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Abstract—Doppler Echocardiography is critical for measuring
abnormal cardiac function and diagnosing valvular stenosis and
regurgitation. The current practice for assessing and interpreting
Doppler echo images is time-consuming and depends highly on
the experience of the operator. The limitations of this practice
can be mitigated using fully automated intelligent systems. Essen-
tial first steps toward comprehensive computer-assisted Doppler
echocardiographic interpretation include automatic classification
into view/flow categories and goodness assessment of these flows.
In this paper, we propose a deep learning-based method for
Doppler flow classification and goodness assessment. The method
has been trained on labeled images representing a wide range
of real-world clinical variation. Our method, when evaluated on
unseen data, achieved overall accuracies of 91.6% and 88.9% for
flow classification and goodness assessment, respectively. While
further research is needed, these results are encouraging and
prove the feasibility of using fully automated intelligent systems
for analyzing and interpreting Doppler echo images.

Index Terms—Echocardiography, Image Classification, Assess-
ment, Deep Learning, Point-of-Care Ultrasound.

I. INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of mor-

tality in the United States [1]. CVD can be diagnosed using

several imaging techniques, such as echocardiography (echo),

cardiac resonance imaging (CMR), and computed tomogra-

phy (CT). Of these techniques, echo is the most commonly

used as it is non-invasive, portable, inexpensive, and widely

available [2]. Transthoracic echocardiogram (TTE), a very safe

and common type of echocardiogram [2], involves using a

transducer to transmit high frequency (2-12 MHz) ultrasound

waves to the heart and converting the reflected waves (echoes)

into images. Different imaging modes, including M-mode, B-

mode, and Doppler, can be measured using TTE with different

acquisition angles and configurations.

Spectral Doppler echocardiography is essential to cardiol-

ogy. It uses the frequency shift in reflected waves to visualize

the blood flow as a graph that shows the velocity of blood flow

(Y axis) over time (X axis). It is routinely performed using

Pulsed Wave Doppler (PWD) or Continuous Wave Doppler

(CWD). PWD utilizes a single transducer element to send and

receive an ultrasound wave. By sending and receiving pulses,

PW Doppler has the ability to measure the velocity of flow

at a specific cardiac region (a.k.a., sample volume, see Figure

1). PWD Doppler is a powerful method for providing site-

specific information. A variant of PWD is the Tissue Doppler

(TD), which allows to measure the velocity of myocardial

tissue movements. A major limitation of PWD is its inability

to display high velocities accurately [3]. CWD, on the other

hand, can accurately measure high blood velocities using two

dedicated transducer elements for continuously sending and

receiving ultrasound waves. CWD signal represents the sum

of all signals from moving objects (not site-specific) [3].

Doppler indices (e.g., peak velocity) play a critical role in

measuring abnormal cardiac function as well as diagnosing

valvular stenosis and regurgitation. Prior to computing indices,

the view of the recorded images (e.g., PW or CW) as well as

the type of the acquired blood flow (e.g., Mitral Valve [MV]

flow) need to be determined. In addition, unacceptable or

unmeasurable flows need to be excluded from further analysis.

For example, the images shown in the second column of Figure

2 should be excluded from further analysis since the peaks are

ambiguous or not measurable. The manual determination of

view/flow types and the assessment of image goodness suffers

from intra- and inter-observer variability [4]. Further, it is time-

consuming and requires expertise as some flows differ subtly

from each other. Cardiological expertise is a heavily burdened

resource and often unavailable in low-resource settings. To

assist echocardiographers and allow the efficient utilization

of echocardiography in low-resource settings, we propose to

exploit supervised deep learning methods for automatically

detecting different blood flows and assessing their quality.
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A. Overview of Existing Works

Existing automated methods for analyzing medical images

are broadly divided into handcrafted-based and deep learning-

based methods. Handcrafted methods depend highly on human

expertise to manually design and select relevant features from

the image. The challenge of manually designing handcrafted

descriptors and extracting the best set of features has motivated

researchers to use deep learning-based methods for medical

image analysis. These methods can learn and extract relevant

features, at multiple levels of abstraction, directly from the

source data or images. They outperformed the traditional hand-

crafted methods in many clinical applications. In this section,

we briefly review existing deep learning-based methods for

classifying Doppler echo images and assessing their quality.
1) Doppler Image Classification: This task can be defined

as detecting the view (e.g., CW or PW) or the flow type (e.g.,

Tricuspid Regurgitation [TR]) of the acquired Doppler images.

Madani et al. [5] are the first to propose a deep learning-based

method for view classication of Doppler images. Specifically,

the proposed method was used to distinguish 15 different echo

views: 12 views from B-mode (e.g., PLAX and A4C), m-mode

view, and two Doppler views (CW and PW). The proposed

network, which was inspired from the well-known VGG Con-

volutional Neural Network [6], consists of six convolutional

layers (3×3) followed by max-pooling layers (2×2) and two

fully-connected layers with 1028 and 512 nodes, respectively.

The final layer performs classification using Softmax function

with 15 nodes. The network was trained using RMSprop

optimization over 45 epochs. CW and PW Doppler had overall

test accuracies of 98% and 83%, respectively. We are not aware

of any automated method for blood flow (e.g., TR or MV)

classification.
2) Flow Quality Assessment: As the acquisition of echocar-

diography images is not automated, the quality of the acquired

Doppler images depends highly on the technician’s knowledge,

expertise, and other settings. Different automatic methods

[7]–[10] were recently proposed to measure the quality of

acquired 2D (B-mode) echo videos/images in real-time. These

methods can aid during data acquisition by providing real-

time feedback and automatically rejecting low-quality images.

We are not aware of any automated method that assesses the

quality or measure the goodness of the acquired Doppler flows.

B. Contributions and Roadmap

In this paper, we investigate the use of Convolutional Neural

Networks (CNNs) for Doppler flows classification and assess-

ment. The main contributions of the paper can be summarized

as follows:

• We proposed a deep learning-based method for classify-

ing three types of blood flows: Tricuspid Regurgitation

(TR), Mitral Valve (MV), and Mitral Annular (MA).

Figure 1 shows TR, MV, and MA flows obtained using

CW, PW, and Tissue Doppler modes, respectively.

• We assessed the quality of these flows using a deep

learning-based method. Specifically, we classified each

flow category into low- or good-quality (e.g., low- or

Fig. 1. Examples of different Doppler flows. First row: TR profile with a
peak velocity recorded in CW Doppler mode. Second row: MV measured
by PW Doppler with a sample volume (red circle in the anatomical region)
parallel to the direction of the flow; MV has two triangles with two peaks
corresponding to E velocity (early diastole) and A velocity (late diastole).
Third row: MA flow recorded in Tissue Doppler mode. This flow has three
velocities, S’ (systolic velocity), E’ (early diastolic velocity), and A’ (late
diastolic velocity). The thin curve above (TR-CW) and below (MV-PW and
MA-Tissue) the Doppler region is the electrocardiogram (ECG) signal.

good-quality TR). Figure 2 presents examples of good-

and low-quality cases.

• We used randomly selected real-world echocardiograms

recorded from normal patients and patients with different

pathologies. The data were acquired, under different

configuration, using multiple vendors. Such setting en-

sures that our deep learning models would be clinically

relevant.

Section II presents the dataset we utilized to build our

models. Section III describes our method for flow classification

and assessment. Section IV contains the experimental results

and discussion of these results. Finally, Section V concludes

the paper and lists several directions for future research.
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Fig. 2. Examples of good- and low-quality cases for TR, MV, and MA flows.
In the first column, the peaks are clear and measurable. In the second column,
the peaks are not measurable; i.e., unclear spectral envelope (TR), overlapping
between two peaks (MV), or ambiguity (MA).

II. DATA COLLECTION

Doppler echo images were collected from 100 patients, who

were referred for echocardiographic examination in the echo

lab at the Clinical Center of the National Institutes of Health

(NIH), USA. This project was reviewed by the NIH Office

of Human Subjects Research Protections (OHSRP, ID#18-

NHLBI-00686). De-identified images were used, and this

project was determined to be “not human subjects research”.

The Doppler traces of the mitral valve (PW), mitral annular

(Tissue), and tricuspid regurgitation (CW) were acquired using

commercially available echocardiography systems including

the Phillips iE33, GE Vivid95, and GE Vivid9. Each of the

acquired Doppler images has two labels: a flow type label

(TR, MV, or MA) and a quality label (low- or good-quality).

These labels were provided by an expert technician and further

verified by an expert cardiologist.

III. METHODOLOGY

This section provides a description of our method, which

depends on VGG-16 and ResNet-50 architectures, for classi-

fying different Doppler flows and assessing their quality.

As is well known, training CNNs requires large and well-

annotated datasets (e.g., ImageNet - approx. 1.2 million images

and 1000 classes). In practice, it is restively rare, especially

in the medical domain, to access large and well-annotated

datasets. Therefore, transfer learning technique was introduced

to handle the lack of data. This technique allows to use the

state-of-the-art CNN architectures, which were trained from

scratch using significantly large datasets, as initialization or

starting point.

VGG-16 [6], trained using ImageNet dataset, is one of the

state-of-the-art CNNs. This network passes an input RGB

image with size 224 × 224 to a stack of 13 convolutional

layers, each uses a small filter of size 3 × 3 with 1 stride

and 1 padding. Five max pooling with 2 × 2 window and

stride 2 are used after each block of the convolutional layers.

The stack of convolutional and max pooling layers is followed

by three fully connected layers and a Softmax layer. The

fully connected layers have 4096, 4096, and 1000 units,

respectively. The number of units in the last layer corresponds

to the number of classes in ImageNet dataset (1000 classes).

All the hidden layers are equipped with ReLU function. VGG-

16 is trained using 138 million parameters [6].

We fine-tuned VGG-16 using images from our dataset;

i.e., we used ImageNet trained weights in the lower layers

and only changed the upper layers parameters using Doppler

images. We changed the layer parameters of VGG-16 and

added dropout of 0.5 after each of the fully connected layers to

reduce over-fitting. The final layer performs classification us-

ing Softmax function with 3 (classification) or 6 (assessment)

nodes. We trained the network over 100 epochs with early

stopping. For optimization, we used the ADAM optimizer with

an initial learning rate of 1× 10−3 and mini-batch size of 32.

For regularization, we applied a weight decay of 1× 104. We

used 10-fold cross-validation to randomly vary which images

were in the training and validation sets. The plots of training

and validation loss by epoch confirmed that the model was not

over-fitting.

ResNet-50 [11] is another state-of-the-art CNNs. The net-

work takes as input 224 × 224 RGB image and passes the

given image to a 7× 7, 64 convolutional layers with stride 2

followed by 3 × 3 max pooling. The output is then sent to a

stack of 48 convolutional layers distributed over four blocks.

Each block starts with a convolutional layer that has a filter

size of 1 × 1 followed by a convolutional layer that has a

filter size of 3 × 3 and ends with a convolutional layer that

has 1×1 filter size. The stack of the convolutional layers (the

blocks) is followed by average pooling layer, a fully connected

layer with 1000 units (1000 classes), and a Softmax layer.

ResNet-50 was trained using augmented images (scale and

color augmentation) from ImageNet dataset with 25.6 million

parameters [11].

We fine-tuned ResNet-50 using images from our dataset

as follows. We used global average pooling to obtain the

base model output from the lower layers of ResNet-50. We

also added a dropout of 0.5 after the global average pooling

to reduce over-fitting and changed the number of classes in
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the last classification layer. We trained the network over 100

epochs using mini-batch size of 32 and cyclical learning rate

[12] that ranges from 1×10−3 to 0.1. We used 10-fold cross-

validation to randomly vary which images were in the training

and validation sets. The plots of training and validation loss

by epoch conrmed that the model was not over-fitting.

As our training set (images of 70 patients) is relatively

small and unbalanced, we rotated each image by 10 degrees

followed by ipping the rotated image. It has been verified, by

an expert, that the applied rotation/flipping does not degrade

the clinical quality of the image. This process enlarges the set

and increases the number of images in the minority class. All

implementations (augmentation, training, and evaluation) were

done using the PyTorch library [13].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we describe the pre-processing and model

evaluation used to produce the results. We then present the

performance of flow classification model and goodness assess-

ment model. The first model classifies Doppler images into

TR, MV, or MA. The second model assesses the goodness of

flows by classifying them into low- or good-quality.

A. Pre-processing

Prior to the application of our models, we localized the

Doppler region from the raw images using a deep learning-

based method. Specifically, we adopted and fine-tuned a well-

known deep learning detector, known as Faster R-CNN [14],

to locate the Doppler, ECG, and anatomical image regions in

echo images with different levels of noise, flow types, and

shape variations. We fine-tuned the upper layers of Faster R-

CNN and used the weights of the network in the lower layers.

We fine-tuned the upper layers of Faster R-CNN using Adam

optimizer with a learning rate of 1 × 10−3 and batch size of

50, and modified the last layer of the original architecture to

handle 3 ROIs. Our localization model achieved 0.97, 0.88,

and 0.96 precision in detecting Doppler, ECG, and anatomical

regions, respectively. We used the detected Doppler regions as

input to the classification model.

The localization of ECG region was used to divide the

Doppler region into individual beats as follows. We applied

edge detection-based method to delineate the ECG signal

curve from the detected ECG region followed by finding the

start and end points of the cardiac cycle. These points are

used to segment the Doppler images into individual beats

(>2000) as shown in Figure 3. All beat images were re-sized

to 224 × 224 to accommodate with VGG-16 and ResNet-50

image size requirement.

B. Model Evaluation

We used several metrics for performance evaluation. These

metrics are overall accuracy, precision, recall (sensitivity),

and F1-score. We also present the confusion matrices to

visualize the performance of all classiers. The performance

was reported on the test set, which contains 30 patients out

of the 100 patients in our dataset. The data of the remaining

Fig. 3. Individual beats after segmentation based on ECG signal. The first
column has good-quality beats for TR, MV, and MA flows, respectively.
The second column has low-quality images for TR, MV, and MA flows,
respectively.

70 patients were used to build the models. The training set

was further divided into training and validation using 10-fold

cross-validation.

C. Doppler Flow Classification

Our flow classification model achieved 91.6% overall ac-

curacy. Table I and Table II present the performance of the

model. Table I shows the precision, recall, and F1-score of

all three classes using VGG-16 and ResNet-50. As can be

seen, TR class has the highest performance. VGG-16 achieved

better than ResNet-50 in most cases. The confusion matrix of

VGG-16 is presented in Table II. As shown in the matrix, TR

class has the highest correct classification rate (true positive)

while MV has the lowest rate. This can be attributed to two

reasons. First, the number of samples of MV in the original

dataset is smaller than TR class. Our experimental results

showed that augmenting the minority class images to obtain a

relatively balanced dataset improve the performance. However,

we believe our model is biased to predict TR class as it has the

highest number of original data. Second, MV images with bad

shape (low-MV) can be similar to the TR images as shown
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TABLE I
PERFORMANCE OF FLOW CLASSIFICATION FROM DOPPLER ECHO USING VGG-16 AND RESNET-50

VGG-16 ResNet-50

Precision Recall F1-score Precision Recall F1-score

TR-CW 0.91 0.99 0.95 0.92 1.0 0.96

MV-PW 0.97 0.71 0.82 0.95 0.69 0.80

MA-Tissue 0.87 0.98 0.92 0.83 0.93 0.88

TABLE II
NORMALIZED CONFUSION MATRIX OF FLOW CLASSIFICATION (VGG-16)

TR-CW MV-PW MA-Tissue

TR-CW 0.99 0.01 0.00

MV-PW 0.18 0.71 0.11

MA-Tissue 0.03 0.00 0.97

TABLE III
PERFORMANCE OF GOODNESS ASSESSMENT USING VGG-16 AND RESNET-50

VGG-16 ResNet-50

Precision Recall F1-score Precision Recall F1-score

Good-quality TR 0.85 0.97 0.90 0.87 0.96 0.91

Low-quality TR 0.98 0.89 0.94 0.96 0.87 0.91

Good-quality MV 0.88 0.83 0.86 0.89 0.83 0.86

Low-quality MV 0.62 0.72 0.67 0.57 0.75 0.65

Good-quality MA 0.89 0.87 0.88 0.82 0.85 0.83

Low-quality MA 0.76 0.73 0.75 0.72 0.70 0.71

TABLE IV
NORMALIZED CONFUSION MATRIX FOR ASSESSMENT MODEL (VGG-16)

Good-TR Low-TR Good-MV Low-MV Good-MA Low-MA

Good-TR 0.97 0.02 0.01 0.00 0.00 0.00

Low-TR 0.08 0.89 0.01 0.02 0.00 0.00

Good-MV 0.09 0.00 0.83 0.05 0.01 0.02

Low-MV 0.16 0.00 0.13 0.72 0.00 0.00

Good-MA 0.00 0.00 0.03 0.02 0.87 0.08

Low-MA 0.00 0.00 0.03 0.03 0.2 0.73

in Figure 4. For example, the images in the first row are MV

flow images that were misclassified as TR flow images. The

images in the second row are MA (1st column) and TR (2nd

column) flow images that were misclassified as TR and MV,

respectively.

To improve the performance of MV class, we are planning

to use other augmentation methods (e.g., GAN) and try

penalization methods that bias the model to pay more attention

to the minority class. We also plan to collect a larger dataset

with a relatively balanced distribution. Although the results

reported in this paper includes three flows, we believe our

model can be easily extended to include other flows since it

does not use a specific template or require prior knowledge

about these flows.

D. Doppler Goodness Assessment

The goodness assessment model, which was applied to

beats of different flows, achieved 88.9% overall accuracy.

Table III and Table IV present the performance of the model.

Table III shows the precision, recall, and F1-score of all

six classes using VGG-16 and ResNet-50. As can be seen

from the table, VGG-16 performs slightly better than ResNet-

50 in most cases. The table also shows that TR has the

highest performance for both VGG-16 and ResNet-50. Table

IV presents the confusion matrix for VGG-16. As shown in

the matrix, good-TR and low-TR have the highest true positive

rate. We believe the performance of other classes would be

improved by training the model using dataset with a relatively

balanced distribution.
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Fig. 4. Examples of misclassified cases. First row: MV flow images
misclassified as TR flow images. Second row: MA (1st column) flow image
misclassified as TR and TR (2nd column) flow image misclassified as MV.

These results are encouraging and prove the feasibility of

using deep learning methods with echo Doppler for automatic

blood flow classification and goodness assessment.

V. CONCLUSION AND FUTURE DIRECTIONS

The current practice of interpreting echo Doppler requires

echocardiographers to manually exclude low-quality images

from further analysis. In addition to its subjectivity, this

practice is time-consuming and requires expertise. Cardio-

logical expertise is a heavily burdened resource and often

unavailable in low-resource settings. To assist echocardiog-

raphers and enhance the utilization of POCUS (Point-of-Care

Ultrasound) systems, we propose deep learning-based method

for classifying echo Doppler flows and assessing their quality.

To the best of our knowledge, this is the first study that

proposes automated approach for classifying Doppler flows

and assessing their quality. The preliminary results show that

the trained classification model can distinguish different blood

flows with 91.6% overall accuracy. Our assessment model

achieves an overall accuracy of 88.9%. Since the proposed

method does not use a specific template or require prior

knowledge about the flows, we anticipate that it can be easily

extended to include other Doppler flows. These preliminary

results are encouraging and prove the feasibility of using

fully automated methods for Doppler flow classification and

goodness assessment.

Ongoing works include integrating other Doppler flows to

the proposed method. We also plan to evaluate the proposed

method using a larger dataset with a relatively balanced distri-

bution. In addition, we plan to explore different augmentation

techniques (e.g., elastic augmentation [15] or GAN [16]) and

larger images (current image size is 224 × 224). Another

important future direction would be to use quantitative scoring

system, similar to [10], for assessing the acceptability or good-

ness of each flow instead of having two (low-quality or good-

quality) labels. Finally, we plan to use several visualization

techniques to show the important human-recognizable clinical

features within images.
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