You are here

Printer-friendly versionPrinter-friendly version
Sameer
K
Antani
,
PhD
Staff Scientist
Location: 
38A
/
10S1010
Phone Number: (
301
435-3218
Expertise and Research Interests: 

Dr. Antani is a versatile researcher leading several scientific and technical research projects. He applies his expertise in biomedical image informatics, automatic medical image interpretation, machine learning, information retrieval, computer vision, and related topics in computer science and engineering technology toward advancing the role of computational sciences in biomedical research, education, and clinical care. His current R&D projects include: an automatic screening system for detecting presence of Tuberculosis (TB) and other pulmonary abnormalities in digital chest x-ray images; an automatic cell counting system for malaria screening; retrieval of fMRI data based on activation similarity; and, the OPEN-iSM biomedical image retrieval system that provides text and visual search capability to retrieve over 3.2 million images and videos from approximately 1.2 million Open Access biomedical research articles from NLM’s PubMed Central® repository.

His other work includes contributions to cervical cancer diagnostics through cervicography and histology image analysis; retrieval of spine x-rays from an image database using visual and shape queries; and, next generation scientific publishing.

Professional Activities: 

Dr. Antani is a Senior Member of the International Society of Photonics and Optics (SPIE), Institute of Electrical and Electronics Engineers (IEEE) and the IEEE Computer Society. He serves as the Vice Chair for Computational Medicine on the IEEE Technical Committee on Computational Life Sciences (TCCLS), and as an Associate Editor for the IEEE Journal of Biomedical and Health Informatics.

Honors and Awards: 

In 2015, the malaria screening project received awards from HHS Ventures Fund, a Department of Health and Human Services initiative that serves as an “incubator for new ideas” run out of the HHS IDEA Lab. Prior, in 2014, his project on automated chest X-ray screening project was, similarly, an awardee of HHS Ignite. In addition to several staff achievement awards, in 2013, he received the NIH Award of Merit for his contribution to novel image and text based methods for searching the biomedical literature. In 2012, he received the NIH Award of Merit for his contributions to novel ways of search biomedical literature using visual and text queries in the Open-i project. In 2009, he received the NIH Award of Merit for his contributions to Content-Based Image Retrieval in Geographically Distributed Systems. In 2008, he was a member of the NLM team recognized by Internet2 for developing geography-independent cancer research tools.

Publications/Tools by Sameer Antani: 
Vajda S, Karargyris A, Jaeger S, Santosh KC, Candemir S, Xue Z, Antani SK, Thoma GR. Feature Selection for Automatic Tuberculosis Screening in Frontal Chest Radiographs. J Med Syst. 2018 Jun 29;42(8):146. doi: 10.1007/s10916-018-0991-9.
Rajaraman S, Silamut K, Hossain MA, Ersoy I, Maude RJ, Jaeger S, Thoma GR, Antani SK. Understanding the learned behavior of customized convolutional neural networks toward malaria parasite detection in thin blood smear images. J. Med. Imag. 5(3), 034501 (2018), doi: 10.1117/1.JMI.5.3.034501.
Rajaraman S, Candemir S, Xue Z, Alderson P, Kohli M, Abuya J, Thoma GR, Antani SK. A novel stacked generalization of models for improved TB detection in chest radiographs. Proc. IEEE Engineering in Medicine and Biology Conference (EMBC 2018), Honolulu, Hawaii, 2018. pp. 718-721.
Xue Z, Rajaraman S, Long LR, Antani SK, Thoma GR. Gender Detection from Spine X-ray Images Using Deep Learning. Proc. IEEE International Symposium on Computer-Based Medical Systems (CBMS), Karlstad, Sweden, 2018. pp. 54-58, DOI:10.1109/CBMS.2018.00017.
Sornapudi S, Stanley RJ, Stoecker WV, Almubarak H, Long LR, Antani SK, Thoma GR, Zuna R, Frazier SR. Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels. J Pathol Inform. 2018 Mar 5;9:5. doi: 10.4103/jpi.jpi_74_17. eCollection 2018.
Rajaraman S, Antani SK, Poostchi Mohammadabadi M, Silamut K, Hossain MA, Maude RJ, Jaeger S, Thoma GR. Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ. 2018 Apr 16;6:e4568. doi: 10.7717/peerj.4568. eCollection 2018.
Zohora FT, Antani SK, Santosh KC. Circle-like foreign element detection in chest x-rays using normalized cross-correlation and unsupervised clustering. Proc. SPIE 10574, Medical Imaging 2018: Image Processing, 105741V (2 March 2018); doi: 10.1117/12.2293739; doi.org/10.1117/12.2293739.
Almubarak H, Guo P, Stanley RJ, Long LR, Antani SK, Thoma GR. Algorithm Enhancements for Improvement of Localized Classification of Uterine Cervical Cancer Digital Histology Images. in Handbook of Research on Emerging Perspectives on Healthcare Information Systems and Informatics,. IGI Global (Hershey, PA).
Rajaraman S, Antani SK, Candemir S, Xue Z, Abuya J, Kohli M, Alderson P, Thoma GR. Comparing deep learning models for population screening using chest radiography. Proc. SPIE 10575, Medical Imaging 2018: Computer-Aided Diagnosis, 105751E (27 February 2018).
Xue Z, Jaeger S, Antani SK, Long LR, Karargyris A, Siegelman J, Folio LR, Thoma GR. Localizing tuberculosis in chest radiographs with deep learning. SPIE Medical Imaging 2018

Pages