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ABSTRACT   

Biomedical images are often referenced for clinical decision support (CDS), educational purposes, and research. They 
appear in specialized databases or in biomedical publications and are not meaningfully retrievable using primarily text-
based retrieval systems. The task of automatically finding the images in an article that are most useful for the purpose of 
determining relevance to a clinical situation is quite challenging. An approach is to automatically annotate images 
extracted from scientific publications with respect to their usefulness for CDS. As an important step toward achieving 
the goal, we proposed figure image analysis for localizing pointers (arrows, symbols) to extract regions of interest (ROI) 
that can then be used to obtain meaningful local image content. Content-based image retrieval (CBIR) techniques can 
then associate local image ROIs with identified biomedical concepts in figure captions for improved hybrid (text and 
image) retrieval of biomedical articles. 

In this work we present methods that make robust our previous Markov random field (MRF)-based approach for pointer 
recognition and ROI extraction. These include use of Active Shape Models (ASM) to overcome problems in recognizing 
distorted pointer shapes and a region segmentation method for ROI extraction.  

We measure the performance of our methods on two criteria: (i) effectiveness in recognizing pointers in images, and (ii) 
improved document retrieval through use of extracted ROIs. Evaluation on three test sets shows 87% accuracy in the 
first criterion. Further, the quality of document retrieval using local visual features and text is shown to be better than 
using visual features alone.  
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1. INTRODUCTION  
Biomedical images are frequently used in publications to illustrate the medical concepts or to highlight special cases. 
They are invaluable in establishing diagnosis, acquiring technical skills, and implementing best practices in many areas 
of medicine. Conventional approaches for biomedical journal article retrieval have been text-based with little attention 
devoted to the use of images in the articles. Text-based retrieval uses text information automatically extracted from title, 
abstract, figure captions, and discussions (mention). It provides fairly good results; however, the relevance quality 
sometimes is not satisfactory. Content-based image retrieval (CBIR) also has been applied to biomedical image retrieval 
[1]. However, the retrieval performance is far behind the text-based retrieval due to semantic gap [2]. Low level features 
such as color, textual, and shape used in CBIR are insufficient to represent medical concepts or meaningful diagnostic 
information in the images effectively. 

To improve the relevance quality of conventional retrieval approaches, we have proposed an approach using hybrid (text 
and image) features [3]. Information retrieval (IR) techniques are used to identify key textual features in the title, 
abstract, figure caption, and figure citation (mention) in the article. Structured vocabularies, such as the National Library 
of Medicine’s Unified Medical Language System (UMLS ®) are used as well to identify the biomedical concepts in the 



 
 

 
 

text [4-7]. Unlike conventional CBIR that uses image features from the entire image, our proposed approach uses a 
combination of features computed over the entire image and those computed from specific image regions of interest 
(ROIs). We recognize that authors often use the annotations overlaid on figures and illustrations in the articles in the 
form of pointers or symbols to highlight regions of interest. Recognizing these image annotations may be useful to 
identify specified local regions. These annotations are also often referenced in the figure meta-text (captions, mentions) 
in the article. We hypothesize that correlating biomedical concepts from the figure meta-text with image features 
computed on the image regions identified by the pointers may improve the quality of biomedical document retrieval 
when using both images and text features in the query.  

This article presents our efforts to improve our prior work [3-4] on pointer recognition and ROI extraction to achieve 
better relevance quality in the proposed multimodal biomedical article retrieval. Additional pointer segmentation and 
ROI extraction methods were developed based on region growing method. A new pointer recognizer based on Active 
Shape Model (ASM) was developed to complement our Markov random field (MRF)-based pointer recognizer proposed 
in [3]. Biomedical image retrieval tests utilizing several components we have developed have been performed and some 
initial test results and performance analysis are discussed as well.  

 

2. PRIOR WORK 
We actively participated in the ImageCLEF 20091 medical retrieval track and submitted various retrieval runs based on 
textual, image, and multimodal (combinations of text- and content-based approaches) features [8]. Our group and several 
runs were ranked on top among 17 research groups and over 100 submitted runs for image- and case-based topics [9]. 
Our multimodal relevance feedback and visual-based retrieval approaches were ranked 1st in interactive and visual runs, 
respectively. Our case-based runs also were ranked in 1st and 2nd among all case-based run submissions. Text features 
were extracted from image captions provided in the ImageCLEFmed’09 collection and several automatically extracted 
search areas such as title of the article in which the image appears, the article’s abstract, a brief mention of the image 
from the article’s full text, and the Medical Subject Headings (MeSH terms), which is a controlled vocabulary created by 
NLM to index biomedical articles, assigned to the article. Image feature vectors were obtained from both visual concept-
based feature based on a “bag of concepts” model comprising color and texture patches from local image regions [10] 
and various low-level global features including color, edge, and texture.  

Our previous approach to locating and recognizing pointers in biomedical images proposed a Markov random field 
(MRF)-based recognition scheme to add robustness to our first approach discussed in [4]. 43 labels were defined from 
boundary parts frequently seen in commonly used arrow type pointers overlaid on biomedical images. MRF theory is 
applied to label line segments extracted from a pointer boundary. Dynamic programming (DP) technique was applied to 
the line segment labeling results to select the best label for each line segment and find an optimal configuration for the 
boundary. Hidden Markov model (HMM)-based classifier following the MRF labeling was applied to classify a labeling 
configuration into three pointer classes. Our test results showed that the proposed method can recognize almost all arrow 
type pointers used in biomedical images and is less affected by the large variation in pointer shape. 82% success rate in 
pointer recognition was reported on a pointer image set manually cropped from ImageCLEFmed’09 image set. 

In addition to the pointer recognition test, we performed biomedical image retrieval test utilizing the pointer recognition 
method and local image analysis. Image regions of interest (ROI) indicated by the pointers were localized and image 
features were computed from the ROIs. Two image-based topics from ImageCLEFmed’08 were selected. Initial results 
retrieved by text retrieval were re-ranked based on the comparison results between the ROIs from the images and sample 
ROIs of each topic. We achieved mixed retrieval results, some of which were promising. Several potential solutions to 
improve the quality of retrieval were discussed in [3].  

 

3. METHODS 
Three methods are proposed as solutions to the drawbacks identified in [3]. These are improved pointer segmentation, 
improved pointer recognition, and variable-size ROI extraction. These methods are described in this section. 

                                                 
1 http://imageclef.org 
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3.4 Multimodal biomedical image retrieval 

In our proposed multimodal biomedical image retrieval, we are interested in local image features rather than features 
computed from entire images. Features from image ROIs can be used in various multimodal retrieval scenarios. Text- or 
image-based retrieval results can be re-ranked by comparing ROIs extracted from initial retrieved images with sample 
ROIs. The sample ROIs can be identified by analyzing text query and then retrieved from an image DB or can be a user-
marked ROI if the query includes an image. Then images with pointers and containing similar local regions with the 
query, which are expected to be more relevant, could be ranked on top of the new result.  

For hybrid queries (text and image), utilizing features computed from ROIs could provide better results than using image 
features computed from entire images. Text retrieval is efficient to reduce the search space; however, the results may not 
be satisfactory since it does not use any image features and hence may not find images containing similar contents that 
the user-provided query image has. CBIR by features computed from entire images could retrieve images that look like 
the query image. Those features, however, may be inadequate to represent specific concepts in local regions or concepts 
that users provide by text queries. ROI analysis can be placed between text retrieval and CBIR and may provide useful 
information complementing both text retrieval and CBIR. Specific medical concepts associated with the ROIs when the 
images are annotated also could improve relevance quality. The extracted text concepts from the ROIs in the retrieved 
images can be compared with the concepts extracted from the text query. The initial results could be simply re-ranked by 
the local image features or text concepts. Additional relevant images could be retrieved by another text retrieval using 
the concepts identified through the ROI analysis.  

Multimodal features may be the most potential method to obtain better results over conventional retrievals. Using entire 
images, however, may not be helpful in multimodal retrieval. Results by text- or image-only are expected to be fairly 
relevant to the queries. Features computed from entire images may no longer be able to provide detailed and meaningful 
information for better relevance quality over the initial results due to semantic gap. The pointer and overlay finding 
results is expected to improve the specificity in image retrieval. If a pointer has been detected in an image through the 
use of text clues indicating their presence or directly by the MRF pointer recognizer, the image region pointed to can 
provide greater specificity on the image content. We expect this to significantly improve retrieval quality.  

 

4. EXPERIMENTS 
4.1 Test setup 

We performed biomedical image retrieval test as discussed in [3]. ImageCLEFmed’09 data set was used and three topics 
out of 25 topics were selected based on the number of ground truth relevant images to the topics. The three topics are i) 
Topic 2: Breast cancer mammogram, ii) Topic 12: Radiographic findings of osteomyelitis, and iii) Topic 21: 
Osteoporotic bone. Figure 10 shows sample images relevant to each topic. Two retrieval runs, text and image modes, 
submitted to the competition were selected for the initial text- and image-based retrieval results [9]. The initial results 
were re-ranked by comparing ROIs extracted from images of initial result with sample ROIs for each topic. TRECEVAL 
package [13] was used to analyze and obtain common evaluation measures such as precision and recall.  

    

 

  
 

(a) Topic 2 (b) Topic 12 (c) Topic 21 

Figure 10. Sample relevant images to each topic 

 



 
 

 
 

4.2 Evaluation results 

Through this retrieval test, we evaluated two components in our proposed multimodal retrieval approach; i) pointer 
recognition and ii) retrieval performance using local image features. Table 1 and 2 shows some useful statistics on rate 
of pointer presence in retrieved images and ground truth images of the three topics. Total ret denotes the number of total 
retrieved images by each retrieval mode for each topic and the next three columns (w/ pointer, w/o pointer, and rel-ret)  
show percentages out of the Total ret in each row. rel-ret w/ pointer means images that contain pointers and are relevant 
to the topic among the retrieved images. The numbers show percentages out of  the rel-ret (relevant and retrieved). For 
example, 294 (29%) out of the 1,000 images retrieved for topic 2 were judged relevant and 171 (58%) images among the 
294 rel-ret images were containing pointer(s). From Table 1 we can notice that approximately 60% of retrieved images 
by any retrieval mode have pointers and the other 40% images have no pointers. Similar percentages can be found from 
ground truth of each topic shown in Table 2.  

 

Table 1. Pointer presence rate in retrieved images  

 
Text-based retrieval Image-based retrieval 

Total 
ret 

w/ 
pointer 

w/o 
pointer rel-ret rel-ret  

w/ pointer 
Total 

ret 
w/ 

pointer 
w/o 

pointer rel-ret rel-ret  
w/ pointer 

Topic 2 1,000 58% 42% 29% 58% 1,000 67% 33% 4% 64% 
Topic 12 847 64% 36% 23% 64% 843 59% 41% 4% 46% 
Topic 21 1,000 61% 39% 6% 39% 996 60% 40% 1% 36% 

 

Table 2. Pointer presence rate in ground truth images 
 # of Qrel relevant w/ pointers w/o pointers 

Topic 2 444 53% 47% 
Topic 12 236 60% 40% 
Topic 21 133 44% 56% 

 

Table 3. Pointer recognition performance 

 
Text-based retrieval Image-based retrieval 

Success False 
alarm 

Missed 
detection Success False 

alarm 
Missed 

detection 

Topic 2 82% 10% 8% 89% 2% 9% 

Topic 12 83% 4% 13% 87% 3% 10% 

Topic 21 82% 7% 11% 85% 5% 10% 

 

Table 3 shows pointer recognition evaluation results. Three measures, success, false alarm, and missed detection, are 
considered to evaluate the performance. The success includes images that i) have pointer(s) and algorithm detected all or 
some of them (w/ or w/o some noise pointers) and ii) have no pointers and algorithms detected no pointers. The false 
alarm includes images that have no pointers but algorithm detected some noise pointers. The missed detection counts 
images that have pointer(s) but algorithm detected nothing or some noise pointers. 

Our pointer recognizer is a combination of the MRF and ASM recognizers. The ASM recognizer alone can not achieve 
better recognition performance than the MRF recognizer due to the drawback discussed in Section 3.2. Adding and 
training more pointer models may solve the drawback. However, the processing time increases according to the number 
of pointer models and the increased running time may not be acceptable. 

Average success rates are 82% and 87% for images retrieved by text and image modes, respectively. Most images 
retrieved by image mode have less complicated background than those retrieved by text mode. They have similar texture 



 
 

 
 

and color with the sample images shown in Figure 10 since they are retrieved by CBIR engine. Images similar with the 
sample images have fewer noise boundaries and hence produced lower false alarm rate.  

Figure 11 shows Recall-Precision graph and precision graph after N images retrieved. Only relevant images with 
pointers on the ground truth list were considered as relevant images since we re-rank the initial retrieved result based on 
presence of pointers and ROI analysis. The graphs show that text mode retrieval shows the best performance in all cases. 
Visual+ROI and Visual show very poor performance since the initial retrieval results (by image mode) contained fewer 
relevant images than text mode results.  

Our retrieval tests show some promising results on use of pointer localization and local image analysis for improved 
biomedical image retrieval. Our ultimate goal is to obtain better performance graph than the Text results in the graphs. In 
that case more relevant images with pointers can be ranked on top and hence the relevance quality could be improved.  

To achieve improvement on our initial test, we need to obtain list of relevant images to a certain query topic judged by 
local regions pointed by pointers. The relevant images in this test were selected by observing the entire image, not the 
ROIs, and hence some ROIs may not be relevant to the query topic even though they are extracted from relevant images. 
Another improvement can be made by enhancing pointer recognition performance. Achieving higher success rate is 
necessary to extract more precise ROI.  

 

5. CONCLUSION 
Local image region in biomedical images may have more meaningful information and may be more relevant than other 
region in an image for biomedical image retrieval. Authors frequently use pointers and symbols to highlight specific 
local regions and mention them in figure captions and text discussions. Localizing those pointers can help extract 
specific local regions of interest (ROIs) and using the ROIs could improve relevance quality of conventional retrieval 
approaches by combining textual and image features from local regions.  

In this article we present our research effort to enhance our prior work on pointer recognition and ROI extraction. 
Region growing technique was applied to improve pointer segmentation and ROI extraction performance. Active Shape 
Model (ASM)-based pointer recognizer was developed to handle pointers that can not be recognized by the MRF 
recognizer due to some distortion in their boundary. Average 87% success rate on pointer recognition was achieved.  

This article also presents preliminary retrieval test results. In order to verify effectiveness of our retrieval approach, it is 
necessary to consider several important issues and appropriate evaluation methods, viz., (i) accurate ROI identification 
and extraction, (ii) feature selection for image ROI comparison, (iii) database generation of ground truth ROIs (image 
patches) for query topics identified from text, and (iv) scheme of utilizing local image comparison results to obtain better 
retrieval relevance quality.  

One of interesting future work is identifying ROIs in images that are mentioned in text such as figure captions and 
discussions. Several image features such as color and shape of pointers are available by pointer recognition. More 
specific features are available from text such as size (small, large), location (left, right, etc.), and plurals (single or 
multiple pointers pointing to an ROI). Numerical features of pointers obtained from image (e.g., gray intensity level, 
length of contour boundary, location coordinates, etc.) can be more specific by mapping related text features to them. 
ROIs also could be identified and extracted more accurately by utilizing the text features and image features as well. 
Fixed-size ROI may provide us easy way of extracting and utilizing local image regions in our retrieval approach. 
However, our ultimate goal is to extract and use variable-size ROI since it fits better to desired ROIs. 
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