NLP Tools
LVG - Derivations
(SD-Rules)

By: Dr. Chris Lu

The Lexical Systems Group

NLM. LHNCBC. CGSB

June, 2013
Table of Contents

• Introduction
 ▪ NLP Tools
 o Normalization
 o Query Expansion

• SD-Rules
 ▪ Derivations in the Lexical Tools
 ▪ Systematic Approach
 ▪ SD-Rules Set Optimization
 ▪ Results

• Questions
Introduction - NLP

- Natural Language (English)
 - is ordinary language that humans use naturally
 - may be spoken, signed, or written

- Natural Language Processing
 - NLP is to process human language to make their information accessible to computer applications
 - The goal is to design and build software that will analyze, understand, and generate human language
 - Most NLP applications require knowledge from linguistics, computer science, and statistics
NLP Example

Questions
Symptoms

NLP System

Features:
- Information retrieval
- Filter
- Summarize
- Alert & suggestion
- Questions answering
- …
NLP System

- EMR (Electronic Medical Records)
- MEDLINE Article/Abstract
- ...
NLP – Concepts

• **UMLS (Unified Medical Language System)**
 - is a comprehensive thesaurus and ontology of biomedical concepts
 - created in 1986 by NLM
 - provides terms to concepts mapping from different controlled vocabularies sources, such as ICD-10, MeSH, SNOMED CT, etc.
 - includes:
 - [Metathesaurus](#)
 - [Semantic Network](#)
 - SPECIALIST Lexicon and Lexical Tools
Challenge in Concept Mapping

• Terms have multiple concepts
 - Example: cold (7 CUIs in UMLS-2013AA)
 - Cold Temperature
 - Common Cold
 - Cold Therapy
 - Cold Sensation
 - etc..
 - Word Sense Disambiguation (WSD)

• Concepts has variety of ways to express
 - Example: Hodgkin's Disease
 - Normalization
 - Query Expansion
NLP - Norm

- Hodgkin Disease
- HODGKINS DISEASE
- Hodgkin's Disease
- Disease, Hodgkin's
- HODGKIN'S DISEASE
- Hodgkin's disease
- Hodgkins Disease
- Hodgkin's disease NOS
- Hodgkin's disease, NOS
- Disease, Hodgkins
- Diseases, Hodgkins
- Hodgkins Diseases
- Hodgkins disease
- hodgkin's disease
- Disease;Hodgkins
- Disease, Hodgkin
- ...

Terms in Corpus

normalize

Indexed Database

Normalized String

Index
NLP - Norm

Hodgkin’s Disease

Query ➔ norm

Normed term ➔ disease hodgkin

Indexed Database
Normalized String

Results that matches the normalized query
NLP – Query Expansion

perforated ear drum

Norm

drum ear perforate

Indexed Database Normalized String

None

C0206504
Tympanic Membrane Perforation

perforation ear drum

Norm

drum ear perforation
Lexical Variants

- To increase recall & precision

<table>
<thead>
<tr>
<th></th>
<th>Query expansion (Recall)</th>
<th>POS Tagging (Precision)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs</td>
<td>perforated ear drum</td>
<td>saw</td>
</tr>
<tr>
<td>UMLS-CUI</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>perforation ear drum</td>
<td>noun</td>
</tr>
<tr>
<td>UMLS-CUI</td>
<td>C0206504</td>
<td></td>
</tr>
<tr>
<td>Preferred term</td>
<td>Tympanic Membrane Perforation</td>
<td>saw (device)</td>
</tr>
</tbody>
</table>
NLP Core Tasks

Example: Information retrieval (search engine)

- Tokenize & tagging (entity recognition)
 - break inputs into words <Text Tools, wordInd>
 - POS tagging <dTagger>
 - Other annotation <Visual Tagging Tool, VTT>
- spelling check
 - suggest correct spelling for misspelled words <gSpell>
- lexical variants (normalization/query expansion)
 - spelling variants, inflectional/uninflectional variants,
 synonyms, acronyms/abbreviations, expansions,
 derivational variants, etc. <Lexical Tools, LexAccess,
 LexCheck, STMT>
- semantic knowledge (concept mapping)
 - map text to Metathesaurus concepts <MetaMap, MMTX,
 STMT>
 - Word Sense Disambiguation <TC – StWSD>
NLP Tools by LSG

The SPECIALIST NLP Tools

Derivational Variants

• Words are related by a derivational process
 ▪ Used to create new words based on existing words
 ▪ Meaning change (related)
 ▪ Category may change
 ▪ Derivational process: suffix, prefix, and conversion

• Focus on relatedness (no direction)
Derivation Types (-kdt)

- Example (kind|adj):
 - zeroD: kind|adj|kind|noun
 - prefixD: kind|adj|unkind|adj
 - suffixD: kind|adj|kindly|adv
Derivational Pair

• Each link and the associated two nodes in derivational network define a derivational pair
• Includes base forms and syntactic category information
• Bi-directional
• Only involves one or none derivational affix
• Lvg format: base 1|category 1|base 2|category 2
• Examples:
 ▪ kind|adj|kindness|noun
 ▪ kind|adj|kindly|adv
 ▪ kind|adj|unkind|adj
 ▪ kind|adj|kind|noun
Derivations in LVG

• 7 flow components (62):
 ▪ -f:d
 ▪ -f:dc
 ▪ -f:R
 ▪ -f:G
 ▪ -f:Ge
 ▪ -f:Gn
 ▪ -f:v

• 3 flow specific options (39):
 ▪ -kd: 1|2|3 (default: 1)
 ▪ -kdn: B|N|O (default: O)
 ▪ -kdt: Z|S|P (default: ZSP)
LVG - Derivation Examples

• shell> lvg -f:d -p -SC -SI
 - Please input a term (type "Ctl-d" to quit) > hyperuricemic

hyperuricemic|hyperuricemic|<noun>|<base>|d|1|
hyperuricemic|hyperuricemia|<noun>|<base>|d|1|
hyperuricemic|hyperuricemic|<adj>|<base>|d|1|
Derivations Generation

• Before 2011-, issues of precision and recall
• A new systematic approach to automatically generating derivational variants using LVG conjunction with Specialist Lexicon:

<table>
<thead>
<tr>
<th></th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>prefixD & zeroD</td>
<td>suffixD</td>
<td>SD-Rules</td>
<td></td>
</tr>
</tbody>
</table>

References:
• “Implementing Comprehensive Derivational Features in Lexical Tools Using a Systematical Approach”, Chris J Lu, Lynn McCreedy, Destinee Tormey, and Allen Browne, AMIA 2013 Annual Symposium, Nov. 16-20, Washington, DC (submitted for publication)
Systematic Approach

• Better coverage:
 ▪ Facts: cover all dPairs known to Lexicon (grow proportionally with Lexicon annually)

<table>
<thead>
<tr>
<th></th>
<th>2011-</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4,559</td>
<td>89,950</td>
<td>121,078</td>
</tr>
</tbody>
</table>

• Better precision:
 ▪ Mainly relies on facts: virtually 100% accurate

• Derivations not in Lexicon?
Derivational Flow

• Facts
 ▪ derivational pairs database table

<table>
<thead>
<tr>
<th>Base-1</th>
<th>Cat-1</th>
<th>EUI-1</th>
<th>Base-2</th>
<th>Cat-2</th>
<th>EUI-2</th>
<th>Negation</th>
<th>Type</th>
<th>prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>care</td>
<td>noun</td>
<td>E0015334</td>
<td>precare</td>
<td>noun</td>
<td>E0611704</td>
<td>O</td>
<td>P</td>
<td>pre</td>
</tr>
<tr>
<td>care</td>
<td>noun</td>
<td>E0015334</td>
<td>careless</td>
<td>adj</td>
<td>E0015344</td>
<td>N</td>
<td>S</td>
<td>None</td>
</tr>
<tr>
<td>care</td>
<td>noun</td>
<td>E0015334</td>
<td>care</td>
<td>verb</td>
<td>E0015335</td>
<td>O</td>
<td>Z</td>
<td>None</td>
</tr>
</tbody>
</table>

• SD-Rules
 ▪ Use exceptions to increase precision

EXAMPLE: retirement | noun | retire | verb
RULE: ment$ | noun | $ | verb
EXCEPTION: apartment | apart;
EXCEPTION: basement | base;
EXCEPTION: department | depart;
...
SD-Rules (Trie)

- retirement noun => retire verb

EXAMPLE: retire | verb | retirement | noun
RULE: $ | verb | ment$ | noun
EXCEPTION: apart | apartment;
...

EXAMPLE: relaxant | adj | relax | verb
RULE: ant$ | adj | $ | verb
EXCEPTION: important | import;
...

EXAMPLE: conformant | adj | conformance | noun
RULE: ance$ | noun | ant$ | adj
EXCEPTION: ambulant | ambulance;
...

EXAMPLE: retirement | noun | retire | verb
RULE: ment$ | noun | $ | verb
EXCEPTION: apartment | apart;
...

EXAMPLE: fluent | adj | fluency | noun
RULE: ency$ | noun | ent$ | adj
EXCEPTION: emergency | emergent;
...
Facts Generation

Lexicon

Automatic generation:
- zeroD
- prefixD
- suffixD

Raw dPairs

Automatic tagging

Experts’ tagging
- type
- negation
- etc.

Derivation table
SD-Fact Data

- Original SD generating rules in SD-Facts process:

<table>
<thead>
<tr>
<th>No.</th>
<th>Rules to generate Raw SD-Pairs</th>
<th>Raw Retrieved</th>
<th>Valid Relevant</th>
<th>Invalid Irrelevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$</td>
<td>adj</td>
<td>ness$</td>
<td>noun</td>
</tr>
<tr>
<td>2</td>
<td>ability$</td>
<td>noun</td>
<td>able$</td>
<td>adj</td>
</tr>
<tr>
<td>3</td>
<td>ization$</td>
<td>noun</td>
<td>ize$</td>
<td>verb</td>
</tr>
<tr>
<td>4</td>
<td>osis$</td>
<td>noun</td>
<td>otic$</td>
<td>366</td>
</tr>
<tr>
<td>5</td>
<td>le$</td>
<td>adj</td>
<td>ly$</td>
<td>adv</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>71</td>
<td>ious$</td>
<td>adj</td>
<td>ly$</td>
<td>noun</td>
</tr>
<tr>
<td>72</td>
<td>ant$</td>
<td>adj</td>
<td>ate$</td>
<td>verb</td>
</tr>
<tr>
<td>73</td>
<td>$</td>
<td>noun</td>
<td>ist$</td>
<td>noun</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>93</td>
<td>ia$</td>
<td>noun</td>
<td>ian$</td>
<td>noun</td>
</tr>
<tr>
<td>94</td>
<td>a$</td>
<td>noun</td>
<td>an$</td>
<td>noun</td>
</tr>
<tr>
<td>95</td>
<td>gram$</td>
<td>noun</td>
<td>graphy$</td>
<td>noun</td>
</tr>
<tr>
<td>96</td>
<td>gram$</td>
<td>noun</td>
<td>graphic$</td>
<td>adj</td>
</tr>
<tr>
<td>97</td>
<td>$</td>
<td>verb</td>
<td>ably$</td>
<td>adv</td>
</tr>
</tbody>
</table>
SD-Rules Optimization

• Objective:
 To find an optimized set of SD-Rules to reach best performance (precision and recall)
 ▪ to have high precision (95%)
 ▪ to cover more derivations (recall) that are not in Lexicon

• Assumption:
 Use Lexicon as the testing corpus by assuming Lexicon is a representable subset of general English
Step 1 - Normalize

- Remove duplicates
 - Unify bi-directional SD-Rules (alphabetic order sorting)

- Remove overlap (child rules)
 - Example:
 magic|noun|E0038555|magical|adj|E0038557
 $|noun|al$|adj|2013|ORG_RULE|PARENT
 ic$|noun|ical$|adj|2013|ORG_RULE|CHILD

- Normalize 97 to 87 SD-Rules
Step 1 - Normalize

Remove Child-Rules:

<table>
<thead>
<tr>
<th>Parent-rules (9)</th>
<th>Child-rules (10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>adj</td>
</tr>
<tr>
<td>$</td>
<td>noun</td>
</tr>
<tr>
<td>a$</td>
<td>noun</td>
</tr>
<tr>
<td>a$</td>
<td>noun</td>
</tr>
<tr>
<td>a$</td>
<td>noun</td>
</tr>
<tr>
<td>ance$</td>
<td>noun</td>
</tr>
<tr>
<td>action$</td>
<td>noun</td>
</tr>
<tr>
<td>ency$</td>
<td>noun</td>
</tr>
<tr>
<td>sis$</td>
<td>noun</td>
</tr>
<tr>
<td>osis$</td>
<td>noun</td>
</tr>
</tbody>
</table>
Step 2 – Performance

• A good SD-Rule: has high precision and high frequency

• A good set of SD-Rules: includes better SD-Rules to reach better system performance for:
 ▪ higher system precision (> 95%)
 ▪ higher system recall

 ▪ more SD-Rules (for better coverage)
Step 2 – System Performance

• Sort all SD-Rules by:
 ▪ precision (= valid No. / raw No.)
 ▪ raw No. (frequency).
 ▪ alphabetic order of SD-Rules

• System performance:
 ▪ System precision (cumulative):
 P = relevant, retrieved / retrieved
 ▪ System recall:
 R = relevant, retrieved / relevant

 ▪ More SD-Rules (for tie-breaker)
Step 3 – Optimization

- The optimal set has the best system performance

- Parent-Child SD-Rules
 Compare system performance of Parents (9) to Child SD-Rules (10)

- Add New SD-Rules:
 - from nomD
 - from original Facts
 - form suggestions
Step 3.1 – Optimization

- Evaluate Parent-Child-Grandchild Rules:
 - Only case 2 provides better results while replacing parent rule by child rule
 - Case 2.3 has the best results among case 2

<table>
<thead>
<tr>
<th>ID</th>
<th>Parent-Rule</th>
<th>Candidate Child-Rules</th>
<th>Rule No.</th>
<th>Precision</th>
<th>Cutoff SD-Rule</th>
<th>Sys P</th>
<th>Sys R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Parent-rule only (Baseline)</td>
<td>No child-Rule</td>
<td>60</td>
<td>73.68%</td>
<td>a$</td>
<td>noun</td>
<td>iastis$</td>
</tr>
<tr>
<td>1.1</td>
<td>$</td>
<td>adj</td>
<td>ity</td>
<td>noun</td>
<td>c$</td>
<td>adj</td>
<td>city$</td>
</tr>
<tr>
<td>1.2</td>
<td>$</td>
<td>adj</td>
<td>ity</td>
<td>noun</td>
<td>ic$</td>
<td>adj</td>
<td>icity$</td>
</tr>
<tr>
<td>2.1</td>
<td>$</td>
<td>noun</td>
<td>al$</td>
<td>adj</td>
<td>n$</td>
<td>noun</td>
<td>nal$</td>
</tr>
<tr>
<td>2.2</td>
<td>$</td>
<td>noun</td>
<td>al$</td>
<td>adj</td>
<td>on$</td>
<td>noun</td>
<td>onal$</td>
</tr>
<tr>
<td>2.3</td>
<td>$</td>
<td>noun</td>
<td>al$</td>
<td>adj</td>
<td>ion$</td>
<td>noun</td>
<td>ional$</td>
</tr>
<tr>
<td>2.4</td>
<td>$</td>
<td>noun</td>
<td>al$</td>
<td>adj</td>
<td>tion$</td>
<td>noun</td>
<td>tional$</td>
</tr>
<tr>
<td>3.1</td>
<td>a$</td>
<td>noun</td>
<td>an$</td>
<td>adj</td>
<td>No candidate child-rule found</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>8.1</td>
<td>ency$</td>
<td>noun</td>
<td>ent$</td>
<td>adj</td>
<td>No candidate child-rule found</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>sis$</td>
<td>noun</td>
<td>tic$</td>
<td>adj</td>
<td>eis$</td>
<td>noun</td>
<td>etic$</td>
</tr>
</tbody>
</table>
3.1 Optimization Example

- Sorted SD-Rules of case 2.3:

<table>
<thead>
<tr>
<th>No.</th>
<th>Rule Precision</th>
<th>Raw Retrieved</th>
<th>Valid Relevant</th>
<th>Invalid Relevant</th>
<th>Invalid Irrelevant</th>
<th>SD-Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.00%</td>
<td>2723</td>
<td>2723</td>
<td>0</td>
<td></td>
<td>$</td>
</tr>
<tr>
<td>2</td>
<td>100.00%</td>
<td>1278</td>
<td>1278</td>
<td>0</td>
<td></td>
<td>ability$</td>
</tr>
<tr>
<td>3</td>
<td>100.00%</td>
<td>326</td>
<td>326</td>
<td>0</td>
<td></td>
<td>le$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>62.65%</td>
<td>332</td>
<td>208</td>
<td>124</td>
<td></td>
<td>$</td>
</tr>
<tr>
<td>65</td>
<td>60.66%</td>
<td>183</td>
<td>111</td>
<td>72</td>
<td></td>
<td>ar$</td>
</tr>
<tr>
<td>66</td>
<td>58.08%</td>
<td>582</td>
<td>338</td>
<td>244</td>
<td></td>
<td>al$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>0.37%</td>
<td>273</td>
<td>1</td>
<td>272</td>
<td></td>
<td>a$</td>
</tr>
<tr>
<td>85</td>
<td>0.00%</td>
<td>358</td>
<td>0</td>
<td>358</td>
<td></td>
<td>gram$</td>
</tr>
<tr>
<td>86</td>
<td>0.00%</td>
<td>228</td>
<td>0</td>
<td>228</td>
<td></td>
<td>gram$</td>
</tr>
<tr>
<td>87</td>
<td>0.00%</td>
<td>57</td>
<td>0</td>
<td>57</td>
<td></td>
<td>$</td>
</tr>
</tbody>
</table>
3.1 Optimization Example

- Sorted SD-Rules of case 2.3:

<table>
<thead>
<tr>
<th>No.</th>
<th>Rule Precision</th>
<th>Raw</th>
<th>Valid</th>
<th>InV.</th>
<th>SD-Rule</th>
<th>Accum Total</th>
<th>Accum Valid</th>
<th>System Precision</th>
<th>System Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.00%</td>
<td>2723</td>
<td>2723</td>
<td>0</td>
<td>$</td>
<td>adj</td>
<td>ness$</td>
<td>noun</td>
<td>2723</td>
</tr>
<tr>
<td>2</td>
<td>100.00%</td>
<td>1278</td>
<td>1278</td>
<td>0</td>
<td>ability$</td>
<td>noun</td>
<td>able$</td>
<td>adj</td>
<td>4001</td>
</tr>
<tr>
<td>3</td>
<td>100.00%</td>
<td>326</td>
<td>326</td>
<td>0</td>
<td>le$</td>
<td>adj</td>
<td></td>
<td>ly$</td>
<td>adv</td>
</tr>
<tr>
<td>64</td>
<td>62.65%</td>
<td>332</td>
<td>208</td>
<td>124</td>
<td>noun</td>
<td>list$</td>
<td>noun</td>
<td>36673</td>
<td>34907</td>
</tr>
<tr>
<td>65</td>
<td>60.66%</td>
<td>183</td>
<td>111</td>
<td>72</td>
<td>ar$</td>
<td>adj</td>
<td></td>
<td>e$</td>
<td>noun</td>
</tr>
<tr>
<td>66</td>
<td>58.08%</td>
<td>582</td>
<td>338</td>
<td>244</td>
<td>al$</td>
<td>adj</td>
<td></td>
<td>e$</td>
<td>noun</td>
</tr>
<tr>
<td>84</td>
<td>0.37%</td>
<td>273</td>
<td>1272</td>
<td>1</td>
<td>a$</td>
<td>noun</td>
<td>an$</td>
<td>noun</td>
<td>42732</td>
</tr>
<tr>
<td>85</td>
<td>0.00%</td>
<td>358</td>
<td>358</td>
<td>0</td>
<td>gram$</td>
<td>noun</td>
<td>graphy$</td>
<td>noun</td>
<td>43090</td>
</tr>
<tr>
<td>86</td>
<td>0.00%</td>
<td>228</td>
<td>228</td>
<td>0</td>
<td>gram$</td>
<td>noun</td>
<td>graphic$</td>
<td>adj</td>
<td>43318</td>
</tr>
<tr>
<td>87</td>
<td>0.00%</td>
<td>57</td>
<td>57</td>
<td>0</td>
<td>$</td>
<td>verb</td>
<td>ably$</td>
<td>adv</td>
<td>43375</td>
</tr>
</tbody>
</table>

(37136)
3.1 Optimization Results

- Best set includes 65 rules with S.P. of 95.01% and S.R. of 94.30%
3.2 Enhancement – Add More Rules

- Use same method to evaluate/add new SD-Rules
 - From nomD (4), 1 is the parent rule
 - From factD (5)
 - From others’ suggestions (1)
- Final best set includes 73 rules with S.P. of 95.30% and S.R. of 95.01%
Result - Noise Reduction

• Smoothing algorithm – simple moving average of 3, 5, 7 window size
• The intersections are all around 95% for all cases
• Confirm our optimized goal of 95% S.A. is a good choice
Optimization Summary

- Sort by:
 - precision (= valid No. / raw No.)
 - raw No. (frequency)
 - alphabetic order of SD-Rules (remove duplications)
- Find performance:
 - precision (cumulative): above 95%
 - recall: coverage
- Evaluate related Parent-Child Rules:
 - remove all child-rules
 - decompose parent-rules
 - evaluated performance (precision and recall)
- Get the best set of SD-Rules (with best performance - intersection of curves of precision and recall)
Process Summary

A new SD-Rule
• Get tagging stats data

SD-Rules Set

Remove Duplicated Rules

Evaluate Parent-Child Rules:
• Remove all child-rules
• Decompose parent-rule
• Compare system performance between parent-child rules

Find the system performance

Find the optimized set of SD-Rules
Results

• A comprehensive derivational features in Lexical Tools:
 ▪ Type options: prefixD, suffixD, zeroD
 ▪ Negation options

• A maintainable and scalable system for generating derivations with the Lexicon’s annual release

• Better precision:
 ▪ in Lexicon: virtual 100%
 ▪ not in Lexicon (SD-Rules set): above 95.30%

• Better recall:
 ▪ in Lexicon: 100% for the candidate SD-Rules
 ▪ not in Lexicon (SD-Rules set): about 95.01%
Future Work

- Annual routine update with lexicon release

- Enhancement:
 - prefixD: work on more prefixes (2014)
 - suffixD: work on more candidate SD-Rules (2014)

- Analysis in prefixD, suffixD and zeroD

- Assumption (from Lexicon to English):
 - Is Lexicon a representable subset of general English?
Questions