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Abstract
It is known that users of internet search engines often enter queries with misspellings in one or more
search terms. Several web search engines make suggestions for correcting misspelled words, but the
methods used are proprietary and unpublished to our knowledge. Here we describe the methodology
we have developed to perform spelling correction for the PubMed search engine. Our approach is
based on the noisy channel model for spelling correction and makes use of statistics harvested from
user logs to estimate the probabilities of different types of edits that lead to misspellings. The unique
problems encountered in correcting search engine queries are discussed and our solutions are
outlined.
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INTRODUCTION
A number of studies of search engine queries have observed a high misspelling rate (Nordlie
1999; Spink, Wolfram et al. 2001; Wang, Berry et al. 2003). Wang, et al. (2003) report a
misspelling rate of 26% for words on an academic site. It seems possible that the misspelling
rate on a public site could be even higher. Nordlie (1999) observes that two thirds of initial
requests are unsuccessful in meeting their objective and an NPD survey (2000) finds that 77%
of the time an initially unsuccessful search is modified and tried again on the same site. These
findings suggest the potential benefit of performing some kind of query correction for the user.
Spelling correction is an obvious candidate for this role. We therefore undertook to study how
such a facility could be constructed for the PubMed search engine. PubMed, a service of the
National Library of Medicine, provides access to over 16 million MEDLINE citations back to
1950 and additional life science journals (McEntyre and Lipman 2001).

Spelling correction has been a topic for research for many years and the problem has been
usefully divided into three subtasks (Kukich 1992; Jurafsky and Martin 2000) in increasing
order of difficulty: 1) nonword error detection; 2) isolated-word error correction; and 3)
context-dependent error correction. Each of these tasks is relevant to the problem of spelling
correction in a search engine and each task is subject to some special considerations in that
setting. Nonword error detection has typically been done by comparing a string to the list of
accepted words in some dictionary. In the setting of a search engine the vocabulary potentially
accessible by a search serves the purpose of a dictionary. For the purposes of this paper let us
refer to this vocabulary as the database vocabulary. If a term is not in the database then it can
be assumed to be misspelled for the practical purpose of searching the data. If the term is simply
of low frequency in the database, it may still have a high probability of being a misspelling
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and we may benefit the user by suggesting a higher frequency term as a correction. If the query
is a single word we are dealing with a case of isolated-word error correction. If on the other
hand the query consists of two or more words, the possibility exists that we are dealing with a
useful context that may aid the correction process. However, queries are usually not more than
two or three words (Silverstein and Henzinger 1999) so the context will be at best small and
at worst not helpful. In this situation a strategy must be developed to make use of the context
where it is helpful and to ignore it otherwise. A typical and practical approach to make use of
context in spelling correction is to apply a language model to the genre of text at issue and use
it to enhance the prediction of the corrected string (Church and Gale 1991; Kukich 1992; Brill
and Moore 2000; Jurafsky and Martin 2000). Our approach is similar to a language model in
that when we are presented with a query of more than a single word we attempt to correct to
a phrase that is recognized by the query engine and the frequency of that phrase comes into
play in the process.

Our basic approach is a form of the noisy channel model for spelling correction that is very
similar to the method developed by Church and Gale (1991). The main difference is our
inclusion of a letter of context on either side of a putative correction when computing its
probability. In this we are moving in the direction taken by Brill and Moore (2000) only we
do not allow as much context as their approach. The noisy channel model seeks to evaluate the
expression

arg maxw P(s ∣ w)P(w) (1)

where s represents a string to be corrected and w a potential correction. In our implementation
w runs over the database vocabulary of the search engine and P(w) represents the probability
that a user would have intended to search using the word w. We follow Church and Gale
(1991) in evaluating P(s|w) as the product of the probabilities of the edits required to convert
w into s. One of the difficulties in constructing our correction algorithm has been to obtain
useful context dependent estimates of these edit probabilities. Our solution involves harvesting
the statistics from the search engine logs.

The paper is organized into the following sections:
• Gathering the edit statistics – How we mine edit probabilities from the PubMed

user query logs.
• Basic assumptions of the method – How we interpret the noisy channel model in

the PubMed setting.
• The algorithm: basic functions – Four basic editing functions that are applied to

strings depending on their characteristics.
• The algorithm – How the basic editing functions are combined to process strings of

one, two, or more tokens.
• Cleaning up the PubMed data – How we down grade incorrect spellings in the

PubMed search engine vocabulary using statistical testing.
• Performance issues – Figures describing the current implementation of the algorithm

and its performance.
• Discussion – Successes and failures of the algorithm and how it might be improved.
• Conclusions.

Before we go further just a word about terminology. By the terms “word” or “token” we will
mean the same thing, namely, a string of printable ASCII characters not including any white
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space within the string. The terms “word” or “token” are commonly used interchangeably
(Jurafsky and Martin 2000). Thus “house” is a word or a token and so is “xxxxx” though we
may not usually think of “xxxxx” as a word. We will also use the words “term” and “phrase”
interchangeably to mean a string consisting of one or more words or tokens separated by white
space. Again this is common usage.

GATHERING THE EDIT STATISTICS
While spelling correction has not been the focus, a number of investigators have examined
methods for mining user query logs for web search engines with the objective of making useful
suggestions to improve a user’s query. Beeferman and Berger (2000) cluster queries based on
“click through” data that shows which records a user actually selects. When different queries
result in the same record being clicked that counts for similarity between the queries. Wen, et
al. (2002) use “click through” data as well as a metric on the lexical similarity of two queries
for the same purpose. Such methods can be used to suggest terms from one query to supplement
a query that has been found close to it in “click space”. Leroy, et al. (2003) use the text “clicked
on” rather than the record “clicked to” and mine the words in the text clicked on as a source
to supplement user’s queries. Huang, et al. (2003) mine the pairs of terms that co-occur in a
single user’s session in web logs to discover relationships that may be used to suggest new
terms to add to a user’s query. While none of these studies have our goal of spelling correction
there are yet some similarities of note.

We mine a query log to discover single user sessions containing pairs of terms which we
identify as a query term and its correction. A single user session is defined by a single IP address
and a query term and its correction must occur within 300 seconds of each other. The 300
second threshold has been found useful (Silverstein and Henzinger 1999; Huang, Chien et al.
2003). Data shows that few query pairs separated by more than 300 seconds come from the
same session (Huang, Chien et al. 2003). We mine these pairs of query terms to be used not as
a direct guide to query correction, but to obtain the statistics of edits giving rise to errors. The
method of identifying such pairs depends not only on the same IP address and near concurrency
in time but also on a measure of closeness between query words. For this purpose we use an
edit distance of one, two, or at most three edits. We also insist that if there is more than one
edit, then the different edits occur separated by at least one character so that a proper context
for each edit can be determined and the edit itself is not in question. We justify this based on
the original observation of Damerau (1964) that 80% of spelling errors are produced by a single
edit (deletion, insertion, replacement, or transposition). We make no claim that more complex
edit operations do not occur, but we attempt to approximate them by combinations of single
edits.

Our claim that the data we have collected represents spelling errors is supported by the fact
that if one finds a term in the query logs that is not in the PubMed database and one looks at
terms coming from queries by the same user preceding or following in time and close in lexical
space, one is much more likely to find such terms following than preceding in time. This is
shown by Figure 1 where it is evident that given a query term not in the PubMed database, one
is much more likely to find a potential correction occurring after the term than before it. We
believe the only reasonable explanation for this observation is that this asymmetry indicates
people are constantly performing corrections on erroneous queries in order to obtain hits in the
database. The fact that some correct terms appear before their erroneous counterparts we
attribute to the fact that people not uncommonly type a term correctly and then have to repeat
it and can make a typographical error on the second attempt that was not present on the first
typing. Nevertheless we prefer to trust a correction that follows a query term. Figure 1 is
completely based on query words that are not found in the PubMed database. However, there
is also good evidence that people do not correct only terms that are not in PubMed, but also
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correct terms which are simply seen at low frequency in PubMed data. This is shown in Figure
2. Here we see that over the frequency range from 1 to 100 query terms are at least an order of
magnitude more likely to be followed by a high frequency lexically close term than to be
preceded by such a term. Again the asymmetry argues for the relatedness of such query terms
pairs and that the second term in the pair is present as a correction for the first term.

Our data is the result of collecting such edits as we have described over 63 days worth of
PubMed log files. We have collected approximately 1 million edits as summarized in Table 1.
All multi-edit terms were required to have at least four times as many characters as edits in
order to ensure that edits would truly be corrections. This is in addition to the condition that
corrections have at least ten times the frequency in PubMed as the terms they are assumed to
correct.

The data collected was collected with a single letter of context on either side of the edit. Both
the beginning and the ending of a word were marked with special characters so that they could
also function as context and make the correction process specific for the beginning and ending
of words, respectively. One will notice that our data suggests that 87% of all misspelled words
are the result of a single edit error. This is somewhat higher than the figure of 80% observed
by Damerau (1964) but is consistent with our requirement that multiple errant edits occur with
a letter of context separating them. This naturally reduces the number of higher order mistakes
seen.

BASIC ASSUMPTIONS OF THE METHOD
In order to evaluate the expression (1) we must not only have information about the likelihood
of edits. We must also be able to make estimates of the prior probabilities P(w). These are the
probabilities that the various words appearing in the PubMed database will be intended as query
terms by users. We have examined the terms occurring in the PubMed database and we have
found that they are used as query terms in direct proportion to their frequencies in the database.
This is shown in Figure 3 where the straight line indicates a direct proportionality. The line is
somewhat noisy at high frequencies due to sparse data and it makes a small bend at low
frequencies indicating that at the very lowest frequencies fewer terms are used in queries. We
would expect this bend due to the fact that the millions of very low frequency terms tend to be
unknown to most users. Thus we can use the database frequency of a term as a surrogate for
the probability that that term would be intended as a query term input by a user provided we
discount the value at low frequencies. In fact our discounting at low frequencies is sharper than
the bend in the curve of Figure 3 because at those low frequencies much of what users input
is a misspelling and not what they intended. We discount by the formula

f ′ = f ∗ 100.075∗( f −80), f < 80 (2)

where f is the original database frequency and f′ the discounted frequency. Thus our first basic
assumption is that we can let the database frequency of a term stand in the place of P(w) in (1)
provided we apply the discounting given by (2).

Our second basic assumption is that people make spelling errors at a higher rate when
composing queries than they do when composing text for the PubMed database. This is
supported by the data quoted in the introduction on the rate of spelling errors in search engine
queries (as high as 26%) when compared with data on spelling error rates in printed text of less
than 5% (Kukich 1992). Printed text such as appears in PubMed is generally subject to an
editorial process and automatic spell checking will have been applied as well in many cases.
Further, printed text is often the product of more than one author’s efforts and may be expected
to have less spelling errors for that reason. Thus we believe our assumption is not unreasonable.
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We use this assumption to decide when to correct a word that already appears in the database.
Suppose s is a word that appears in the database and w is the word determined by evaluating
the expression (1) for s. Then to decide whether we should suggest w as a correction for s we
ask whether the inequality

P(s) < P(s ∣ w)P(w) (3)

is satisfied. If s is primarily a misspelling of w, we might expect an equality in (3) provided P
(s|w) is estimated based on the error rates prevailing in the PubMed database. In that case when
we estimate P(s|w) based on the higher error rates gleaned from the user logs we expect the
inequality (3) to be satisfied. If it is we take this as some evidence that s is likely a misspelling
of w. Of course just the inequality (3) alone gives a justification for suggesting w as a correction
for s because the left side of the inequality is the probability that the user would intend s as the
query term and the right side is the probability that the user would have intended w as the query
term, but by introducing errors would have produced s. In the actual application of (3) we
substitute the database frequencies of s and w for the probabilities of P(s) and P(w) and we use
the discounting in (2) where appropriate.

In order to apply the formulas (1) and (3) we must also estimate the probability, P(s|w), that
while trying to produce w, errors are introduced that actually produce s We generally follow
the “maximum probability alignment” or “minimum edit distance” method as described in
Jurafsky and Martin (2000). We estimate P(s|w) as the product of the probabilities of a sequence
of edits which will produce s from w. Since there is often more than one such sequence we
take the sequence that yields the highest probability as our estimate for P(s|w).

THE ALGORITHM: BASIC FUNCTIONS
Here we begin the description of the algorithm by describing how spelling correction is handled
at the most basic level. Our objective is to offer a correction only if we can do so with an
assurance of being correct in our offering at least 70% of the time. This requirement influences
to some extent how the basic functions are constructed. Assume s is a string to be corrected.

OneEdit
We estimate P(s) and P(s|w)P(w) over all the w in the database that are within one edit of s.
This is done by using database frequencies (with discounting as appropriate) and edit
probabilities and then normalizing the resulting estimated figures to sum to one. Let c denote
the term with the largest estimated probability and let Pc denote that probability. If either Pc
>0.7 or P(s) <0.05 accept c as a correction. Otherwise offer no correction. The justification for
offering c as the correction when P(s) <0.05 is that in that case we can reject at the 5% level
the hypothesis that s is what the user intended and we had as well give our best guess as a
correction. Thus our strategy is to offer a correction if we are quite certain we are correct and
also when we are quite certain the input string was not intended, even though in the latter case
we may be much less certain that the correction is the right one.

TwoEdit
We estimate P(s|w)P(w) over all w in the database that are two edits away from s. If there are
such strings we return the most probable one as the accepted correction. Otherwise no
correction is offered.

RecursiveEdit
If we tried to produce a correction with two edits and failed, we would have produced an
alignment of an initial segment of s with an initial segment of a word w in the database involving
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two edits. We can rate such attempts by how many of the letters in s they use. We let m denote
the maximum rating obtained by any such partial alignment. We then ask for that partial
alignment that gets the rating m and also has the highest probability among all such partial
alignments rated m. We call this the best partial alignment. We can then repeat this procedure
each time beginning with the best partial alignment produced on the previous iteration. If we
require the algorithm to make some advancement along the string s at each stage and
discontinue the process if it fails at any point, we then obtain an algorithm that will either
produce a complete alignment or end without producing any alignment with only a few
iterations. If the algorithm does terminate with a suggestion we require that the result pass a
test of similarity to s which we term a sanity check (see below). If it does it is accepted as a
correction. Otherwise no correction is offered.

StringSplit
We attempt to introduce a space at some point in the string to convert it to two words. If the
resulting words are both found in the database it becomes a candidate split for the string with
a rating equal to the lesser of the database frequencies of the two words produced by the split.
If there is a split the highest rated split may be offered as a correction. It is generally required
to have a rating above some lower limit in order to be accepted. If it does the split is offered
as a correction. Otherwise no correction is offered.

If a word such as “phosphatase” is divided by the erroneous introduction of a space internally
as in “phosp hatase” this can be corrected by a single edit operation which deletes the extra
space. Thus no special mechanism for correction is required beyond the OneEdit, TwoEdit, or
RecursiveEdit functions described above. However, if two words are accidently run together
as in “venombite”, then edit operations may not suffice because the string “venom bite” does
not occur among the strings being searched for a correction. It is for this reason that StringSplit
is needed.

In addition to the basic functions just given we also use two types of checks to be sure a string
has not been altered too much in the correction process. We call these sanity checks.

Sanity1
This check compares the first three characters of s and a putative correction. If in comparing
the characters at position 0, the characters at position 1, and the characters at position 2 there
is at most one difference between the strings then the correction passes this test.

Sanity2
This test is a more extensive test in which a point is counted if a character is replaced, a point
is counted if one or two characters in a row are either inserted or deleted, but transpositions
are assigned zero cost. One then compares a string s and a putative correction by comparing
the first word in each, the second word in each, etc. The test is passed if in any such comparison
one sees a cost of transformation that does not exceed two points for each pair of words
compared.

Estimating regions of success
While the edit functions OneEdit, TwoEdit, and RecursiveEdit suffice to make corrections in
strings, they are not equally successful on strings of any length. As a rule the shorter the string
the more difficult it is to correct. There are two reasons for this. First, a shorter string has less
useful context surrounding the errors by which to identify the intended string. Second, the space
of all strings is much more densely populated in the region of shorter strings (Kukich 1992).
This problem of a densely populated space is clearly an issue in the PubMed database where
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there are very many strings arising as abbreviations. Because of this issue we examined the
performance of the edit functions by a simulation. Single words were sampled randomly from
the database with a probability proportional to their frequency in the database. Once a word
was sampled either one, two, or three edits were introduced randomly into the word using the
context specific edit probabilities that we collected from the user logs. An attempt was then
made to correct the spelling error using the edit functions. We compiled the data into tables
giving the detailed results for the different numbers of edits and specific to the length of the
string that the algorithms were given to correct. The results are contained in Table 2-Table 4.
The data in Table 2 shows that it is very difficult to correct really short strings. Based on this
data we do not attempt to correct single words of length less than five or six. Likewise Table
3 suggests one needs a string of about length nine to reliably correct two edits and in the same
way Table 4 suggests a string of approximately length twelve is needed to reliably correct three
edits. Similar data can be simulated for two word phrases. We have made use of such data in
constructing our algorithm.

THE ALGORITHM
A trie is a tree structure which can hold many individual strings and given any new string the
trie allows for very efficient testing to see whether this new string is one of those stored in the
trie (Sedgewick 1998). In order to efficiently search for the best correction for a query string
s as required in expression (1), we use a trie structure (Kukich 1992; Brill and Moore 2000).
All the database terms to be searched are loaded into this trie. Then, as pointed out by Hall and
Dowling (1980), there are two basic approaches available. One can generate all the strings
which are close (within say one or two edits) of the string s and see which are in the trie. Or
one can attempt to search the trie directly with the string s making corrections as needed to
produce a match. The problem with generating all the strings that are close to s in edit space
is that one will generate many nonsense strings that are of no interest and must then search
each of these to see if it is in the database. We prefer the direct search of the trie for its efficiency.
For example, if one traces a match of the first k letters of s into the trie and cannot extend this
match to the k + 1 st letter, then one can conclude there must be an error in the first k + 1
characters of s. Further one does not have to examine all possible edits, but only those that will
extend a match into the trie. This results in a significant savings in time without overlooking
any possible matching string in the trie.

Because we must correct errors in phrases of variable length we actually use three different
tries in the algorithm. First, we construct a trie, Tr123, of all the phrases consisting of one, two,
or three tokens that are recognized by the search engine. If the query string s consists of one
or two tokens we search for a correction in Tr123. This allows a correction to have more or
less tokens than the query. For example the query “apop tosis”, mistakenly broken into two
tokens, will yield the correction “apoptosis” consisting of one token and the query “bcell
lymphoma”, mistakenly run together to form two tokens, will yield the three token correction
“b cell lymphoma”. If the query string s consists of three or more tokens we search for the
phrase, s′, consisting of its first two tokens in a trie, Tr2p. Tr2p is a trie containing all the one
or two token phrases that are the initial one or two tokens of phrases of three or more tokens
and that are recognized by the search engine. If we find a match, even a correction, we attempt
to extend this correction in the trie, Tr3+, which consists of all the phrases consisting of three
or more tokens that are recognized by the search engine. For example the system makes no
correction to the query “doman” (a persons name), but given the query “dna binding doman”
it first checks that “dna binding” occurs in Tr2p and then extends this to the correction “dna
binding domain” in Tr3+. In this way we avoid attempting a very long match, which would be
costly in time, unless we have some evidence that a long match is possible based on the initial
part of s. If the initial match of s′ into Tr2p fails we seek a match of s′ into Tr123, etc. Thus
the algorithm is organized around the number of tokens contained in the search string s.
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We proceed to give pseudocode for the different cases or numbers of tokens in a string. In what
follows we will let l(s) denote the length in characters and f(s) denote the database frequency
for any string s. Any string not in the search engine vocabulary is counted as having a database
frequency of zero. Note that we use the word RETURN to signal the end of a calculation with
the module either giving back a suggested correction or not, but in either case all lines following
the RETURN to the end of the module are ignored. We have also used the word “Stage” to
mark different parts of the algorithm for readability and there is some correlation in the expense
of the calculations with higher stage numbers correlating with the more expensive
computations.

SingleTokenModule {

Stage 1

IF l(s) < 5 THEN RETURN without a correction.

IF f(s) > 1000 THEN RETURN without a correction.

ELSE CALL OneEdit for s.

IF s is not within one edit of any string in the database THEN set R=0.

ELSE IF OneEdit finds a correction c THEN set R=1.

ELSE set R=2.

Stage 2

IF R = 0 and l(s) ≥ 9 THEN

CALL StringSplit

If StringSplit produces two strings c and c′ with f(c) ≥ 500 and f(c′) ≥ 500 THEN
RETURN c and c′ as the correction.

CALL TwoEdit for s.

IF TwoEdit produces a correction THEN RETURN this as the correction.

ELSE IF R=1 and l(c) ≥ 5 THEN CALL OneEdit for c.

IF OneEdit succeeds change c to represent the new string it produces (and leave R=1).

Stage 3

IF R = 1

IF l(s) ≥ 9 and f(c) < 80 THEN CALL TwoEdit for c.

IF TwoEdit gives a correction c′ and f(c′)>80 and f(c′)>10 f(c)and Sanity1 is passed
THEN RETURN c′ as the correction.

RETURN c as the correction.

IF R = 2

IF l(s) ≥ 9 and f(s) < 80 THEN CALL TwoEdit for s

IF TwoEdit gives a correction c and f(c) >80 and f(c) >10 f(s) and Sanity1 is passed
THEN RETURN c as the correction.

RETURN without a correction.
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Stage 4

IF l(s) ≥ 12 THEN CALL RecursiveEdit for s.

IF RecursiveEdit gives a correction c and it passes Sanity2

THEN RETURN c as the correction.

CALL StringSplit.

IF StringSplit gives a split c and c′ with f(c) >0 and f(c′)>0

THEN RETURN c and c′ as the correction.

RETURN without a correction.

}

As an example suppose the query string is “ribonflaven”. Then because this string has a length
greater than 5 and does not occur in the database the SingleTokenModule will attempt a
correction. In Stage 1, OneEdit is called and produces the correction “ribonflavin” which occurs
1 time in the database. In Stage 2 another OneEdit is tried on the correction and produces
“riboflavin” which occurs 7380 times in the database. In Stage 3, because of its high frequency
in the database, “riboflavin” is returned as the correction. This example illustrates two of the
guiding principles in designing the spell checking algorithm. First, small changes in a query
string are always preferred over large changes. Second, changes that produce a word found in
the data are always more believable than changes of comparable magnitude that do not. Here
one edit gets us from the string “ribonflaven” to the string “ribonflavin” which appears in the
data and so has the plausibility of being at worst a misspelling of something in the database.
Then one more edit gets “ribonflavin” to the high frequency string “riboflavin”. This chain of
two small changes has more evidence in its support than simply asking for the results of
TwoEdit. In general decisions are made based on the plausibility of the results where we gauge
plausibility by:

A. Smaller changes are more plausible.

B. Changes that produce a string in the database are more plausible than changes of the
same magnitude that do not.

C. Changes that produce a string of high frequency in the database are preferred over
those of similar magnitude that do not.

The SingleTokenModule follows these principles as it descends through stages looking for the
most plausible solution first, but trying successively less plausible methods until either a
solution is found or the attempt fails to produce a correction. All the different methods of
correction are present because we actually found them necessary in certain cases. There are
certain constants in SingleTokenModule (and in the other modules) that were chosen because
they gave reasonable results in trials. They were chosen empirically and no formal evaluation
has been done. We will return to this issue below.

All the searching in SingleTokenModule is done in the Tr123 trie. The same is true for the
TwoTokenModule we are about to describe. When we are given a two word query a new
element is introduced into the problem. That is the issue of context. It is possible that one of
the words is correct and can be used as context to more effectively correct the other. On the
other hand the two words need not be closely related as would occur in a meaningful phrase.
Thus we must have a strategy which tells us when to attempt to use context and when to avoid
it. This strategy is an important part of the overall plan for multi-word correction. In the
following pseudocode we will let the two token query be denoted by s_t where s and t are the
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individual tokens. In what follows we will make use of the basic edit functions defined in the
previous section. However there are some constraints that we have found useful that apply to
the editing of s and t regardless of l(s_t).

Constraint1
If the length of a token is less then three do not edit it. Assume it is correct.

Constraint2
If the length of a token is less then seven make at most one edit in it.

These constraints apply to a given token regardless of the length of the other token in the phrase.
We believe that tokens of one or two characters are unlikely to be misspelled and we use them
as fixed points by which to guide the correction process.

TwoTokenModule {

Stage 1

IF l(s_t)<7 THEN RETURN without correction.

Set fm = min(f(s), f(t)).

IF f(s_t)>5 and fm >500 THEN RETURN without correction.

IF f(s_t)>0 and fm >50 and either l(s) ≤ 4 or l(t) ≤ 4

THEN RETURN without a correction.

Stage 2

CALL OneEdit for s_t and set R=0.

IF OneEdit gives a correction c THEN set R=1.

IF R=1 THEN CALL OneEdit for c.

IF OneEdit gives a correction c′ THEN set c = c′

IF R=0 THEN CALL TwoEdit for s_t.

IF TwoEdit gives a correction c THEN set R=1.

IF R=0 and fm ≥ 100 THEN CALL SingleTokenModule for each of s and t separately and
RETURN the result.

ELSE IF R=1 and f(c) ≥ fm THEN RETURN c as the correction.

Stage 3

CALL StringSplit for s_t

IF StringSplit produces strings s′ and t′ with f(s′)>500 and f(t′)>500 THEN

RETURN s′ and t′ as the correction.

IF l(s_t)>20 and either fm = 0 or both l(s) ≥ 7 and l(t) ≥ 7 THEN

CALL RecursiveEdit for s_t

IF RecursiveEdit gives a correction c that passes Sanity2 THEN
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RETURN c as the correction.

CALL SingleTokenModule for each of s and t separately and RETURN the result.

}

As an example of the action of TwoTokenModule consider the query string “gammg globulin”.
This string only occurs 1 time in the database and because “gammg” only occurs 2 times in
the database “gammg globulin” gets by Stage 1 in the processing and is a candidate for
correction. OneEdit produces the correction “gamma globulin” and a repeat call to OneEdit
produces no improvement so that this is accepted as the final correction. Because the string
went from a frequency of 2 by a single edit to a final frequency of 15,568 the correction has
high plausibility. Now consider the query string “academic attitude”. This phrase does not
occur in the database, so it passes through Stage 1 and becomes a candidate for correction as
a phrase. However, the only correction that is found is the string “academic aptitude”, which
occurs 30 times in the database. Because of the low frequency of this phrase it is not accepted
as a correction. We take frequency as a measure of plausibility and “academic” occurs 52,629
times and “attitude” 144,536 times in the database. We will state this as one final principle of
plausibility in making corrections.

D) Most errors in typing phrases produce as least one word that is of lower frequency than
the phrase that was intended. Therefore a phrase correction is only plausible when it is of
higher frequency than at least one of the words in the initial query string.

The pseudocode for SingleTokenModule and TwoTokenModule gives a detailed view of how
we handle one and two token strings. Finally, we shall give a somewhat abbreviated description
of how we handle strings with three or more tokens. Let s_t_u denote such a string where u is
allowed to stand for possibly more than one token. We follow a number of steps:

I. We see if s_t occurs in Tr2p. If it does not we search for a correction for s_t in Tr2p.
The search is the same as the search in TwoTokenModule except at stage three we
only allow the RecursiveEdit as an option and we only require l(s_t)>20 to apply it.
StringSplit and applying the SingleTokenModule twice are not options at this point
because their success would prematurely rule out other options that are preferred. The
weaker condition for application of RecursiveEdit is used because the result will not
be final until a longer match (with more context) is obtained.

II. If in I we find s_t or a correction for s_t in Tr2p then we attempt to extend this initial
match to a match of s_t_u in Tr3+. For this extension we use a form of the
RecursiveEdit. If this produces a match which passes Sanity2 we accept this as the
correction for s_t_u and are done. If it does not produce a match we attempt to back
down the solution trie to find a match into Tr3+ that does not involve all of s_ t_u and
passes Sanity2. If this can be done an alignment of the correction is done with the
original query string to determine what part of the string remains to be corrected. We
then accept the partial correction and call the process recursively to correct the
remaining string.

III. If I finds a match or correction c in Tr2p, but II fails to yield a match into Tr3+ and
if c consists of a single token we attempt to extend this to a match in Tr123. If this
succeeds and the match passes Sanity2 we accept it as a correction and again must
deal with finding any remaining string to match just as in II.

IV. If not even a partial solution is reached in I-III, then we attempt to find a correction
for s_t in Tr123. This is done by basically applying TwoTokenModule, again with
minor modifications. The modifications are two. First, in stage 2 with a high frequency
limit and then again in stage 3 with a lower limit an attempt is made with StringSplit
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to split s_t. If this is successful the first part of the split is accepted as a part of the
correction and the process is called recursively on the second part of the split and any
remaining tokens beyond. Second, if all else fails then SingleTokenModule is called
for s only and the result is accepted as a partial correction (or possibly no correction)
and the process is called recursively to correct t _ u.

With an example we illustrate the importance of context when there are three or more tokens.
Consider the query string “amytrophic laterl slersos”. The first two tokens are first corrected
to “amyotrophic lateral” and then the system attempts to extend this by correcting “slersos”.
This last string “slersos” has only seven characters and three errors would ordinarily make it
difficult to correct, but here there are few strings that begin with “amyotrophic lateral” other
than the correct one and so the system easily corrects “slersos” to “sclerosis”. Because of initial
tokens which provide context we are able to relax the constraints (Constraint1 and Constraint2)
in the extension process.

As a final comment on the construction of the algorithm we note that in OneTokenModule and
TwoTokenModule and less visibly in the processing of query strings of three or more tokens,
there are a number of parameters. These parameters were chosen empirically by observing the
functioning of the algorithm on querys coming in to the PubMed search engine and making
adjustments. We make no claims that the choices incorporated here are optimal. In fact one of
the difficult issues is to determine what optimal should mean in a setting of this kind. One
might assume a criterion of maximizing the number of reasonable spelling suggestions made.
On the other hand the ultimate goal is to please the users and optimally facilitate their search.
From that point of view there is some cost for making incorrect or even ridiculous suggestions.
If users do not have faith in the reasonableness of the suggestions they may be less inclined to
use them. Our approach has been somewhat conservative in trying to avoid high risk
suggestions and to achieve a high accuracy rate rather than an overall maximum number of
reasonable suggestions with a lower accuracy rate. In other words we have been more
concerned about precision than recall.

This completes our description of the algorithm.

CLEANING UP THE PUBMED DATA
Generally the misspelled words in the PubMed database are low frequency and it is this property
that allows spell correction to operate based on the vocabulary of the database. However, there
are some terms that are misspelled or at least not optimal as query terms that are relatively high
frequency in PubMed. Because of this we undertook to try to deal with this problem. We
examined all the one and two word phrases that occurred in at least a threshold number of
documents in PubMed and that also were one edit from another term in PubMed that had a
database frequency at least ten times as great. We made the assumption that if two such terms
had a significant tendency to occur in the same context then the lower frequency member of
the pair was a misspelling or at least a non-optimal version of the higher frequency term. For
single token terms we used a low frequency threshold of 20. For two token terms, which are
less common, we used a low frequency threshold of 9. The important consideration in choosing
the low frequency threshold is to simply have enough data to allow the computation of a reliable
statistic. We found it useful to handle the single token and the two token cases somewhat
differently also in how they were tested.

Single token
Assume that a pair of terms one edit apart are represented by T1 and T2. Then we apply a test
based on the hypergeometric distribution (Larson 1982). The situation is illustrated in Figure
4. We compute the p-value that the two terms would co-occur in the number of documents they
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are observed to co-occur in or more, if the two terms were only random in their relationship to
each other. We found 62,720 pairs in the database that satisfied the frequency requirements
and were one edit apart. When the hypergeometric test just described was applied the result
was 10,922 single token pairs that were related with a p- value less then 0.01. This means that
we can expect 99% of these term pairs to be significantly related. A sample of such pairs is
shown in Table 5. In the majority of cases the low frequency member of a pair is a misspelling.
In some cases it is simply a non-optimal query term because there is a much higher frequency
term with essentially the same meaning for search purposes.

Two tokens
In this case we found 11,762 pairs of two token phrases that satisfied the frequency
requirements. We first applied the hypergeometric significance test just as for the single token
case. This resulted in the identification of 1,836 pairs that were significantly related. If the
hypergeometric test failed to indicate significance at the 0.01 level, we then applied a more
stringent test. The constructions involved are depicted in Figure 5 where we have depicted the
case of the pair of phrases “myocardial infraction” and “myocardial infarction”. These two
phrases differ only in their second words and we have used the common first word “myocardial”
to define the context or set of documents of interest.

Within this set the set of documents containing the misspelling “myocardial infraction”
corresponds to the rectangle and the set containing the correct phrase “myocardial infarction”
corresponds to the ellipse. We randomly sampled three sets: B1 from documents containing
the misspelled phrase, G from documents that contain the correct phrase but not the misspelled
phrase, and B2 from documents containing neither phrase but containing the word
“myocardial”. Each of these sets consisted of a thousand randomly selected documents if that
many fell into the category being sampled. If the set of documents available was smaller than
one thousand the whole set was taken as the sample. The sampling was used to place a limit
on the amount of computation necessary for any phrase pair to be evaluated. We then applied
Naïve Bayesian learning to learn the difference between G and B1 ∪ B2. With the weights
obtained in this way we scored all the documents in B1 ∪ B2 and arranged them in order of
decreasing score. We then applied the Wilcoxon-Mann-Whitney test to see if the sum of the
ranks of the members of B1 was less than would be expected. This would mean the members
of B1 were higher scoring than expected or put another way were more similar to the members
of G than were the members of B2. We applied this test to the 9,926 pairs that remained after
the 1,836 pairs found by the hypergeometric test were removed. As a result we identified an
additional 5,628 phrase pairs that were significant at the 0.01 level. A sample of the phrase
pairs found in this way is given in Table 6.

The 10,922 single token pairs and the 7,464 two token pairs are not removed completely from
consideration. Rather they have their frequencies reduced to one for the purposes of the
computations involving expressions (1) and (2). Thus they are much more likely not to be
chosen as a correction for a query. However, they remain as possible intermediate steps in a
sequence of operations leading to a correction. If they do appear as such an intermediate the
chances have been enhanced that the final correction will be the high frequency term they were
found to be related to in the statistical testing just described.

One may ask why we did not use the WMW test for the single token phrase pairs. The reason
is that we found many false positives when we tried to use it. Our attempt involved a picture
similar to Figure 5. However, we had no contextual word like the word “myocardial” in that
picture to focus the computation. We therefore sampled B2 from the whole remainder of
PubMed data outside those documents that included one of the tokens of interest. Then if the
low frequency token in the pair was not a misspelling the sample B1 would be from a
meaningful topic that was quite unrelated to G. The result was the documents in B1 could be
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quite consistently more related or less related to G than the general random sample B2. If more
related the statistical test could be easily satisfied at the 0.01 level and still there not really be
a meaningful relationship between B1 and G. Thus we abandoned the effort. Perhaps some
refinement of the test could be used in this way. If so, it could prove quite useful because one
cannot expect the hypergeometric test to work in all important cases. This is true because when
a misspelling does appear in a document it may be a consistent error and the correctly spelled
term may not appear. In such cases a context based test like the WMW test we used has a much
better chance to detect the error.

PERFORMANCE ISSUES
For the PubMed database the tries used in the spelling correction algorithm currently involve
14,267,366 one, two, and three token strings in Tr123; 2,775,111 strings of three or more tokens
in Tr3+; and 1,772,383 initial segments of strings from Tr3+ in Tr2p. On a normal work day
the PubMed query engine receives roughly 3 million user queries and this generates well over
3 million queries to the spell checking algorithm. This is because many queries are complex
and involve parsing of punctuation and Boolean operators with the result that multiple
fragments are produced and checked for spelling. The spell checking algorithm actually
suggests corrections for about 10% of user queries, but any suggestion that is produced is
checked to see if it posts (if it retrieves some documents in the database). Any correction that
does not post is ignored. The result is that a suggested correction is made to the user on about
7% of user queries. When we first began making suggestions to users, they were accepted by
the user 36% of the time. After approximately six months users were accepting suggestions at
a 40% rate. Now after approximately a year since deployment, on the most recent Monday
there were 3,275,624 queries to the PubMed search engine and 243,853 PubMed spell
suggestions were made to 80,785 unique IPs and 109,526 (45%) of spell suggestions were
clicked from 45,285 unique IPs.

A small set of user queries, 1,323, were examined and 110 of these had suggestions made by
the spell checking algorithm. Of the 110 corrections offered 96 were judged by two judges
(consulting together) to be good and 14 bad. This is an 87% success rate with a 95% confidence
interval of (81%,92%). This is well above the target figure of 70% correct at which we had
aimed and we believe part of the reason for this is that suggested corrections that do not post
are ignored by the system.

Currently the spell checking algorithm is running on six Dual Intel Xeon 3.6 GHz machines
each having 6 GB of RAM. It is written in C++ and is running under linux in 64 bit mode. Its
use has added, on average, about 25% to the response time of the PubMed query engine, but
as a practical matter it adds very little to the response time of correctly spelled queries. The
spell checking algorithm is implemented on six servers because it is now being used for query
correction on fourteen different NCBI databases of which PubMed is simply the largest.

DISCUSSION
Table 7 gives examples of corrections that the algorithm is capable of making. These examples
are chosen because they illustrate the effect of context and some of the extremes of pathology,
not because the misspellings are typical. Of course not all the suggested corrections fair so well
and it is of some interest to see the kinds of errors that are made. We examined just a little over
500 suggestions made by the spell checker that were not accepted by users and found what we
thought were the most glaring mistakes. They are contained in Table 8.

One may note that five of the seven occur in phrases in which two or more edits have been
attempted. The fact that “Sapna Baht”, a persons name, is two edits from the phrase “sauna
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bath” is just a coincidence that is not common. The problem with “periostin” is a result of the
phrase “periods in” which should not have been accepted into the search engine’s vocabulary.

The problems with “Daniel K E” and “stem cell ros” are a consequence that we do not enforce
Constraint1 and Constraint2, respectively, when the phrase has more than two tokens. The
algorithm might benefit in terms of accuracy if we did, but would be more complicated. For
both “bisexual molest” and “pancreas & transplation” the available context is not used. This
is because neither corrects to a phrase in the system. Rather “transplation” and “molest” are
corrected in isolation. Of course “molest” is correctly spelled, but it only occurs 23 times in
PubMed documents while “modest” occurs over 28 thousand times. One can see that “molest”
is more reasonable than “modest” because of the other part of the query, however, currently
the system only uses context if it is part of a valid phrase in the system. Finally, there is the
case of “cupper hair”. Here the word “cupper” occurs ten times in PubMed (at the time of this
writing and not counting the author field). Once it is a person’s name and the other nine times
it is a misspelling of “copper”. The algorithm would correct “cupper” to “copper” (over 53
thousand occurrences) except it prefers phrase corrections where context can more effectively
guide the process. This time, however, it produces a mistake. The user may well have been
interested in Menke’s disease which is caused by intestinal malabsorption of copper and is
characterized by kinky hair (which is colorless). Unfortunately “copper hair” is not a
characteristic of Menke’s disease nor does the phrase even occur in the PubMed database.

One may ask how our spelling correction accuracy compares with that of others who have used
the noisy channel model. Church and Gale (1991) quote an accuracy of 87% in correction of
a set of 332 misspellings identified by the Unix spell utility and whose correction was agreed
upon by at least two of three human judges. All of these misspellings were characterized by
having exactly two possible one edit corrections in a word list compiled by the investigators
from standard sources. When the spelling correction model was augmented with contextual
information through a language model they obtained an improvement to 89.5%. Here we can
say that our accuracy figure is similar to theirs though there are many questions regarding how
comparable the testing is. First, we do not use a language model but something less, though
context is not completely ignored in our process. Second, they limited their process to single
edits whereas we allowed multiple edits. Finally, they limited their testing to correction where
there were only two options as answers and this would seem to enhance their accuracy. Thus
it is difficult to draw conclusions from such a comparison.

A second version of the noisy channel model for spelling correction has been put forward by
Brill and Moore (2000). They employ a more sophisticated model of edits in which a single
edit can make a multi-character correction. They also invoke a wider context than the single
character preceding a correction used by Church and Gale or the single character on either side
which we use. They studied a 10,000 word corpus of common English spelling errors paired
with their correct spellings. They trained on a subset of 8,000 of these and tested their system
on the remaining 2,000. In the testing process they used a dictionary of 200,000 entries which
included all words in the test set. They found an accuracy of 95% without a language model.
In order to evaluate the effect of a language model they computed corrections for the same test
words as they occurred in context in the Brown Corpus. This led to an accuracy figure of 95%
and a corresponding figure of 93.9% without the language model (because results are computed
per token instead of per type). Since our correction accuracy is computed per token also, it is
these latter figures that are most comparable. They used a context of 3 characters on either side
of an edit as context to obtain this result. Here their performance figures are better than ours.
But one must ask how dealing with only the most common errors in English would affect their
performance. Comparably, we deal with the full range of errors that occur possibly involving
multiple tokens, though the most common errors will have the biggest effect on our accuracy.
Another factor involved here is the size of the dictionary used in the correction process. In our
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case the number of unique tokens is over 2.5 million, while Brill and Moore use a word list of
200,000. Thus our dictionary is more than an order of magnitude larger than theirs. As long as
the dictionary contains the correct answers, the smaller the dictionary the easier the correction
process. The fewer the number of correct answers the less dense they are packed (Kukich
1992) and the less likelihood that different dictionary entries will compete to provide the
correction for a misspelled string.

Because of the differences in how context can be used in a search engine query as opposed to
natural language text and because of the differences in the size of the dictionary it is not easy
to draw clear conclusions from these comparisons. One thing that does seem of interest is the
wider context within a string that Brill and Moore use to condition an edit. They found an
improvement of about 2% in accuracy in using a window of three characters on either side of
an edit instead of a window of only one character on either side. This suggests that we might
see a similar improvement if our algorithm used a wider context. What we do not know is how
such a change would affect the speed of the algorithm. This issue bears further investigation.

Another possible avenue for improvement of the algorithm is some form of phonetic correction.
It is recognized that most misspellings (approximately 80%) are single edit errors where an
edit is understood in Damerau’s sense (Damerau 1964) of an insertion of a letter, a deletion of
a letter, a replacement of a letter, or a transposition of two adjacent letters. However, phonetic
errors often involve more letters and are more difficult to correct (Kukich 1992). Zobel and
Dart (1995) compared Soundex and Phonix (Gadd 1990) with edit distance based methods and
concluded that the phonetic based methods were inferior to the edit distance approach in finding
good matches for strings in a large lexicon. We examined the Metaphone (Philips 1990)
algorithm and attempted to use it to correct misspellings in simulations where errors were
generated as in Table 2–Table 4. In all cases we found the results inferior to what we were able
to produce using the noisy channel model and expressions (1) and (2). In our experience
phonetic correction works well in some cases, but in others it identifies strings as similar that
should not be identified or fails to make such an identification when we would want it to. For
example Zobel and Dart point out that “mad” and “not” encode to the same string under
Soundex and Phonix. Likewise we note that using Metaphone “phalanges” encodes to “flnjs”
while “hpalanges” encodes to “hplnjs”. Thus a single edit error can become magnified under
the encoding. Another question to ask in this setting is how many spelling mistakes occur in
PubMed queries that are not correctable with one or two edits. This is relevant because our
algorithm already works quite well on errors consisting of one or two edits. To examine this
question we processed the same 63 days worth of PubMed user log files from which we
obtained our edit probabilities and in a similar processing collected all the single token pairs
where the first member of the pair was not within two edits of any string in the PubMed database
but the second appeared in the database, while the two strings produced the same encoding
under Metaphone (note we use the full encoding without truncation). We identified 5,781 such
pair occurrences involving 2,894 unique pairs. If one optimistically assumed that one could
correct the errant query string in all cases using the Metaphone encoding in this way this would
at most yield 92 additional corrections a day to what we are already doing. Given that we
commonly find users accepting over 90,000 corrections/day we are looking at an at most 0.1%
increase in what users accept and more realistically probably less than half of that. Thus it is
unclear whether phonetic correction is worth the overhead it would involve.

CONCLUSIONS
We have developed a spell checking algorithm that does quite accurate correction (≅87%) and
handles one or two edits, and more edits if the string to be corrected is sufficiently long. It
handles words that are fragmented or merged. Where queries consist of more than a single
token the algorithm attempts to make use of the additional information as context to aid the
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correction process. The algorithm is implemented in the PubMed search engine and there it
frequently makes over 200,000 suggestions in a day and about 45% of these suggestions are
accepted by users. The algorithm is efficient in adding only about 25% to the average query
response time for users and much of this is seen only for misspelled queries. There is the
possibility of improving the algorithm by the use of more context around the sites of errors
within words. There is also the possibility of improving the algorithm by learning how to make
better use of the context supplied by queries consisting of multiple tokens. In both cases such
an effort must consider how to maintain efficiency in the light of a huge vocabulary of phrases
(>14 million) and individual words (>2.5 million) recognized by the search engine. There is
also the possibility to use phonetic encodings to improve the handling of some of the errors
that currently challenge the system. However, preliminary calculations suggest it would be
difficult to make a major improvement by using phonetic encodings.

Acknowledgements

The authors would like to thank David Kenton and Pramod Paranthaman for insightful discussions and for their work
evaluating the algorithm and Vladmir Sirotinin and Grisha Starchenko for their work incorporating the algorithm into
search engine query processing. Thanks are also due to the anonymous referees for making helpful suggestions for
improvements in the paper. This research was supported [in part] by the Intramural Research Program of the NIH,
National Library of Medicine.

References
Beeferman, D.; Berger, A. Agglomerative clustering of a search enginne query log. Sixth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining; Boston, MA, ACM Press. 2000.
Brill R, Moore RC. An improved error model for noisy channel spelling correction. ACL 2000. 2000
Church KW, Gale WA. Probability scoring for spelling correction. Statistics and Computing 1991;1:93–

103.
Damerau FJ. A technique for computer detection and correction of spelling errors. Communications of

the ACM 1964;7(3):171–176.
Gadd TN. PHONIX: The algorithm. Program: Automated Library and Information Systems 1990;24(4):

363–366.
Hall PA, Dowling GR. Approximate string matching. Computing Surveys 1980;12(4):381–402.
Huang CK, Chien LF, et al. Relevant term suggestion in interactive web search based on contextual

information in query session logs. Journal of the American Society for Information Science and
Technology 2003;54(7):638–649.

Jurafsky, D.; Martin, JH. Speech and Language Processing. Upper Saddle River; New Jersey, Prentice
Hall: 2000.

Kukich K. Techniques for automatically correcting words in text. ACM Computing Surveys 1992;24(4):
377–439.

Larson, HJ. Introduction to Probability Theory and Statistical Inference. New York: John Wiley & Sons;
1982.

Leroy G, Lally AM, et al. The use of dynamic contexts to improve casual internet searching. ACM
Transactions on Information Systems 2003;21(3):229–253.

McEntyre J, Lipman D. PubMed: bridging the information gap. Cmaj 2001;164(9):1317–9. [PubMed:
11341144]

Nordlie, R. “User revealment” - a comparison of initial queries and ensuing question development in
online searching and in human reference interactions. SIGIR’99: 22nd International Conference on
Research and Development in Information Retrieval, University of California; Berkeley, ACM Press.
1999.

Philips L. Hanging on the Metaphone. Computer Language 1990;7(12)
Sedgewick, R. Algorithms in C (Parts 1–4). Boston: Addison-Wesley; 1998.
Silverstein C, Henzinger M. Analysis of a very large web search engine query log. SIGIR Forum 1999;33

(1):6–12.

Wilbur et al. Page 17

Inf Retr Boston. Author manuscript; available in PMC 2007 December 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Spink A, Wolfram D, et al. Searching the web: the public and their queries. Journal of the American
Society for Information Science and Technology 2001;52(3):226–234.

Survey. NPD Search and Portal Site Survey. 2000. Retrieved September 26, 2005, from http://
www.searchenginewatch.com/sereport/article.php/2162791

Wang P, Berry MW, et al. Mining longitudinal web queries: trends and patterns. Journal of the American
Society for Information Science and Technology 2003;54(8):743–758.

Wen JR, Nie JY, et al. Query clustering using user logs. ACM Transactions on Information Systems
2002;20(1):59–81.

Zobel J, Dart P. Finding approximate matches in large lexicons. Software-Practice and Experience
1995;25(3):331–345.

Wilbur et al. Page 18

Inf Retr Boston. Author manuscript; available in PMC 2007 December 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
The solid curve represents the number of query term pairs where the term contained in the
PubMed database follows the term that was not in the database. The broken curve represents
the same data when the term contained in PubMed precedes the term that was not in the
database. In all cases the terms are within three edits of each other.
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Figure 2.
Number of query terms at different frequencies in PubMed data that are followed by a lexically
close term of ten times the frequency (solid curve) or preceded by a close term of ten times the
frequency (broken curve).
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Figure 3.
Query terms are binned by log(query frequency) along the x-axis and the average of the log of
the MEDLINE frequency over each bin is plotted on the y-axis.
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Figure 4.
In the space of all documents the rectangle represents the documents that contain the term T1
and the small ellipse the set of documents that contain the term T2. The intersection of these
two sets is the overlap represented by I. The statistical significance of this overlap may be
computed as the probability that this overlap is as large or larger than that actually seen
assuming the two terms are nothing more than randomly related. This is known as a p-value
and may be assessed by applying the hypergeometric distribution.
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Figure 5.
We apply Naïve Bayesian learning to learn the difference between the positive set, labeled
G, and the negative set consisting of the union of sets labeled B1 and B2. From the weights
learned we score both B1 and B2 and rank the union of the two sets. We then apply the WMW
test to ask whether the sum of the ranks of the members of B1 is higher than would be expected
on a random basis. A p-value is computed to answer this question.
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Table 1
Errors collected from 63 days of PubMed user logs.

Number of erroneous words Total number of edits
1 edit error 769128 (87%) 769128
2 edit error 105860 (12%) 211720
3 edit error 4932 (1%) 14796
Total 879920 995644
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Table 2
For different word lengths the number of words sampled and edited to produce misspellings are shown as well
as the percentage of such words the functions tried to correct and the percentage of success they had when a
correction was suggested.

Single Token - single edit
length Total Words % attempts % success
3 1786 99 24
4 6701 73 45
5 10827 88 55
6 14823 86 72
7 13511 94 88
8 12330 98 90
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Table 3
The same procedure as in the previous table except two edits are here introduced into each word.

Single Token - two edits
length Total Words % attempts % success
6 14408 78 13
7 13460 61 25
8 11938 96 65
9 10124 96 80
10 7974 95 87
11 5921 96 90
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Table 4
The same procedure as in the previous table except three edits are here introduced into each word.

Single Token - three edits
length Total Errors % attempts % success
9 9485 84 39
10 7405 70 52
11 5496 69 67
12 4000 62 71
13 2835 59 76
14 1964 57 80
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Table 5
On the left are some relatively common words and on the right the corrections suggested by the hypergeometric
test. In many cases the words on the left are misspellings.

Non-optimal terms & frequencies Corrections & frequencies
acetycholine 153 acetylcholine 46852

acetycholinesterase 32 acetylcholinesterase 13207
acetyglucosamine 20 acetylglucosamine 4995

acetylate 287 acetylated 6594
acetylcholin 64 acetylcholine 46852
acetylcystein 64 acetylcysteine 3879

acetylocholine 20 acetylcholine 46852
acetylsalicyclic 157 acetylsalicylic 5186

achalasic 73 achalasia 2955
achatin 27 achatina 320

acheived 42 achieved 179735
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Table 6
A sample of less than optimal query phrases on the left paired with their much higher frequency counterparts on
the right. In some cases the phrase on the left involves a misspelling. In other cases it is simply not the most used
form and hence would make a relatively poor query for the concept involved.

Non-optimal terms & frequencies Corrections & frequencies
myenteric neurone 9 myenteric neurons 593

myocardiac infarction 34 myocardial infarction 114638
myocardial infraction 122 myocardial infarction 114638
myocardial ischemic 870 myocardial ischemia 27214
myocardial necroses 77 myocardial necrosis 2055

myocardial revascularisation 234 myocardial revascularization 7343
myogenic expression 10 myogenin expression 119
myopia astigmatism 10 myopic astigmatism 276

myopia patients 19 myopic patients 231
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Table 7
Examples of phrases that the spell checking algorithm processing PubMed queries can correct and the suggested
corrections.

Misspelling Correction given by algorithm
myocardial infraction myocardial infarction
ear infraction ear infection
miocardi alinfraction myocardial infarction
terminl illnss terminal illness
hig pressue liqud chromatogph high pressure liquid chromatography
tumor necrosisactor tumor necrosis factor
Hmgolbin hemoglobin
Philariosis filariosis
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Table 8
Examples of mistakes made by the spell checking algorithm while processing PubMed queries.

Phrase Mistaken correction
Sapna Baht sauna bath
periostin periods in
Daniel K E danieluk m
bisexual molest bisexual modest
pancreas & transplation pancreas AND translation
stem cell ros stem cell loss
Cupper hair upper air
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