
Statistics and Computing (1991) 1, 9 3 - 1 0 3

Probability scoring for spelling correction

K E N N E T H W . C H U R C H and W I L L I A M A . G A L E

AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ, USA

Received Augus t 1990 and accepted December 1990

This paper describes a new program, CORRECT, which takes words rejected by the Unix |
SPELL program, proposes a list of candidate corrections, and sorts them by probability
score. The probability scores are the novel contribution of this work. They are based on
a noisy channel model. It is assumed that the typist knows what words he or she wants
to type but some noise is added on the way to the keyboard (in the form of typos and
spelling errors). Using a classic Bayesian argument of the kind that is popular in re-
cognition applications, especially speech recognition (Jelinek, 1985), one can often recover
the intended correction, c, from a typo, t, by finding the correction c that maximizes Pr(c)
Pr(t] c). The first factor, Pr(c), is a prior model of word probabilities; the second factor,
Pr(t [c), is a model of the noisy channel that accounts for spelling transformations on letter
sequences (insertions, deletions, substitutions and reversals). Both sets of probabilities
were estimated using data collected from the Associated Press (AP) newswire over 1988
and 1989 as a training set. The AP generates about 1 million words and 500 typos per
week.

In evaluating the program, we found that human judges were extremely reluctant to cast
a vote given only the information available to the program, and that they were much more
comfortable when they could see a concordance line or two. The second half of this paper
discusses some very simple methods of modeling the context using n-gram statistics.
Although n-gram methods are much too simple (compared with much more sophisticated
methods used in artificial intelligence and natural language processing), we have found that
even these very simple methods illustrate some very interesting estimation problems that
will almost certainly come up when we consider more sophisticated models of contexts. The
problem is how to estimate the probability of a context that we have not seen. We compare
several estimation techniques and find that some are useless. Fortunately, we have found
that the Good-Tur ing method provides an estimate of contextual probabilities that pro-
duces a significant improvement in program performance. Context is helpful in this applica-
tion, but only if it is estimated very carefully.

At this point, we have a number of different knowledge sources-- the prior, the channel
and the context - -and there will certainly be more in the future. In general, performance
will be improved as more and more knowledge sources are added to the system, as long as
each additional knowledge source provides some new (independent) information. As we
shall see, it is important to think more carefully about combination rules, especially when
there are a large number of different knowledge sources.

Keywords: Automated learning, spelling correction, n-gram language model, Good-Tur ing
estimates

1. The problem

The CORRECT p r o g r a m reads a list o f misspel led words
f rom the input s t ream (s tdin) and pr ints a set o f cand ida te
correc t ions for each word on the o u t p u t s t ream (s tdout) .
CORRECT also p roduces a p robab i l i t y es t imate a long with
each cand ida te cor rec t ion (unless there is only one candi-

0960-3174/91 $03.00 + .12 �9 1991 Chapman & Hall

da te correct ion) . These probabi l i t i es d is t inguish CORRECT
f rom previous spell ing correctors . The p r o b l e m of f inding
jus t the r ight way to es t imate these probabi l i t i es f rom the
var ious avai lable sources o f knowledge poses a technical
chal lenge for bo th statist ics and art if icial intelligence. In
this pape r we have only deal t with a few of the more
obvious possibil i t ies.

94 Church and Gale

Table 1. Examples of output of CORRECT

Typo Corrections (%)

detered
laywer
negotations
notcampaigning
progession
ususally
winky

deterred (100) metered (0) petered (0)
lawyer (100) layer (0) lawer (0)
negotiations
???*

progression (94) procession (4) profession (2)
usually
windy (69) wink (20) winks (7) kinky (2)
wonky (1) pinky (1) dinky (0) winy (0)
inky (0)

*??? indicates that no correction was found.

Table 1 presents some sample output produced by the
Unix | command, 'spell paper lcorrect', where paper is a
text file containing the misspelled words in column 1.

2. Proposing candidate corrections

The first stage of CORRECT searches a wordlist to find
candidate corrections that differ from the input typow by a
single insertion, deletion, substitution or reversal. The
wordlist was collected from five sources, the AP newswire,
the Unix | SPELL program, the Cobuild dictionary (Sin-
clair et al, 1987), the Collins Dictionary of the English
Language (Hanks et al, 1979), and Roget's International
Thesaurus (Chapman, 1977). This first stage produces the
output shown in Table 2, given the input typo, 'acress'.

The candidate 'actress', for example, can be mistyped as
'acress' by deleting the 't ' at position 2. The symbols @
and # represent nulls. (The transformations are named
from the point of view of the correct word, not the typo.)
The typo, 'acress', can arise from 'acres' by insertion of 's'
after either the fourth or the fifth letter, so 'acres' appears
twice in the table as a candidate correction. This unusually

Table 2. Example of candidate corrections

Typo Correction Transformation

acress actress @ t 2 deletion
acress cress a # 0 insertion
acress caress ac ca 0 reversal
acress access r c 2 substitution
acress across e o 3 substitution
acress acres s # 4 insertion
acress acres s # 5 insertion

w the purposes of this experiment, a typo is a lower-case word rejected
by the Unix | SPELL program.

Table 3. An example
from the deletion table

Key Correction

grea t 4
gret a 3
grat e 2
geat r 1
reat g 0

difficult example was selected to illustrate the four trans-
formations; most examples do not have so many high-
scoring possibilities.

In principle, one could implement the transformations
very straightforwardly by trying all the possibilities. The
insertion operation is actually implemented this way. It
requires n dictionary accesses to see if the nth letter in the
typo may have been inserted. Unfortunately, the deletion
operation is much more expensive; there are 26 letters that
might have been deleted in n + 1 positions. In order to
reduce the number of dictionary accesses, the system
makes use of a precomputed table as shown in Table 3.
This table maps words missing a letter to corrections.
With this table, the system can check for deletions in one
table look-up. The table is also useful for checking for
substitutions and reversals. Of course, there is a cost in
space. The deletion table has about a million entries,
approximately ten times as many as the dictionary. The
deletion table is stored using heuristic hashing methods
very similar to those in SPELL (Mcllroy, 1982).

3. Scoring

Two versions of CORRECT have been studied: one with
context and the other without context. We discuss the
simpler no-context version first.

Each candidate correction is scored by the Bayesian
combination rule Pr(c)Pr(t[c), and then normalized by
the sum of the scores for all proposed candidates. Care
must be taken in estimating the prior because of sparse
data problems. It is possible (and even likely) that a
proposed correction might not have appeared in the train-
ing set. Some methods of estimating the prior would
produce undesirable results in this case. For example, the
maximum likelihood estimate (MLE) would estimate
Pr(c) = 0 and, consequently, many candidate corrections
would be rejected just because they did not happen to
appear in the training set (the 1988 AP corpus). We wilt
encounter even more severe forms of the sparse data
problem when we consider context.

We will consider three estimation methods that deal
with the sparse data problems in three different ways. All

