43     43     43     21     31 
µ 112.5 109.9  89.0  82.9  88.4  19.9  21.6 
σ  10.7  10.9   8.0   7.1   8.9   7.3   6.9 

C6 

N     35     27     26     27     27     14      4 
 

Table 2b.  Cervical spine within-vertebral characteristics 



 53

 
 Skull Shoulder Background 

Classification 
Method 

Accept Reject Accept Reject Accept Reject 

a 46 2 48 0 48 0 
b 32 16 34 14 48 0 
c 46 2 47 1 48 0 
d 46 2 48 0 48 0 

 
Table 3.  Results of classifying landmarks by four methods 


