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Probability scoring for spelling correction 
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This paper describes a new program, CORRECT, which takes words rejected by the Unix | 
SPELL program, proposes a list of candidate corrections, and sorts them by probability 
score. The probability scores are the novel contribution of this work. They are based on 
a noisy channel model. It is assumed that the typist knows what words he or she wants 
to type but some noise is added on the way to the keyboard (in the form of  typos and 
spelling errors). Using a classic Bayesian argument of the kind that is popular in re- 
cognition applications, especially speech recognition (Jelinek, 1985), one can often recover 
the intended correction, c, from a typo, t, by finding the correction c that maximizes Pr(c) 
Pr(t ] c). The first factor, Pr(c), is a prior model of word probabilities; the second factor, 
Pr(t [ c), is a model of the noisy channel that accounts for spelling transformations on letter 
sequences (insertions, deletions, substitutions and reversals). Both sets of probabilities 
were estimated using data collected from the Associated Press (AP) newswire over 1988 
and 1989 as a training set. The AP generates about 1 million words and 500 typos per 
week. 

In evaluating the program, we found that human judges were extremely reluctant to cast 
a vote given only the information available to the program, and that they were much more 
comfortable when they could see a concordance line or two. The second half of this paper 
discusses some very simple methods of modeling the context using n-gram statistics. 
Although n-gram methods are much too simple (compared with much more sophisticated 
methods used in artificial intelligence and natural language processing), we have found that 
even these very simple methods illustrate some very interesting estimation problems that 
will almost certainly come up when we consider more sophisticated models of contexts. The 
problem is how to estimate the probability of a context that we have not seen. We compare 
several estimation techniques and find that some are useless. Fortunately, we have found 
that the Good-Tur ing  method provides an estimate of contextual probabilities that pro- 
duces a significant improvement in program performance. Context is helpful in this applica- 
tion, but only if it is estimated very carefully. 

At this point, we have a number of different knowledge sources-- the prior, the channel 
and the context - -and there will certainly be more in the future. In general, performance 
will be improved as more and more knowledge sources are added to the system, as long as 
each additional knowledge source provides some new (independent) information. As we 
shall see, it is important to think more carefully about combination rules, especially when 
there are a large number of different knowledge sources. 
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1. The problem 

The CORRECT p r o g r a m  reads  a list o f  misspel led words  
f rom the input  s t ream (s tdin)  and  pr ints  a set o f  cand ida te  
correc t ions  for  each word  on the o u t p u t  s t ream (s tdout) .  
CORRECT also p roduces  a p robab i l i t y  es t imate  a long with 
each cand ida te  cor rec t ion  (unless there is only  one candi-  
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da te  correct ion) .  These probabi l i t i es  d is t inguish CORRECT 
f rom previous  spell ing correctors .  The p r o b l e m  of  f inding 
jus t  the r ight  way  to es t imate  these probabi l i t i es  f rom the 
var ious  avai lable  sources o f  knowledge  poses a technical  
chal lenge for  bo th  statist ics and  art if icial  intelligence. In  
this pape r  we have only deal t  with a few of  the more  
obvious  possibil i t ies.  
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Table 1. Examples of output of CORRECT 

Typo Corrections (%) 

detered 
laywer 
negotations 
notcampaigning 
progession 
ususally 
winky 

deterred (100) metered (0) petered (0) 
lawyer (100) layer (0) lawer (0) 
negotiations 
???* 

progression (94) procession (4) profession (2) 
usually 
windy (69) wink (20) winks (7) kinky (2) 
wonky (1) pinky (1) dinky (0) winy (0) 
inky (0) 

*??? indicates that no correction was found. 

Table 1 presents some sample output produced by the 
Unix | command, 'spell paper lcorrect', where paper is a 
text file containing the misspelled words in column 1. 

2. Proposing candidate corrections 

The first stage of CORRECT searches a wordlist to find 
candidate corrections that differ from the input typow by a 
single insertion, deletion, substitution or reversal. The 
wordlist was collected from five sources, the AP newswire, 
the Unix | SPELL program, the Cobuild dictionary (Sin- 
clair et al, 1987), the Collins Dictionary of the English 
Language (Hanks et al, 1979), and Roget's International 
Thesaurus (Chapman, 1977). This first stage produces the 
output shown in Table 2, given the input typo, 'acress'. 

The candidate 'actress', for example, can be mistyped as 
'acress' by deleting the 't ' at position 2. The symbols @ 
and # represent nulls. (The transformations are named 
from the point of view of  the correct word, not the typo.) 
The typo, 'acress', can arise from 'acres' by insertion of 's' 
after either the fourth or the fifth letter, so 'acres' appears 
twice in the table as a candidate correction. This unusually 

Table 2. Example of candidate corrections 

Typo Correction Transformation 

acress actress @ t 2 deletion 
acress cress a # 0 insertion 
acress caress ac ca 0 reversal 
acress access r c 2 substitution 
acress across e o 3 substitution 
acress acres s # 4 insertion 
acress acres s # 5 insertion 

w the purposes of this experiment, a typo is a lower-case word rejected 
by the Unix | SPELL program. 

Table 3. An example 
from the deletion table 

Key Correction 

grea t 4 
gret a 3 
grat e 2 
geat r 1 
reat g 0 

difficult example was selected to illustrate the four trans- 
formations; most examples do not have so many high- 
scoring possibilities. 

In principle, one could implement the transformations 
very straightforwardly by trying all the possibilities. The 
insertion operation is actually implemented this way. It 
requires n dictionary accesses to see if the nth letter in the 
typo may have been inserted. Unfortunately, the deletion 
operation is much more expensive; there are 26 letters that 
might have been deleted in n + 1 positions. In order to 
reduce the number of dictionary accesses, the system 
makes use of a precomputed table as shown in Table 3. 
This table maps words missing a letter to corrections. 
With this table, the system can check for deletions in one 
table look-up. The table is also useful for checking for 
substitutions and reversals. Of course, there is a cost in 
space. The deletion table has about a million entries, 
approximately ten times as many as the dictionary. The 
deletion table is stored using heuristic hashing methods 
very similar to those in SPELL (Mcllroy, 1982). 

3. Scoring 

Two versions of CORRECT have been studied: one with 
context and the other without context. We discuss the 
simpler no-context version first. 

Each candidate correction is scored by the Bayesian 
combination rule Pr(c)Pr(t[c), and then normalized by 
the sum of  the scores for all proposed candidates. Care 
must be taken in estimating the prior because of sparse 
data problems. It is possible (and even likely) that a 
proposed correction might not have appeared in the train- 
ing set. Some methods of estimating the prior would 
produce undesirable results in this case. For example, the 
maximum likelihood estimate (MLE) would estimate 
Pr(c) = 0 and, consequently, many candidate corrections 
would be rejected just because they did not happen to 
appear in the training set (the 1988 AP corpus). We wilt 
encounter even more severe forms of the sparse data 
problem when we consider context. 

We will consider three estimation methods that deal 
with the sparse data problems in three different ways. All 


