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ABSTRACT The proposed study evaluates the efficacy of knowledge transfer gained through an ensemble of
modality-specific deep learningmodels toward improving the state-of-the-art in Tuberculosis (TB) detection.
A custom convolutional neural network (CNN) and selected popular pretrained CNNs are trained to learn
modality-specific features from large-scale publicly available chest x-ray (CXR) collections including
(i) RSNA dataset (normal = 8851, abnormal = 17833), (ii) Pediatric pneumonia dataset (normal = 1583,
abnormal = 4273), and (iii) Indiana dataset (normal = 1726, abnormal = 2378). The knowledge acquired
through modality-specific learning is transferred and fine-tuned for TB detection on the publicly available
Shenzhen CXR collection (normal = 326, abnormal = 336). The predictions of the best performing
models are combined using different ensemble methods to demonstrate improved performance over any
individual constituent model in classifying TB-infected and normal CXRs. The models are evaluated
through cross-validation (n = 5) at the patient-level with an aim to prevent overfitting, improve robustness
and generalization. It is observed that a stacked ensemble of the top-3 retrained models demonstrates
promising performance (accuracy: 0.941; 95% confidence interval (CI): [0.899, 0.985], area under the curve
(AUC): 0.995; 95% CI: [0.945, 1.00]). One-way ANOVA analyses show there are no statistically significant
differences in accuracy (P =.759) andAUC (P =.831) among the ensemblemethods. Knowledge transferred
through modality-specific learning of relevant features helped improve the classification. The ensemble
model resulted in reduced prediction variance and sensitivity to training data fluctuations. Results from their
combined use are superior to the state-of-the-art.

INDEX TERMS Classification, confidence interval, convolutional neural network, deep learning, ensemble,
knowledge transfer, modality-specific learning, tuberculosis.

I. INTRODUCTION
Data-driven deep learning (DL) algorithms such as convo-
lutional neural networks (CNNs) self-discover hierarchical
feature representations from raw data pixels and perform
end-to-end feature extraction and classification with minimal
expert intervention. These models are shown to achieve state-
of-the-art performance in visual recognition tasks [1]. State-
of-the-art, computer-aided diagnostic tools (CADx) applied
to chest X-ray (CXR) analysis make use of CNNs to support
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expert radiologist decisions by analyzing the CXRs for the
existence of typical disease manifestations and localizing
the suspicious regions for interpretation [2]. Unlike rule-
based feature descriptors [3], [4], CNNs have demonstrated
superior results in medical visual recognition tasks, such as
detecting parasitized cells in thin-blood smear images [5],
cardiomegaly [6], and Tuberculosis (TB) manifestations in
CXRs [7].

TB is a dreadful infectious disease caused by Mycobac-
terium tuberculosis. According to the 2019 World Health
Organization (WHO) report, TB remains the top infectious
killer across the world, with 10 million people falling ill with
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the disease in 2018 [8]. People from the Asian and African
sub-continents accounted for more than 60% of those suffer-
ing from the infection. CXRs are the most common imaging
modality used to diagnose conditions affecting the chest and
its contents [9] and are particularly useful in establishing a
possible diagnosis of TB.

The study of the literature reveals that researchers are
working with CXR collections toward improving the per-
formance of automated TB screening. The authors of [9]
extracted the lung region of interest (ROI) using a graph-cut
segmentation approach and computed texture and shape
feature descriptors including histogram of oriented gradi-
ents (HOG), local binary patterns (LBP), Hu moments, and
Tamura texture descriptors using the publicly available Shen-
zhen CXR dataset [3] to classify them into normal and
abnormal classes. Different classifiers including multilayer
perceptron (MLP), support vector machine (SVM), decision
trees, and logistic regression were evaluated. The authors
reported superior performance with the linear SVM classifier
that obtained an area under the curve (AUC) of 0.90 and
an accuracy of 0.84. The authors of [10] designed a CADx
system using deep CNNs toward automating TB screening.
They used custom and pretrained CNNs and trained them
on a large-scale private CXR collection. The trained models
were used to classify the radiographic images in the Shenzhen
CXR dataset. It was observed that the pretrained CNNs deliv-
ered a superior performance with an accuracy of 0.837 and
AUC of 0.926, as compared to randomly initialized models
that gave an accuracy of 0.77 and an AUC of 0.82.

The promising performance of CNNs is accompanied
by the availability of huge amounts of annotated data.
Under conditions of limited data availability, the mod-
els are pretrained on a large-scale collection of natural,
stock-photographic images such as ImageNet [1]. This is
called transfer learning (TL) where the learned feature rep-
resentations are transferred and fine-tuned for a similar task.

It has been asserted that visual characteristics of medi-
cal images, such as shape, color, texture, spatial dimension,
resolution, appearance, and their combinations, tend to be
different from those in natural images [11]. For instance,
unlike natural images, CXRs exhibit high inter-class sim-
ilarity and low intra-class variance. Further, some popular
disease-specific datasets, such as the Shenzhen TB CXR
dataset, are often too small for the conventional TL to be reli-
able. Small sets result in the models overfitting to the training
samples and consequently generalizing poorly to the unseen
data. It is believed that improved generalization in the trans-
ferred knowledge is possible with the use of pretrained model
architectures combined with modality-specific features to
improve performance on similar tasks, hereafter referred to
as modality-specific learning. Then, transferring knowledge
to the specific tasks which may suffer from small sets is
expected to allow better adaptation of themodels as compared
to conventional TL strategy. It is sensible to mention that the
current literature leaves much room for progress in studying
the efficacy of these strategies.

CNNs learn through error backpropagation and stochastic
optimization to minimize the cross-entropic loss and catego-
rize the images to their respective classes. However, these
models are highly sensitive to the training data fluctuations.
This results in modeling random noise and overfitting dur-
ing model training, leading to high prediction variance and
limited performance. The variance of these models could be
reduced by combining the predictions of multiple, diverse
CNNs that are accurate in different regions in the feature
space and make different errors. The process is called ensem-
ble learning and is expected to deliver promising predic-
tions as compared to any individual constituent learning
algorithm [12]–[17]. There are several approaches to con-
structing model ensembles, such as majority voting, sim-
ple averaging, weighted averaging, stacking, and blending.
These methods are shown to minimize model variance and
enhance learning. The authors of [18] evaluated three differ-
ent proposals including CNN based feature extraction, bag
of words (BOW) generation and multiple instance learning,
and model ensembles toward classifying the radiographic
images in the Shenzhen CXR dataset. For ensemble learning,
the pretrained CNNs including VGGNet [19], ResNet [20],
and GoogLeNet [21] were used to extract features to be
fed into an SVM classifier and the final predictions were
averaged. It was observed that, in terms of accuracy, mul-
tiple instance learning demonstrated superior performance.
In terms of AUC, model ensembles attained similar per-
formance as in [10], with an AUC of 0.926. The authors
of [7] used four de-identified CXR datasets including the
publicly available Shenzhen and Montgomery CXR collec-
tions, and those collected from Thomas Jefferson Univer-
sity Hospital, Philadelphia, and the Belarus TB Portal and
evaluated untrained and pretrained CNN models including
AlexNet [1] andGoogLeNet toward detecting pulmonary TB.
The authors observed that the averaging ensemble of the
pretrained CNN models demonstrated superior performance
with an AUC of 0.99, as compared to the untrained models.
The authors of [22] trained different pretrained CNN mod-
els including AlexNet, VGGNet, and ResNet and created a
model ensemble by averaging their predictions toward detect-
ing cardiomegaly in CXRs. It is observed that the model
ensemble classified cardiomegaly with an accuracy of 92%
as compared to rule-based feature descriptors that attained
76.5%. The combination of DL and ensemble learning is
shown to efficiently handle visual recognition tasks and
improve predictions through their inherent characteristics of
constructing complex, non-linear decision-making functions.

In this study, we propose an ensemble of modality-specific
DL models toward TB detection using the Shenzhen CXR
dataset and demonstrate improved performance. The cus-
tomized CNN and pretrained models are trained on a
large-scale CXR collection to learn modality-specific fea-
tures. The retrained models are repurposed to classify
TB-infected and normal CXRs. We propose the advantages
of combining model predictions through different ensem-
ble methods, such as majority voting, simple averaging,
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weighted averaging, and stacking, to reduce prediction vari-
ance, training data sensitivity, and improve predictions than
any individual constituent model. The combined use of
modality-specific knowledge transfer and ensemble learning
is expected to demonstrate improved generalization and be
applied to an extensive range of visual recognition tasks.

II. MATERIALS AND METHODS
A. DATA COLLECTION AND PREPROCESSING
The following publicly available CXR datasets are used in
this retrospective study:

Pediatric pneumonia dataset [23]: The dataset includes
anterior-posterior (AP) CXRs of children from 1 to 5 years
of age, collected from Guangzhou Women and Children’s
Medical Center in Guangzhou, China. The imaging has been
performed as part of routine clinical care with the approval of
the institutional review board (IRB). The study has been con-
ducted in compliance with the United States Health Insurance
Portability and Accountability Act (HIPAA). The collection
includes 1,583 normal CXRs and 4,273 radiographs infected
with bacterial and viral pneumonia. The dataset is curated
by expert radiologists and screened to remove low-quality,
unreadable radiographs.

Radiological Society of North America (RSNA) pneumo-
nia dataset [24]: The dataset is hosted by the radiologists
from RSNA and Society of Thoracic Radiology (STR) for
the Kaggle pneumonia detection challenge toward predicting
pneumonia in a collection of AP and posterior-anterior (PA)
frontal CXRs. It includes a total of 17833 abnormal and
8851 normal radiographs inDICOM format with a spatial res-
olution of 1024×1024 pixel dimensions and 8-bit depth. The
authors didn’t obtain IRB approval since the examinations
were part of the publicly available NIH CXR dataset [25].

Indiana dataset [26]: The dataset includes 2,378 abnormal
and 1726 normal, PA chest radiographs, collected from hospi-
tals affiliated with the Indiana University School ofMedicine,
and archived at the National Library of Medicine (NLM)
(OHSRP # 5357). The images and reports were automatically
de-identified and manually verified. The collection is made
publicly available through the OpenI R© search engine devel-
oped by NLM.

Shenzhen dataset [3]: The dataset includes 336 TB-
infected and 326 normal CXRs (both AP and PA) collected
from the outpatient clinics of Shenzhen No.3 People’s Hos-
pital, China. The images were de-identified by the data
providers and are exempted from IRB review at their insti-
tutions. The data was exempted from IRB review (OHSRP#
5357) by the NIH Office of Human Research Protection
Programs. Radiologist readings are made available to be
considered as ground-truth.

We collected the data from RSNA pneumonia, pediatric
pneumonia, and Indiana datasets and divided them at the
patient-level into training (80.0%) and test (20.0%) sets.
We randomly allocated 10% of the training for valida-
tion. The performance of the retrained predictive models is

FIGURE 1. Architecture of the customized CNN.

cross-validated using Shenzhen TB CXR collection at the
patient-level to provide a more realistic performance evalu-
ation as the test images represent truly unseen information
for the training process, with no clues about the disease
manifestations or other artifacts leaking into the training data
with an aim to improve model robustness and generalization.

Prior to model training, the following preprocessing steps
are applied in common to the CXR datasets used in this
study: (a) median-filtering with a 3×3 window for edge
preservation and noise removal; (b) resizing to 224×224 pixel
resolution to reduce computational complexity and memory
requirements; (c) rescaling to restrict the pixels in the range
[0 1]; and (d) normalization and standardization through
mean subtraction and division by standard deviation to ensure
similar distribution range for the extracted features.

B. MODELS AND COMPUTATIONAL RESOURCES
The performance of the following CNNs are evaluated toward
the task of detecting TB in CXRs: (a) customized CNN;
(b) VGG-16; (c) Inception-V3 [21]; (d) InceptionResNet-
V2 [21]; (e) Xception [27]; and (f) DenseNet-121 [28].
The pretrained models are selected based on several aspects:
We observed their performance on the ImageNet validation
dataset. Considering the top-1 and top-5 accuracy, the pre-
trained models used in this study are found to deliver promis-
ing performance as compared to other models. The authors
of [29] evaluated several DL models including ResNet-152,
DenseNet-121, Inception-V4, and SEResNeXt-101 toward
CXR lung disease classification. In the process, it was
observed that DenseNet-121 produced the best results.
In another study [30], the authors used the DenseNet-121
model to train on the NIH CXR dataset and achieved state-
of-the-art results.

We designed and evaluated the performance of a base-
line, custom, sequential CNN model toward the current task.
Fig. 1 shows the architecture of the customized CNN used in
this study. Each CNN block has a batch normalization layer,
followed by separable convolution, non-linear activation, and
dropout layers. We performed zero paddings at the convo-
lutional layers to ensure that the spatial output dimensions
match that of the original input. We initialized the number
of convolutional filters to 64 and increased the number by
a factor of two, every time a max-pooling layer is added.
This is done to ensure the amount of computation roughly
remains the same across all the separable convolutional lay-
ers. We used 5x5 kernels uniformly across the convolutional
layers. Batch normalization is performed to normalize the
output of the previous activation layers in an attempt to reduce
overfitting and improve generalization. Separable convolu-
tional dropouts offer regularization by reducing the sensitivity
of the model to training data fluctuations [27]. A global
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FIGURE 2. Process flow diagram toward the automated optimization of
custom CNN hyperparameters using the Talos optimization algorithm.

average pooling (GAP) layer is added to the deepest sepa-
rable convolutional layer to reduce feature dimensionality by
spatially averaging the feature maps. The output of the GAP
layer is fed to the first dense, fully-connected layer, followed
by a dropout and final dense layer to predict on the current
task. The customized model is trained to learn and minimize
the cross-entropic loss toward classifying the CXRs into their
respective categories.

The customized CNN is optimized for its parameters and
hyperparameters including (a) hidden neurons in the first
dense layer, (b) separable-convolutional dropout, (c) dense
layer dropout, (d) optimizer function, and (e) non-linear acti-
vation using Talos optimization tool [31]. Fig. 2 shows the
process flow diagram toward optimizing the custom model
hyperparameters. The pretrained models are instantiated with
the ImageNet-trained weights.

The models are truncated at their deepest convolutional
layer and added with a GAP and dense layer. The models
are fine-tuned with smaller weight updates through stochastic
gradient descent optimization to minimize the categorical
cross-entropic loss toward the current task.

C. MODALITY SPECIFIC LEARNING
We propose a modality-specific learning strategy to improve
generalization in the transferred knowledge and prediction
performance by using pretrained model architectures com-
bined with modality-specific features. The customized CNN
and pretrained models are trained on a large-scale CXR
collection to learn modality-specific features. The retrained
models are fine-tuned to classify TB-infected and normal
CXRs. Fig. 3 shows the process flow diagram for the pro-
posed strategy. The overall process is described herewith:

(a) Model A: The custom and pretrained models, other-
wise called the base models, are trained on a collection of

FIGURE 3. Modality-specific knowledge transfer showing the base and
retrained models along with the patient-level train/test split for each
model.

datasets including RSNA pneumonia, pediatric pneumonia,
and Indiana collections to learn the CXR modality-specific
features and classify them into abnormal and normal cate-
gories. Callbacks and model checkpoints are used to inves-
tigate the performance of the models after each epoch. The
models are evaluated for 100 epochs or until the performance
plateau. The learning rate is reduced whenever the valida-
tion accuracy ceased to improve. The retrained models with
the best test classification accuracy are stored for further
evaluation.

(b) Model B: The base models are trained and evaluated
with the Shenzhen TB CXR collection, to categorize into
TB-infected and normal classes. Due to limited data avail-
ability, the models are evaluated through five-fold cross-
validation with an aim to prevent overfitting and improve
robustness and generalization. The retrained base models
with the best model weights, giving the highest test classi-
fication accuracy for each cross-validated fold are stored for
further evaluation.

(c) Model C: Retrained models from Model A with
CXR modality-specific knowledge are fine-tuned on Shen-
zhen TB CXR collection to categorize into TB-infected
and normal classes. Embedding modality-specific knowl-
edge is expected to improve model adaption to the target
task. The retrained models showing the best performance
for each cross-validated fold are stored for further evalua-
tion. With modality-specific knowledge transfer, Model C is
expected to demonstrate improved TB detection performance
as compared to Model B.

D. ENSEMBLE LEARNING
Ensemble learning helps to reduce variance and improve
generalization by combining the predictions of multiple mod-
els and obtain promising predictions than any individual,
constituent model.

In this study, the predictions of the models from Model C
are combined through majority voting, simple averaging,
weighted averaging, and stacking to classify the CXRs
into TB-infected and normal classes. In majority voting,
the predictions of multiple models are considered as votes.
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FIGURE 4. Stacking ensemble approach.

Final predictions are made based on these votes obtained
from the majority of the models. Simple averaging averages
the prediction probabilities from multiple models to arrive
at the final predictions. Weighted averaging is an exten-
sion of simple averaging in which the models are assigned
different weights based on their importance in making the
predictions.

Stacking or stacked generalization is an ensemble method
where a meta-learner learns how to best combine the predic-
tions from individual models (base-learners) [32]. A stacking
ensemble has two levels: (a) Level-0 includes the training data
input and base-learners, and (b) Level-1 takes the predictions
of base-learners as input and a meta-learner learns to opti-
mally combine the predictions of base-learners. In this study,
we used a neural network-based meta-learner to learn from
the predictions of the top-performing models from Model C.
The layers in the base-learners are marked as not trainable
so the weights are not updated when the stacking ensemble
is trained. The outputs of the base-learners are concatenated.
A hidden layer is defined to interpret these predictions to the
meta-learner and an output layer to arrive at probabilistic pre-
dictions. Fig. 4 shows the algorithm for training the stacking
ensemble proposed in this study.

Unlike other ensemble methods, stacking uses the pre-
dictions of the base-learners as a context and condition-
ally decides to differentially weigh these predictions to
deliver better performance than any individual, constituent
model. The benefit of this approach is that the outputs
of the base-learners are fed directly to the meta-learner
and the stacking ensemble is treated as a single model where
the base-learners are embedded in a larger multi-headed
neural network.

The models in modality-specific knowledge transfer and
ensemble pipeline are evaluated in terms of the following
performance metrics: (a) accuracy; (b) AUC; (c) sensitivity;
(d) specificity; (e) F-score; and (f) Matthews Correlation
Coefficient (MCC). The models are trained and evaluated on
a Windows system with Xeon CPU, 32GB RAM, NVIDIA
1080Ti GPU and CUDA/CUDNN for GPU acceleration. The
models are configured in Python using Keras API with a
Tensorflow backend.

E. STATISTICAL ANALYSIS
DL models are statistical and probabilistic in nature that cap-
tures data patterns through the use of computational methods.
It is highly probable that observations that involve draw-
ing samples from a population demonstrate an effect that
would have occurred due to sampling errors. However, if the
observed effect demonstrates P < 0.05 (95% confidence
interval (CI)), a conclusion is made that the observed effect
reflects the characteristics of the entire population. Tests for
statistical significance help to measure whether the differ-
ences between the studied groups are significant or occurred
by chance.

In this study, statistical analyses are performed to ana-
lyze for the existence of a statistically significant difference
in the mean values of the performance metrics achieved
with different ensemble methods. One-way analysis of vari-
ance (ANOVA) is performed to determine the existence of
these statistically significant performance differences. How-
ever, to perform this analysis, the data should satisfy the fol-
lowing assumptions: (a) normal distribution; (b) homogenous
variance; (c) absence of significant outliers; and (d) indepen-
dence of observations [33]. Shapiro-Wilk normality analy-
sis [34] is performed to investigate for data normality and
Levene’s analysis [35], to check for homogeneous variances.
The data is analyzed for the presence of outliers and the
independence of observations. The null hypothesis (H0) that
all ensemble methods demonstrate similar performance is
accepted if no statistically significant difference is observed
in the mean value of the performance metrics for the different
ensemblemethods under study. The alternate hypothesis (H1)
is accepted and H0 is rejected if a statistically significant
performance difference (P < 0.05) is found to exist.
One-way ANOVA is an omnibus test and needs a post-hoc

study to identify the specific ensemble methods demon-
strating this statistically significant performance differences.
In this study, a Tukey post-hoc test [36] is performed to
identify the ensemble methods demonstrating these statisti-
cally significant performance differences. We used the IBM
SPSS [37] package to perform statistical analyses.

III. RESULTS
The optimal hyperparameter values obtained with the Talos
optimization tool for the customized CNN are as fol-
lows: (a) hidden neurons in the first dense layer (256);
(b) separable-convolutional dropout (0.25); (c) dense layer
dropout (0.5); (d) optimizer function (Adam); and (e) non-
linear activation (ReLU).

The performance of the customized CNN and pretrained
models in Model A toward classifying abnormal and nor-
mal CXRs are evaluated and the obtained results are
shown in Table 1. This is the first step in the modality-
specific knowledge transfer pipeline where the customized
CNN and pretrained models are trained to learn the CXR
modality-specific features across the normal and abnormal
categories.
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TABLE 1. Performance metrics achieved with models in model A.

TABLE 2. Performance metrics achieved with models in model B.

Accuracy demonstrates the model’s ability to correctly
classify positive and negative cases. Specificity gives a mea-
sure of themodels’ ability to correctly identify negative cases.
Sensitivity (recall) demonstrates the ability to correctly iden-
tify positive cases. A measure of F-score gives the harmonic
average of recall and precision, and MCC, the degree of
agreement between the predictions and ground-truth values.
It is observed that the DenseNet-121 showed better per-
formance in terms of accuracy (0.897), AUC (0.962), and
sensitivity (0.926). The Xception model gave higher values
for specificity (0.887). However, considering the balance
between precision and recall, as demonstrated by the F-score,
the DenseNet-121 demonstrated superior performance in
classifying the abnormal and normal CXRs.

The performance of the customized and pretrained models
in Model B, cross-validated with the Shenzhen TB CXR
dataset, toward classifying TB-infected and normal CXRs are
evaluated and the results are shown in Table 2. It is observed
that DenseNet-121 demonstrated better performance for met-
rics including accuracy (0.899), AUC (0.948), specificity
(0.933), F-score (0.897), and MCC (0.801). The Inception-
V3 model showed higher values for sensitivity (0.908).

The retrained custom and pretrained models in Model A
are fine-tuned and cross-validated with the Shenzhen TB
CXR collection to obtain the models in Model C to classify
TB-infected and normal CXRs and the results are shown
in Table 3. The notable results are as follows: (a) the per-
formance of the models in Model C is promising compared
to that of Model B models. This may be because the CXR
modality-specific features learned from a large-scale data
collection resulted in a generalized transfer of knowledge,
suitable to be repurposed for the task of TB detection;
(b) the standard deviation of the evaluated metrics for the
Model Cmodels are significantly lower than that ofModel B.

TABLE 3. Performance metrics achieved with models in model C.

TABLE 4. Performance metrics achieved with the ensemble of
top-3 models in model C (InceptionResNet-V2, Inception-V3, and
DenseNet-121).

This may be because of the improved generalization, reduced
bias, and overfitting, resulted from the modality-specific
knowledge transfer toward the current task. It is observed
that Inception-V3 demonstrated better performance for the
metrics including accuracy (0.940), AUC (0.974), sensitivity
(0.938), F-score (0.941), and MCC (0.880). The VGG-16
model demonstrated higher values for specificity (0.963).
However, considering the usage as a screening tool, the sen-
sitivity metrics carry high prominence. Also, considering
the F-score that demonstrates the balance between preci-
sion and recall, the Inception-V3 model showed superior
performance. These results indicated that modality-specific
learning improved the models’ robustness, generalization,
and reduced bias and overfitting toward giving promising
results in classifying TB-infected and normal CXRs.

We evaluated the cross-validated performance of multiple
ensemble methods, including majority voting, simple aver-
aging, weighted averaging, and stacking, using the top-3 per-
forming models in Model C, including InceptionResNet-V2,
Inception-V3, and DenseNet-121 toward improving the per-
formance of classifying TB-infected and normal CXRs in the
Shenzhen CXR dataset. Table 4 shows the results obtained
with the different ensemble methods toward the current task.

For weighted averaging, we empirically observed that the
use of weights (InceptionResNet-V2 (0.25), Inception-V3
(0.5), and DenseNet-121 (0.25)) gave the best results. The
notable results are as follows: (a) stacking ensemble demon-
strated better performance in terms of all performancemetrics
(accuracy (0.941), AUC (0.995), sensitivity (0.926), speci-
ficity (0.957), F-Score (0.941), andMCC (0.884)); and (b) the
performance of the stacking ensemble appeared promising
because the meta-learner learned to correct the predictions of
the individual base-learners by differentially weighing their
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TABLE 5. Comparing the results with the state-of-the-art literature.

predictions to deliver optimal predictions than any individual
constituent model. The results demonstrated that the classi-
fication task is benefited by the combination of modality-
specific knowledge transfer and ensemble learning to deliver
superior performance.

The performance of the stacking ensemble appears visu-
ally significant. However, the test for statistical signifi-
cance helps to ensure whether the observed difference in
performance reflects the population characteristics. These
tests measure whether the differences between the studied
ensemble methods are statistically significant in the 95%
CI. The tests for data normality and homogeneity of vari-
ances using Shapiro-Wilk and Levene’s analysis respectively
demonstratedP > 0.05 to signify that the assumptions of data
normality and homogeneity of variances hold good. Thus,
we performed a one-way ANOVA analysis to investigate the
existence of a statistically significant difference in the mean
values of the performance metrics for the different ensemble
methods under study. For the accuracy metric, it is observed
that no statistically significant difference exists between the
different ensemble methods (P =.759). Similar characteris-
tics are observed for AUC (P =.831), sensitivity (P =.997),
specificity (P =.701), F-score (P =.788), and MCC
(P =.756). These results signify that there exists no statis-
tically significant difference in performance between the dif-
ferent ensemble methods toward classifying the TB-infected
and normal CXRs in the Shenzhen CXR dataset under study.

The performance of the stacking ensemble in classifying
TB-infected and normal CXRs is compared to that of the
state-of-the-art literature as shown in Table 5. It is observed
that the proposed ensemble outperformed the state-of-the-art
in all performance metrics.

IV. DISCUSSION
The customized CNN used in this study converges to a
promising solution due to (a) hyperparameter optimization,
(b) implicit regularization with batch normalization, and

(c) reduced bias, improved generalization through use of
separable-convolutional and dense layer dropouts. The use of
depth-wise separable convolutions ensured a reduction in the
trainable parameters, offering the benefit of reduced compu-
tational overhead and memory requirements. The models are
evaluated through cross-validation studies to present a realis-
tic and generalized performance measure. Modality-specific
knowledge transfer helped to embed CXR modality-specific
knowledge into the predictive models that resulted in a gener-
alized knowledge transfer, appropriate to be fine-tuned for the
task of TB detection. It is observed that the pretrained CNN
models retrained on the large-scale CXR collection found
superior solutions in the feature space as compared to the
custom model with random weight initializations. Ensemble
learning reduced models’ prediction variance and sensitivity
to training data fluctuations by combining the predictions and
deliver optimal performance. In the process, the performance
of the stacking ensemble demonstrated superior performance
by differentially weighing the predictions to deliver superior
performance than any individual, constituent model.

The performance of the ensemble methods is analyzed
for the existence of a statistically significant difference
to ensure the observed performance difference reflects the
characteristics of the entire population. It is observed that
there existed no statistically significant performance differ-
ence between the ensemble methods. The stacked modality-
specific model ensemble significantly outperformed the
state-of-the-art in terms of accuracy and AUC. The values
for the other performance metrics are not reported in the
literature.

This preliminary study, however, has some limitations.
The proposed combination of modality-specific knowledge
transfer and ensemble learning pipeline is evaluated with the
Shenzhen TB CXR collection with small sample size. Future
work would include evaluating the efficacy with a larger CXR
collection. There are several ensemble methods, each with its
own advantages/disadvantages, the method to use depends
on the problem under study. CNNs are perceived as black-
boxes due to lack of interpretability and their predictions
need explanations. Visualization studies need to be performed
with model ensembles to give an explanation of the pre-
dictions since a poorly understood model behavior could
adversely impact medical decision-making. Ensemble meth-
ods are computationally expensive, adding training time and
memory constraints to the problem. It may not be practicable
to implement model ensembles, however, with the advent
of low-cost GPU solutions and cloud technology, model
ensembles could become practically feasible for real-time
applications. Future research could include transferring the
knowledge of model ensembles into small, portable models.

We observe that knowledge transfer imposed using
modality-specific medical images (large-scale CXR collec-
tion) for enhancing pretrained models aided them in improv-
ing decision-making. They learned features that are relevant
to detect TB manifestations. The predictions of these models
are combined through ensemble learning that reduced pre-
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diction variance and sensitivity to training data fluctuations.
The combined use of modality-specific knowledge transfer
and ensemble learning demonstrated superior results as com-
pared to the state-of-the-art and led to reduced overfitting and
improved generalization. Since the proposed methodology is
not problem-specific it could be used to develop clinically
valuable solutions and enable the application to a broad range
of visual recognition tasks.
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