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Abstract

Chemical entity recognition is essential for indexing scientific literature in the MEDLINE database at the National
Library of Medicine. However, the tool currently used to suggest terms for indexing, the Medical Text Indexer, was not
originally conceived as a chemical recognition tool. It has instead been adapted to the task via its use of MetaMap
and the addition of in-house patterns and rules. In order to develop a tool more suitable for chemical recognition, we
have created a collection of 200 MEDLINE titles and abstracts annotated with genes, proteins, inorganic and organic
chemicals, as well as other biological molecules. We use this collection to evaluate eleven chemical entity recognition
systems, where we seek to identify a tool that effectively recognizes chemical entities for indexing and also performs
well on chemical recognition beyond the indexing task. We observe the highest performance with a SciBERT ensemble.

Introduction

Over 900,000 articles in the U.S. National Library of Medicine’s (NLM) MEDLINE R© database are indexed with
Medical Subject Headings (MeSH R©). MeSH terms are recommended by the Medical Text Indexer (MTI)1 tool and
manually assigned to MEDLINE articles by human indexers. MeSH covers many biomedical categories such as dis-
eases, psychiatry, anatomy, and of particular interest to this paper, chemicals. Chemical MeSH recommendations
present a unique challenge to MTI. To recommend chemical MeSH terms for indexing, MTI must first perform chem-
ical entity recognition (CER). To do so, it relies on pattern and rule-based approaches, as well as MetaMap.2 This
approach has been able to adequately meet the needs of the indexers, but it has serious drawbacks. For example,
MetaMap is able to identify chemicals to the extent that they can be mapped to the Unified Medical Language System
(UMLS R©) Metathesaurus R©. This covers a wide range of chemical entities but cannot account for all variations. Ad-
ditionally, flagging new chemicals is important to indexing as well, but the current approach is capable of recognizing
only in-vocabulary entities.

To address the issue of CER in the past, NLM has attempted to supplement MTI with other tools, but in practice,
these approaches were not yet mature enough to improve performance as desired. However, no formal study has
been conducted. Because the field of CER has developed rapidly in the past few years, we are interested in making a
systematic attempt to identify a tool that effectively contributes to MTI. Our criteria are straightforward: A CER tool
must provide MTI with an exhaustive list of critical chemical terms occurring in the text; and we would prefer a tool
perform CER without the intensive use of lexical resources, as these are difficult to maintain and update.

Here, we evaluate existing automatic chemical annotation systems, as well as experimental deep learning approaches.
To conduct our evaluation, we have created an annotated test collection of 200 MEDLINE titles and abstracts. To
thoroughly evaluate CER in the indexing environment, we have annotated mentions of organic and inorganic chem-
icals, genes, proteins, and other biological molecules, including nested and fragmented entities in our annotations.
To our knowledge, it is the only existing corpus in which all of these entities have been annotated in titles and ab-
stract, and it has been made publicly available along with the code for this paper.∗ Using this corpus, referred to as
the Chemical Entity Mentions for Assessing MTI (ChEMFAM) corpus, we evaluate eleven systems that encompass
a wide range of entity recognition techniques, including pattern, rule, and lexical resource-based methods, traditional
machine learning, and LSTM and transformer-based deep learning. We observe the best results with a SciBERT3

ensemble, achieving a F1-score of 75.09%.
∗The corpus, annotation guidelines, and code can be found at https://github.com/saverymax/CER-for-MTI



Related Work
A Annotated Corpora

Annotated data are essential for the evaluation of CER systems. Many corpora containing annotated chemical en-
tities have been previously constructed: gene and gene product mentions in sentences from MEDLINE articles
(BC2GM)4; indexing and mentions of chemicals in PubMed abstracts (BC4CHEMD)5; chemical and disease mentions
and their interactions (BC5CDR)6, chemical and gene/protein entity mentions in patents (BC5CHEMD-Patents)7; and
DNA/RNA, proteins, and cell lines/cell types (JNLPBA)8. However, excepting the case of the BC5CHEMD-Patents
task, these collections do not annotate proteins, genes, and chemicals in a single corpus in scientific abstracts, nor
do any include nested or fragmented entities. To evaluate CER performance on multiple entity types, we could use
multiple entity-specific datasets, such as in Crichton et al., 2017.9 However, we need an evaluation that more closely
mirrors the indexing environment, where a CER tool will encounter many classes of entities that may be nested and or
noncontiguous (fragmented), occurring in scientific abstracts. The ChEMFAM corpus satisfies these requirements.

B Entity Recognition Systems

Named Entity Recognition (NER) has traditionally utilized pattern, rule, dictionary and gazetteer-based methods, as
well as traditional machine learning methods such as Conditional Random Fields that use engineered features. Tools
implementing these approaches for CER include ChemTagger,10 ChemSpot,11 ChemDataExtractor,12 and LeadMine.13

While much success has been achieved with these, they are limited by the time and expertise required to build the
resources and feature sets, as well their ability to interpret contextual information and account for variation of chemical
terminology.14

Recently, deep learning methods have achieved state-of-the-art performance in many CER tasks. These models learn
to map n-dimensional distributed word or character embeddings to a desired output through non-linear activation func-
tions. Often, embeddings pre-trained on biomedical text can be used to improve the performance of these models.15

The typical deep learning model architecture for NER combines the pre-trained embeddings with LSTM and/or CNN
layers, using these as input to a final CRF layer. For example, Habibi et al., 201716 presents a LSTM-CRF trained
with character embeddings concatenated to word embeddings pre-trained on Wikipedia, PubMed, and PMC. Chem-
Listem17 employs an ensemble, where one network is trained on a feature set supplemented with GloVe embeddings
and another network is trained using solely character embeddings.

However, the development of the multi-layer bidirectional transformer,18 as implemented in BERT,19 has been shown
to outperform the LSTM-CRF models in NER. Pre-training and fine-tuning of the BERT architecture on biomedical
and scientific text, as implemented in SciBERT and BioBERT,20 has achieved state-of-the-art results in numerous
biomedical tasks, including BC5CDR, BC2GM, and BC4CHEMD. The pre-trained weights of these models allow
them to be adapted to new tasks relatively easily, in situations where large training datasets may not exist. Due to this
flexibility, we apply these models to the recognition of chemical entities in our corpus, comparing them to previously
developed, publicly available tools.

Methods
A Collection

To collect articles to be annotated, we used MeSH to limit our PubMed query to articles representative of each class
of entity important for our purposes. We manually selected fifty citations representative of each class, though many
citations have mentions of multiple classes.

The four class labels corresponded to MeSH tree terms: Inorganic Chemicals (D01), Organic Chemicals (D02), Amino
Acids, Peptides, and Proteins (D12), and Nucleic Acids, Nucleotides, and Nucleosides (D13). While we did not map
entities to MeSH, processing in MTI will do so; for this reason it was practical to consider the labels of our annotations
in that context. Additionally, though the distinction between certain types of entities is biologically and chemically
significant, such as lipids and carbohydrates, we do not require a tool to make this distinction. These types of entities
were labeled with the general class they fit into and are further described in the annotation guidelines included with



the collection.

Using the BRAT tool,21 the collection was manually annotated by two subject matter experts. The second annota-
tor used the annotations of the first annotator as reference. Once initial annotations were complete, inter-annotator
agreement was calculated with F1-score22 using one set of annotations as the set of true labels. After discussing all
decisions, the final collection was manually harmonized by the annotators and any further corrections to the corpus
were made. A summary of the annotated entities can be seen in Table 1. The fully annotated collection can be found
in the link provided in an earlier footnote.

Table 1: Summary of annotations in ChEMFAM Corpus

Entity Type Mentions Unique Mentions
Organic 880 414
Inorganic 704 306
Genes 724 299
Proteins 1128 537
Total 3436 1556

Briefly, our guidelines are described here: Entities are annotated only if they represent a specific instance of a chemical.
We define an instance of a chemical to be an entity that can be mapped to IUPAC nomenclature, a named gene, gene
product, or named protein expressed by a single gene or formed of multiple units expressed by multiple genes. Entities
representing general concepts or sub-classes were not annotated, e.g., nucleotide or oligonucleotide, as we are only
interested in evaluating identification of specific instances of a chemical. These general entities were added to a stop
word list and removed from the tools’ predictions in the evaluation. In the case of genes and proteins, nested entities
were annotated. The fragment feature in BRAT was used to annotate all noncontiguous entities. Examples of nested
and fragmented entities can be seen in Figure 1.

(a) (b)
Figure 1: BRAT screenshots of (a) nested entity and (b) fragmented entity

B Tools

We evaluated the automatic annotations of MTI as well as the following eleven entity recognition systems. Here we
provide brief descriptions of each tool:

MetaMap Lite MetaMap Lite (MML)23 is a speed-oriented, Java implementation of MetaMap that can be provided
with custom vocabularies. We experimented with multiple versions, but we only report the version giving
the highest F-score: Taking the set of all MeSH terms within the Chemical and Drugs (D) tree mentioned
in articles in MEDLINE, we performed synonymy expansion with Custom Taxonomy Builder24 to generate
concept records for MML.

ChemDataExtractor ChemDataExtractor utilizes dictionaries, rule-based grammars, and supervised and unsuper-
vised machine learning approaches for CER.

PubTator Central PubTator Central25 is a web service combining multiple annotation tools into a single API. It
is able to annotate diseases, chemicals, genes, proteins, variants, species, and cell lines, performing context
disambiguation on the entity types with a deep learning module. Here we only consider PubTator’s annotations
of genes, proteins, and chemicals.

ChemListem ChemListem employs an ensemble described in the related work section.



LSTM-CRF The LSTM-CRF model26 relies on character and GloVe27 embeddings as input. We trained the model
on chemical mentions in BC4CHEMD, using code provided in the repository listed below.†

BERT-Chem To generate the BERT-Chem model, we fine-tuned the BERT weights on chemical mentions in BC4CHEMD.

BERT-Gene For the BERT-Gene model, BERT was fine-tuned on gene and gene product mentions in BC2GM.

BERT-Ensemble The BERT-Ensemble was constructed by taking the set of predictions from the two BERT models
above.

SciBERT-Ensemble Using the BERT architecture, the SciBERT author’s pre-trained the model on biomedical and
computer science papers from Semantic Scholar. After downloading the SciBERT model, we constructed the
SciBERT-Ensemble with the same principle as the BERT-Ensemble: The set of predictions was taken from two
SciBERT models respectively fine-tuned on BC2GM and BC4CHEMD.

BioBERT-Ensemble Similarly to SciBERT, BioBERT is pre-trained on biomedical text: PubMed and PMC. We
constructed the BioBERT-Ensemble as described above.

XLNet-Ensemble XLNet28 implements pre-training with autoregression, using permutation language modeling to
learn the context of the tokens. Using the XLNet architecture, we constructed the XLNet-Ensemble as described
above.

The publicly available tools were implemented with out-of-the-box settings. For all models using BERT architecture,
we used the cased, base version of the pre-trained BERT. These models were fine-tuned for 3 epochs, with a learning
rate of 3e-5, batch size of 4, and sequence length of 512. The cased, base version of XLNet was also used. As
the authors of XLNet did not provide hyperparameters for NER, we used the hyperparameters they provided for the
question answering task (SQuAD), as this is also a span-based task in which the system has to extract short spans of
text from passages containing answers to the questions.29 All deep learning models output annotations in the BIO
annotation scheme, where tokens predicted to be at the beginning of an entity are labeled with B, and tokens predicted
to be inside or at the end of an entity are labeled with I. O is used to label all other tokens. Post-processing consisted
of joining the B and I labels for the subword tokens produced by WordPiece30 (BERT) and SentencePiece31 (XLNet).
The output of MTI required special processing which will be explained in the next section.

C Evaluation

For each system, micro averaged F1-score, recall, and precision were calculated. For this study, we merge all classes
of annotations in order to understand which tool will give us the best performance overall. To simplify the diverse
outputs produced by the tools tested, we take the set of all entities identified per article, similarly to the chemical
document indexing sub-task in BC4CHEMD.

Matches between predictions and manual annotations were measured in two ways: First we used exact matches be-
tween the set of system annotations and the manual annotations to count true positives. In addition to the exact
matching criteria, we reasoned that the machine learning methods which do not rely on dictionary lookups would
benefit more from using relaxed match criteria than the other tools. We therefore calculated inexact matches with the
Levenshtein distance,‡ the least number of insertions, deletions or replacements of single characters required to make
one string equal to another.32 In order to avoid rewarding the editing of short acronyms and element abbreviations
(three characters or fewer) as true positives, we normalized the Levenshtein distance by the length of the predicted
span, using

L < 1/3

as a threshold to count true positives. Here L is the normalized Levenshtein distance, the numerator refers to the
number of edits, and the denominator refers to the predicted span. For example, the entity EBV encoded small RNA

†The code for the LSTM-CRF is available at https://github.com/guillaumegenthial/tf_ner
‡The leven Python package is available at https://github.com/semanticize/leven



could be edited to EBV encoded small RNA 1, resulting in a measurement of 1/21 after normalization and thus counting
as a true positive. Further explanation of use of this metric is provided in the discussion section.

As stated earlier, the output of MTI is MeSH, and the MeSH vocabulary does not necessarily exactly match the strings
occurring in the text. This means that we could not directly compare the output of MTI to the manually annotated
text. Take, for example, the MeSH term IL6 protein, human. This term is unlikely to be found in the text, but it will
be the output of MTI when triggered by the string Il-6. It is possible, however, to access the spans that trigger MTI’s
recommendation. We used these to retrieve the chemical strings for the evaluation of MTI.

Results

Inter-annotator agreement (F-score) between annotator 1 and 2 was determined to be 99.52%. Between annotator 1
and the harmonized mentions, agreement was 98.43%, and between annotator 2 and the harmonized mentions, 98.40%

Micro F1, precision, recall, and standard error of all tools can be seen in Table 2. MTI achieves 39.69% F1-score,
57.52% precision and 30.30% recall. ChemDataExtractor achieves the highest precision of 82.02%, and the SciBERT-
Ensemble achieves the highest F1-score and recall of 75.09% and 79.41%, respectively. Both SciBERT and BioBERT
ensembles perform significantly better than the BERT ensemble. By taking the standard deviation of micro-averaged
metrics on 1000 bootstrapped samples of all articles in the collection, we were able to calculate standard error for each
measurement, as performed in the BC4CHEMD evaluation.

Table 2: Micro-averaged performance of tools evaluated on ChEMFAM Corpus

F1 (%) Precision (%) Recall (%)
MTI 39.69± 1.83 57.52± 2.24 30.30± 1.73
MML 42.95± 1.59 39.45± 1.57 47.13± 2.02
PubTator Central 65.34± 1.72 79.55± 1.55 55.45± 2.01
ChemDataExtractor 58.51± 2.04 82.02 ± 1.49 45.48± 2.27
LSTM-CRF 42.26± 1.90 64.80± 1.95 31.35± 1.85
ChemListem 48.35± 2.24 81.41± 1.79 34.39± 2.15
BERT-BC4CHEMD 53.95± 2.19 73.56± 1.68 42.95± 2.35
BERT-BC2GM 45.44± 2.07 60.17± 2.20 36.50± 2.13
BERT-Ensemble 71.40± 1.42 69.21± 1.58 73.73± 1.68
SciBERT-Ensemble 75.09 ± 1.31 71.22± 1.54 79.41 ± 1.40
BioBERT-Ensemble 74.19± 1.38 70.60± 1.55 78.15± 1.55
XLNet-Ensemble 57.26± 1.41 52.69± 1.53 62.71± 1.67

Table 3 shows MTI, PubTator Central, and the deep learning ensembles’ performance with the relaxed metric. The
XLNet-ensemble benefited the most, 8.3%, using this method of comparison. The highest performing ensemble,
SciBERT, improved 1.65% more than did the highest performing publicly available tool, PubTator Central.

Table 3: Micro-averaged performance of tools using relaxed criteria

F1 (%) Precision (%) Recall (%)
MTI 42.39± 1.83 61.40± 2.16 32.36± 1.77
PubTator Central 68.10± 1.62 82.77 ± 1.38 57.84± 1.98
BERT-Ensemble 75.61± 1.31 73.17± 1.51 78.21± 1.60
SciBERT-Ensemble 79.50 ± 1.15 75.19± 1.46 84.33 ± 1.22
BioBERT-Ensemble 79.20± 1.16 75.13± 1.42 83.72± 1.30
XLNet-Ensemble 65.56± 1.31 60.23± 1.53 71.92± 1.55

Discussion

Our intention for this study was twofold: First, to create a manually annotated corpus that could be used to assess the
performance of CER systems in a setting more similar to the indexing environment than previously annotated corpora;



and second, to identify a tool that not only provides more comprehensive chemical recognition coverage than MTI,
but also performs well on CER in general, without a set of curated, task-specific resources.

We show that MTI achieves lower F-score than all tools evaluated here. The reason for this is simple: MTI was never
designed to be a chemical recognition tool. Using in-house rules and pattern recognition, and taking advantage of
MetaMap’s ability to recognize chemicals within the UMLS vocabulary, MTI has been able to identify chemicals to
partially meet the needs of the indexers. Though its contribution to the indexers is not necessarily reflected in this
evaluation, it is clear that the CER field has matured substantially since the development of MTI. We find that the
BERT models pretrained on biomedical data not only perform better than the publicly available chemical tools and
other machine learning methods we tested, but they did so without supplemental lexical features, lookup vocabularies,
and tuning of hyperparameters. Of all the methods, the SciBERT-Ensemble has the potential to provide the most
comprehensive list of chemicals to MTI. However, before we can implement any system in the indexing pipeline, the
output must first be mapped to MeSH and tested in the context of that vocabulary. Further research will therefore focus
on evaluating the extent to which MeSH recommendations change when MTI is supplemented with a CER system.

MTI uses numerous lexical mapping approaches to map strings in text to MeSH. It is for this reason that using the
Levenshtein distance as a method to compute inexact matches is informative for the future implementation of a CER
tool in MTI: The spans of strings that are not automatically annotated perfectly may still be mapped to the correct
set of MeSH. In addition, the Levenshtein metric allows us to measure performance on the nested and fragmented
entities to some extent. For example, the corpus includes the entity interleukin (Il)-6. This is manually annotated as
fragments: interleukin-6 and Il-6. However, some tools identify only interleukin (Il)-6. Using exact matching criteria,
the entity would be counted as a false positive and the true entities as false negatives. If adjusted using the normalized
Levenshtein distance, Il-6 could be deleted from the predicted string, generating a true positive. The drawback of using
this approach is that the systems can occasionally be rewarded for false negatives that were truly missed. Though this
adds noise to the evaluation, the increased performance of approximately 3-5% for the tools shown in Table 3 indicates
that some of the inexact predicted spans will still be useful to us.

To develop a CER tool to best fit our needs, we are primarily limited by the lack of training data. While many
datasets annotated with chemical entities exist, there is no unifying annotation scheme, and combining the datasets
that ostensibly annotate the same type of entities has been shown to decrease performance.33 Since the deep learning
models do not rely on resources other than the distribution and context of tokens, the amount of training data provided
in the fine-tuning phase is particularly important. One possible solution to this problem is the implementation of a
multitask model, such as MT-DNN,34 where loss can be minimized on multiple objectives on multiple datasets during
training, maximizing the available training data.

Future work will primarily focus on integrating the SciBERT-Ensemble chemical predictions into MTI’s MeSH rec-
ommendations. Once the chemical annotations are mapped to MeSH and added to the recommendations, MTI can be
evaluated on articles with MeSH indexing previously assigned. If the CER system’s predictions are useful, MTI will be
able to recommend an increased amount of chemical MeSH, as well as flag potentially novel chemicals. Additionally,
performance on entity classes was not assessed for this study. This will also be considered in future work, particularly
when conducting error analysis of the indexing recommendations.

Conclusion

This study presents the ChEMFAM corpus, in which entity mentions of inorganic and organic chemicals, genes,
proteins, and other biological molecules have been annotated. To our knowledge, it is the only existing corpus in
which all of these entities are annotated in titles and abstracts. Though we used this corpus to assess CER systems for
the purpose of identifying chemicals for indexing in MEDLINE, it can be easily downloaded and used to assess any
CER system.

Our results indicate that all tools tested here achieve better CER coverage than MTI. We show that the SciBERT-
Ensemble may provide the greatest contribution to MTI in the indexing pipeline, and that in general, BERT architecture
pre-trained on biomedical data and fine-tuned on chemical entity mentions outperforms other approaches.
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