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Background(1/2)

 Malaria is a life-threatening disease.

 According to the 2017 WHO malaria report , an estimated 216 million 
malaria cases worldwide were detected in 2016, causing approximately 
445,000 deaths. 

 There are several techniques for malaria diagnosis:

• Microscopy

• Gold standard : Quantitative

• Less expensive

• Time taken for manual 
diagnosis: 10-30 minutes

• Rapid Diagnostic Test (RDT)                 

• Species-specific 

• Not quantitative

• Stay positive after treatment
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--detect the presence of parasites--differentiate parasite species
--detect parasite development stages
-- automatic parasite counting

Background(2/2)

Thin smear Thick smear
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Methods (1/4) -- Our NLM MalariaScreener App

 We are developing an Android smartphone app for malaria 
parasite detection

 Available in Google Play

Smartphone

Adapter

Blood Slide

Microscope
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Methods (2/4) -- Our NLM MalariaScreener App
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Methods (3/4) – Thin blood smears

 For thin blood smears:
 We customize a CNN classifier for 

parasite detection based on 

 7 convolutional layers

 2 max-pooling layers 

 3 dense layers.
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Methods (4/4) – Thick blood smears

For thick blood smears:

 We propose a customized CNN model for parasite classification. Our 
customized CNN model consists of three convolutional layers, three 
max-pooling layers, two fully-connected layers and a softmax 
classification layer. 
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Experimental results (1/3) - Data

 Images were acquired at Mahidol-Oxford Tropical Medicine 
Research Unit (MORU), Bangkok, Thailand.

Manually annotated by an experienced parasitologist

Thin blood smears: 1200 images from 200 patients
 Annotated 213,000 cells 

Thick blood smears: 1818 images from 150 patients
 Annotated 84,961 parasites

 Annotated 35,036 WBCs
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Experimental results (2/3) – Thin blood smears

 Evaluation on thin blood smears is performed based 10-fold cross-
validation;

 The accuracy of our customized CNN model in discriminating between 
parasites and distractors in thick smears is 94.53%;

 Evaluation on thick blood smears is performed based 5-fold cross-
validation;

 The accuracy of our customized CNN model in discriminating between 
parasites and distractors in thick smears is 93.32%.
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Experimental results (3/3) – Thick blood smears

Ground-truth Parasites

True Preselected parasites

False Preselected parasites
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Conclusion

 Deep learning is an accurate and reliable model for malaria parasite 
classification on both thin and thick blood smears

 A trained CNN classifier can be run efficiently on a mobile device

https://ceb.nlm.nih.gov/projects/malaria-screener/

Contact information: feng.yang2@nih.gov

stefan.jaeger@nih.gov  

https://ceb.nlm.nih.gov/projects/malaria-screener/
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Thanks for your attention!


