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ABSTRACT 

Chest radiography (CXR) has been used as an effective tool for screening tuberculosis (TB). Because of the lack of 
radiological expertise in resource-constrained regions, automatic analysis of CXR is appealing as a “first reader”. In 
addition to screening the CXR for disease, it is critical to highlight locations of the disease in abnormal CXRs. In this 
paper, we focus on the task of locating TB in CXRs which is more challenging due to the intrinsic difficulty of locating 
the abnormality. The method is based on applying a convolutional neural network (CNN) to classify the superpixels 
generated from the lung area. Specifically, it consists of four major components: lung ROI extraction, superpixel 
segmentation, multi-scale patch generation/labeling, and patch classification. The TB regions are located by identifying 
those superpixels whose corresponding patches are classified as abnormal by the CNN. The method is tested on a publicly 
available TB CXR dataset which contains 336 TB images showing various manifestations of TB.  The TB regions in the 
images were marked by radiologists. To evaluate the method, the images are split into training, validation, and test sets 
with all the manifestations being represented in each set. The performance is evaluated at both the patch level and image 
level. The classification accuracy on the patch test set is 72.8% and the average Dice index for the test images is 0.67. The 
factors that may contribute to misclassification are discussed and directions for future work are addressed. 
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1. INTRODUCTION 
Chest radiography (CXR) has been used as an effective tool for screening tuberculosis (TB) and various other pulmonary 
diseases. Early detection/treatment is key for reducing the spread of the disease. Because of the lack of radiological 
expertise in resource-constrained regions, automatic analysis of chest radiographs is appealing. There have been several 
efforts toward developing automatic screening systems for detecting TB infections using chest x-rays [1, 2]. At the U.S. 
National Library of Medicine (NLM), in collaboration with the AMPATH (Academic Model Proving Access to 
Healthcare), we have been developing a digital chest x-ray screening system for detecting manifestations consistent with 
exposure to TB in CXRs. The system is installed in a truck which serves parts of rural western Kenya. The general approach 
for CXR TB detection algorithms in the literature usually consists of three major steps: 1) Region-of-interest (ROI) 
identification: the ROI may be the whole image, the lung region, or a body rectangle that coarsely contains the lung; 2) 
Extracting features from the ROI: the features being used include texture features, shape features, and histogram-based 
features [2]; 3) Classification: a binary classifier (normal or abnormal) is then trained using these features. Typical 
classifiers used include support vector machines and random forest classifiers. Very recently, instead of using the general 
approach in which handcrafting features is a crucial step, a convolutional neural network (CNN) that learns the features 
automatically from the raw image data is used to classify TB CXR images [3]. Besides classifying a CXR to be normal or 
abnormal, it is also very important to identify location of TB in an abnormal CXR, as TB manifestations are often localized 
to a partial area of lung. In this paper, we focus on the task of locating/pinpointing TB in CXRs. We also explore a method 
based on CNN. Compared to the general field which has several large-scale labeled open image datasets, such as ImageNet 
and Microsoft COCO, one challenge of applying CNN to medical images is the lack of large annotated medical image 
datasets. One approach for taking advantage of the success of CNN in the general image domain is based on the idea of 
“transfer learning” [4]. In this approach, the CNN that has been pre-trained using a large scale, labeled, general image 



domain dataset is used as a feature extractor for the images in the small, target dataset of interest. For our application, the 
number of annotated images is also quite small. However, we try to generate a big dataset of small image patches which 
can be used to train CNN directly. Specifically, we use patches that are extracted based on superpixels. In addition, we use 
multiscale patches in order to catch/preserve global spatial consistency. Therefore, the TB regions are located by 
identifying those superpixels whose corresponding patches are classified as abnormal by CNN. Work described in this 
manuscript is significantly different from [3] with respect to not only the task, but also the method although both 
approaches apply CNN for TB analysis in CXRs. In the following sections of the paper, we first introduce our dataset and 
the annotated collection. Then we describe our approach, followed by the presentation and discussion of our experimental 
tests. Finally, we conclude the paper with the outline of directions for future research. 
 

   
Fig. 1. Markings of abnormal areas by radiologists. 

 
    

Table 1. Manifestations of TB in Shenzhen Dataset 

Manifestation  Number of markings Number of images 
1. Pleural effusion 45 41 
2. Apical thickening 126 98 
3. Single nodule (non-calcified) 170 60 
4. Pleural thickening  59 52 
5. Calcified nodule 237 79 
6. Small infiltrate (non-linear) 135 113 
7. Cavity  44 29 
8. Linear density  97 67 
9. Severe infiltrate (consolidation) 27 16 
10. Thickening of interlobar fissure  26 21 
11. Clustered nodule (2mm-5mm apart)  573 116 
12. Moderate infiltrate (non-linear) 47 35 
13. Calcification (other than nodule & lymph node) 13 6 
14. Calcified lymph node  9 6 
15. Miliary 4 3 
16. Retraction 29 21 
17. Adenopathy 14 9 
18. Other 8 6 

 

2. DATASET 
NLM has made two TB CXR datasets publicly available [5]. One is the Montgomery County CXR Set (MC) and the other 
is the Shenzhen Hospital CXR Set (Shenzhen). We worked on the Shenzhen dataset, since it contains many more images 
than the MC dataset. X-ray images in the Shenzhen data set have been collected as part of routine care by Shenzhen No.3 



Hospital in Shenzhen, China. In this set, there are 326 normal X-rays and 336 abnormal TB X-rays showing various 
manifestations of TB. Image size varies for each X-ray, with approximately 3K by 3K pixels. In this study, we asked 
radiologists to mark the abnormal regions of all the TB X-rays in the Shenzhen set (336 images). There were two 
collaborating radiologists. Each was assigned half of the images. Each radiologist marked the pathology regions based on 
their observation on the image. The radiologists used the online tool Firefly [6] that was developed by the University of 
Missouri. Several examples of radiologists’ markings are given in Figure 1. The radiologists used several ways to mark 
the abnormal sites depending on the manifestation types, such as b-spline curve, polygon, circle, line, and point. One image 
often contains several types of manifestations. The summarization of manifestations is given in Table 1. Specifically, in 
Table 1, the first column lists the 17 types of TB manifestations observed (plus “other”) in the Shenzhen dataset; the second 
column lists the overall number of markings for each manifestation type; and the third column lists the number of images 
that contains that specific manifestation type. As shown in Table 1, the most frequently-occurring manifestations include 
nodules, small infiltrate, and apical thickening. 

3. METHOD  
Our previous work focuses on binary classification of an input chest radiograph as abnormal or normal [2]. The goal of 
our current work is to identify where the abnormal region is after an image is classified as abnormal. Our approach consists 
of four main steps: lung ROI extraction, superpixel segmentation, patch extraction and labeling, patch classification.   
 
3.1 Lung ROI extraction 

To reduce search space, the first step is to extract the ROI that includes the lungs. We have developed a non-rigid 
registration-driven lung segmentation algorithm. The method consists of three main stages: (i) a content-based image 
retrieval approach for identifying training images (with masks) most similar to the patient CXR using a partial Radon 
transform and Bhattacharyya shape similarity measure, (ii) creating the initial patient-specific anatomical atlas of lung 
shape using SIFT-flow for deformable registration of training masks to the patient CXR, and (iii) extracting refined lung 
boundaries using a graph cut optimization approach with a customized energy function. For the details of the lung 
segmentation algorithm, please refer to [7]. 
 

  

Fig. 2. Segmentation of superpixels. 
 

 
3.2 Superpixel segmentation 

To identify abnormal area, the lung ROI region is scanned to extract patches based on each superpixel instead of each pixel 
in the lung ROI region. The superpixels are generated using the Simple Linear Iterative Clustering (SLIC) method [8]. 
SLIC generates superpixels by clustering pixels based on their color similarity and proximity in the image plane. It controls 
the compactness and regularity of a superpixel using a distance measurement which provides balance between color 
similarity and spatial proximity. Two important parameters for SLIC are: the number of desired superpixels k, and the 
weighting factor between color and spatial differences m. Figure 2 shows two example results of superpixel segmentation. 
 



3.3 Patch extraction and labeling 

After the superpixels are generated, the next step is to extract patches. For each superpixel, its center is calculated and is 
used as the center of the patches to be extracted. At each center, three grayscale patches with size L × L, 1.5L × 1.5L, and 
2L × 2L respectively are extracted. We wanted to capture image spatial consistency in a global sense, as well as capturing 
image details. This motivated us to use multiple patch sizes at each superpixel location. The three grayscale patches are 
combined to become a 3-channel color patch by resizing the patches with size 1.5L × 1.5L, and 2L × 2L respectively to the 
size of L × L. Generally speaking, the patch size (L × L) should be larger than the superpixels and contain some context 
surrounding the superpixel. The color patch is labeled using the following rule. If any of the abnormal pixels marked by 
the radiologists (inside the marked polygon/circle region, or on the marked curve/line, or at the marked point), is inside 
the original L x L grayscale patch, then the patch is labeled as abnormal, otherwise the patch is labeled as normal. 
 
3.4 Patch classification 

We use a CNN to decide the abnormality of each superpixel. The input to the CNN is the three-channel color patch 
generated from a superpixel and the output of the CNN is the label of the color patch as defined in the previous paragraph. 
The well-known models of CNN include AlexNet, VGG, GoogLeNet, ResNet, etc. There are several open-source deep 
learning software. For example, Caffe, Tensorflow, Deeplearning4j, and Theano. In this paper, we use Caffe and adopt the 
CNN model used by Alex Krizhevsky for CIFAR-10 dataset [9] for our work. The CNN model is trained/validated/tested 
using patches extracted from the images in the training/validation/test set. The classified patches in a test image are then 
combined to generate the final binary mask showing the location of the abnormal regions. 

4. EXPERIMENTAL RESULTS AND DISCUSSION 
In this section, we present the experimental test and results in detail. To reduce the computation time, the image is resized 
by ¼ in each dimension when applying SLIC superpixel segmentation. The parameter k is set to 3000 and m is set to 10. 
The generated superpixel mask is then resized back to the original image size (around 3K by 3K). The average size of the 
superpixels is approximately 45 × 45. In the experiment, we set L = 100 for the patch size. For each image, three grayscale 
patches are extracted at each superpixel and a color patch is generated by combining these three grayscale patches. To 
train/test the CNN, we need to create the labeled training/validation/test patch datasets.  To this end, we split the 336 
abnormal TB images into three sets. We want to have images representing all the manifestations in each set. As shown in 
Table 1, the number of images for certain manifestations is very small. Specifically, there are 4 manifestations whose 
corresponding number of images is no larger than 6. They are: miliary, calcified lymph node, calcification (other than 
nodule & lymph node), and other. There are a total of 21 images exhibiting these manifestations. For each of the 4 
manifestations, we randomly split its corresponding images into three sets. For example, for miliary, we put one of the 3 
images in each set by random selection; for calcification (other than nodule & lymph node), there are a total of 6 images 
that exhibit this manifestation. We put 4 of the 6 images in the training set, one in the validation set and one in the test set 
by random selection. Note that no image exhibits more than one type of these 4 manifestations. Otherwise, we need to be 
careful to put each image into only one of the three sets so that the training/validation/test sets do not overlap. After splitting 
the images of these 4 manifestations, we then split the remaining 315 images randomly into training/validation/test sets 
based on a ratio of 70%/20%/10% approximately. As a result, there are 233, 67, and 36 images in the training, validation 
and test set, respectively. Table 2 lists the number of markings for each manifestation in each set. We then extract patches 
from the images in each of the three sets. We use the patches extracted from the superpixels within/overlapping with those 
abnormal markings as abnormal patches and the patches extracted from the superpixels that are inside the lung ROI but 
outside/not-overlapping with those abnormal markings as normal patches. Table 3 lists the number of abnormal/normal 
patches in each set. The number of abnormal patches is much smaller than that of normal patches. To obtain a balanced 
dataset, we did data augmentation on the abnormal patches as follows: we generated patches by shifting the center of each 
abnormal patch in 8 directions by 10 pixels and then randomly selected a certain equal number of patches in each direction 
so that the total number of the abnormal patches is about the same as that of normal patches in each set. We then use this 
augmented patch set to train and test the CNN model (which is the same as the model used for CIFAR-10 except that the 
input layer has dimension 100 × 100 × 3 and the number of the outputs of the fully-connected layer is 2). The classification 
accuracy on the patch training and validation sets with the increasing of epoch is shown in Figure 3. The classification 
accuracy on the patch test set is 72.8% and the corresponding confusion matrix is given in Table 4. We also evaluate the 
performance on the image level. Specifically, for each test image, we generate a binary mask image based on the patch 
classification result (the superpixel is set as white/black if the corresponding patch is classified as abnormal/normal) and 
compare it with the ground truth mask by calculating the Dice index. The average Dice index for the test images is 0.67. 



Figure 4 shows the results for one test image: (a) image with expert marking; (b) image with markings generated by the 
proposed method. The factors that may contribute to the misclassification include: (a) the intrinsic complexity/difficulty 
of identifying/locating the abnormality. For example, some abnormalities are subtle and hard to identify/locate; (b) the 
limited number of images, especially for certain manifestations; (c) the coarse delineations of abnormal areas by the experts 
for some cases. For example, to reduce labor intensity and the time involved, the radiologists marked polygons of some 
abnormal regions quite loosely and marked some nodules with only a point. Therefore, in the future, there are several 
directions that we could consider for improving the performance: using deeper and more complex models, obtaining more 
data and annotations, and refining the expert markings. 

 

Table 2. Number of markings for each manifestation in each set 

 1 2 3 4 5 6 7 8 9 
training 18 85 104 37 164 92 39 78 15 

val. 20 31 51 16 40 28 4 13 7 
test 7 10 15 6 33 15 1 6 5 

 10 11 12 13 14 15 16 17 18 
training 12 399 30 4 7 1 17 8 6 

val. 12 145 11 7 1 2 9 2 1 
test 2 29 6 2 1 1 3 4 1 

 

   Table 3. Number of images/patches in each set 

 Images Patches 

abnormal normal 
training  233 23,573 161,686 

val. 67 9,859 41,709 

test 36 4,409 23,897 
 

Table 4. Confusion matrix for the patch test set 
 Predicted 

normal abnormal 
normal 17215 6682 

abnormal 6304 17592 
 

 

 

Fig. 3. Classification accuracy on the patch training and validation set. 

 



  
(a) expert-marked image (b) result of the method 

Fig. 4. Identified abnormal areas in the test image. 
 

5. CONCLUSIONS  
In this paper, we propose a method to address a very challenging task: to localize/pinpoint TB in a chest radiograph. The 
method is based on employing a CNN architecture to classify the superpixels generated from the lung area in the image. 
Specifically, it consists of four major components: lung ROI extraction, superpixel segmentation, patch generation and 
labeling, and patch classification. The method is tested on a publicly available dataset consisting of 336 TB images. The 
performance is evaluated at both the patch level and image level. The promising results demonstrate the effectiveness of 
the proposed method.  Future work includes utilizing more complex/deeper CNN models and obtaining more annotated 
data for training. 
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