

Lexical Tools: Introduction

• Command line tools
– norm

– Lvg

– wordInd

• Web GUI

• Pure Java Application

• Embeddable Java API’s

Presenter
Presentation Notes
What ARE these tools, AND what are they good for?
These tools are primarily command line tools. Built from java code.
There are GUI’s that run these tools.
The source code is distributed.
These tools are intended to be embedded into your applications.
As such, there are an untold number of public JAVA API’s that
were developed to be called within your app.

Chris*

http://umlslex.nlm.nih.gov:8888/WebLvg/jsp/norm/norm.jsp?type=Norm�
http://umlslex.nlm.nih.gov/lvg/2002/docs/userDoc/api.html�

Lexical Tools: Introduction

• These tools are good for
– aggressive text pattern matching

– making word, term, phrase indexes

– matching queries with indexed entries

– increasing recall and/or precision

Presenter
Presentation Notes
What are these tools good for?
These tools are good for text matching that is more powerful than exact match.
The tools are used to normalize terms, as well as generate expanded terms.
These tools are used to create word, term, and phrase indexes. They are embedded between queries and target indexes.

If your purpose is to increase recall over exact matches, the lexical tools can be configured to do that.
If your purpose is to increase precision over some loose matching algorithm, the lexical tools can be configured to do that.

Lexical Tools: Introduction

• Characteristics of all the command line
tools
– take input from the screen or a file

– put their results to the screen or a file

– Interpret fielded text
• Can be told which fields contain what type of

information

Presenter
Presentation Notes
Some general characteristics of all of the command line tools:
They all take input from standard in, and put results on standard out.
They all are configured via command line arguments.

They all interpret fielded text, using by default, the UNIX’sh Pipe character
 as a field separator, and a newline (natively defined) as the end of record,
or end of term indicator.
That is, all the tools can be told
what field to do the text transformation on,
what fields to pass through to the output, and
what fields contain other relevant information.

Chris

Lexical Tools: WordInd
wordind
is
a
tool
to
break
terms
into
words
it
is
used
to

Wordind is a tool to break terms
into words.

It is used to take a row from a
Metathesaurus table that contains a
term, sentence, paragraph, story,

and break the text part of that row
into it’s constituent words.

Presenter
Presentation Notes
Wordind is a tool to break terms into words.
It is used to take a row from a Metathesaurus table that contains a term, sentence, paragraph, story,
and break the text part of that row into it’s constituent words,
while passing along, duplicating the other fields in that row.
From the very beginning we needed a way to standardize what we meant what a word is. This turns out to be critically important for fitting programs together.
We consider a word what wordInd says it is, for better or worse. WordInd, considers as a word a sequence of alpha-numeric tokens broken by white space or punctuation. Whitespace and puncutation is subsequently thrown out.

Lexical Tools: WordInd
• Breaks words into tokens

• Passes other fields to output, untouched

• Lowercases

• Removes white space and punctuation

Presenter
Presentation Notes
WordInd is primarily used to create word indexes. As such, it does a bit more than tokenizing words. It also lowercases the tokenized words as well.
So, it tokenizes, ,
 it strips punctuation, ,
 it lowercases, ,
 and it passes other fields through to the output, untouched.

Lexical Tools: WordInd
Useful command line options for wordInd

-t[:Num] Defines what field to tokenize

-f[:Num[:Num]] Defines what fields get passed through

Presenter
Presentation Notes
Here are two well used command line options that wordInd uses. The –t option tells wordInd what field to tokenize, and the –f option tells word in what fields to pass through to the output untouched.

Lexical Tools: WordInd

> wordInd –t:7 –F:1:6

C0185495|S0298948|denis

C0185495|S0298948|browne

C0185495|S0298948|splint

C0185495|S0298948|strapping

C0185495|ENG|P|L0223844|PF|S0298948|Denis-Browne splint strapping|3|

Presenter
Presentation Notes
Here’s an example of what wordind does to a row from the Metathesaurus’ MRCON.
The command line arguments to WORDIND include telling wordind to use the seventh field to find the term, and to pass through fields one and six to the output.

Metathesaurus
English
Strings

Lexical Tools: Norm

norm Normalized string index

Normalized word index

WordInd

MRXNS.ENG

MRXNW.ENG

Presenter
Presentation Notes
Here’s where the lexical tools fit in with the UMLS Metathesaurus.
The norm program normalizes the Metathesaurus strings to produce the normalized string index.
In general, normalization involves transforming something that’s not uniform to something that is uniform.

The wordInd program tokenizes the normalized strings to create the normalized word index.

Lexical Tools: Norm

norm
Normalized string index

Normalized word index

Metathesaurus
Concepts

Query Normed
term

SUIS

Metathesaurus
Concepts that match

The normalized query

Presenter
Presentation Notes

These indexes provide great recall enhansed access to the content of the Metathesaurus.

To take advantage of these indexes, queries need to use the same program to transform the query to mediate between the query and entries in the normalized indexes.

Lexical Tools: Norm

• Norm abstracts away from:
– case

– punctuation

– word order

– possessive forms

– inflectional variation

Presenter
Presentation Notes
Our form of normalization involves the following:

It abstracts away from case, punctuation, and word order.
It abstracts away from inflectional variations.
It abstracts away from possessive forms.

Lexical Tools: Norm

remove genitives

remove stop words

lowercase

uninflect each word

word order sort

replace punctuation with spaces

Hodgkin's
Diseases,

NOS

Presenter
Presentation Notes
Norm in some more detail.

Let’s take the example Hodgkin’s Diseases, NOS. Here’s a term that could be found in text an awful lot of ways.
This program will transform a fair number of those variant ways into a uniform representation that will enable applications to recognize all those variants belonging to the same term.

remove genitives

remove stop words

replace punctuation with spaces

lowercase

uninflect each word

word order sort

Lexical Tools: Norm
Hodgkin's
Diseases,

NOS

Hodgkin Diseases,
NOS

Hodgkin'sDiseases,
NOS

Presenter
Presentation Notes
Genitives, those apostrophe ses, or the possessive forms are removed.
Medical terminology is replete with terms that include possessive forms,
Such as Parkinson’s Disease.
There are a lot of variation caused by forms that differ by possessive forms.
In a lot of cases, as Allen had mentioned, terms evolve from possessive forms to plural forms.
It turns out to be a good idea to abstract away from possessive forms for retrieval purposes.

In our example, Hodgkin’s gets transformed to Hodgkin.

Lexical Tools: Norm

remove genitives

remove stop words

replace punctuation with spaces

lowercase

uninflect each word

word order sort

Hodgkin's
Diseases,

NOS

Hodgkin Diseases
NOS

Hodgkin Diseases,
NOS

Hodgkin'sDiseases,
NOS

Presenter
Presentation Notes
Punctuation is replaced by spaces.

It is important to identify the apostrophe s’s
before punctuation is replaced.

The comma is removed in this example.

Lexical Tools: Norm

remove genitives

remove stop words

replace punctuation with spaces

lowercase

uninflect each word

word order sort

Hodgkin's
Diseases,

NOS

Hodgkin Diseases

Hodgkin Diseases
NOS

Hodgkin Diseases,
NOS

Hodgkin'sDiseases,
NOS

Presenter
Presentation Notes
Stop words are stripped.
Stop words are those words that you really don’t want to query on,
such as determiners and frequently used prepositions.
For example, words like “THE”, and ”OF”.

We consider NOS as one of our stop words. It gets stripped.

Lexical Tools: Norm

remove genitives

remove stop words

replace punctuation with spaces

lowercase

uninflect each word

word order sort

Hodgkin's
Diseases,

NOS

hodgkin diseases

Hodgkin Diseases

Hodgkin Diseases
NOS

Hodgkin Diseases,
NOS

Hodgkin'sDiseases,
NOS

Presenter
Presentation Notes
For obvious reasons, it’s a big win to either lower case your input or uppercase it.

We’ve settled on lowercasing the input to abstract away from case variation in terms. In this example, everything is lowercased.

Lexical Tools: Norm

remove genitives

remove stop words

replace punctuation with spaces

lowercase

uninflect each word

word order sort

Hodgkin's
Diseases,

NOS

hodgkin disease

hodgkin diseases

Hodgkin Diseases

Hodgkin Diseases
NOS

Hodgkin Diseases,
NOS

Hodgkin'sDiseases,
NOS

Presenter
Presentation Notes
Each word of the term is uninflected.
Uninflection is the what we would consider an entry form in our Lexicon. These are, for the most part,
 the singular forms of nouns,
 the infinitive forms for verbs, and
 the positive forms for adjectives and adverbs.
Uninflected forms are similar to, but are not the same as Stemmed forms. Stemming involves suffix stripping, not bothering to heed the distinction between derivational suffixes and inflectional suffixes. Stemmers often refer to the “stems” as the root of the word, regardless whether the meaning had changed when the suffix was removed or added.

Stemmers often only involve suffix replacement and may or may not filter to a word list after the suffix transformations.

Lexical Tools: Norm

remove genitives

remove stop words

replace punctuation with spaces

lowercase

uninflect each word

word order sort

Hodgkin's
Diseases,

NOS

disease hodgkin

disease
hodgkin

hodgkin disease

hodgkin diseases

Hodgkin Diseases

Hodgkin Diseases
NOS

Hodgkin Diseases,
NOS

Hodgkin'sDiseases,
NOS

Presenter
Presentation Notes
As a last step, all the resulting words are sorted in ASCII order.
Why?
There are terms in the Metathesaurus in inverted form. That is, where the important part of the term is at the front of the term. “Cancer, Breast”. Inversion is a useful cataloguing technique.

There are terms in the Metathesaurus in uninverted form. And, there are terms in the Metathesaurus that are in inverted form, but, where the inversion points, typically commas, are missing.

We found that stripping punctuation and sorting in word order, in general helps rather than hurts recall. There rare exceptions to this, such as the distinction between school nursing and nursing school.

Lexical Tools

Presenter
Presentation Notes

The lexical tools include a word and string normalization tool,
a word tokenization tool,
and a suite of text utilities, otherwise known as lexical variant generation , or LVG.
We often refer to the lexical tools as the Swiss army knife of text utilities. It’s got 54 different tools, some sharp, some blunt.

This presentation contains material that is suitable for end-users and developers. This presentation contains excruciating detail on the tools wtih some gratuitous code examples thrown in.
Chris

Lexical Tools: Flow Components
Mnemonic Tool

A Return known acronyms

a Return known acronym expansions

b Uninflect a term

c Tokenize a term into "words"

Ct Retrieve the citation term

d Generate derivational variants

g Remove genitive

i Generate inflectional variants

L Retrieve category and inflection for a term

Presenter
Presentation Notes
I’m going to switch terminology at this point from talking about text utilities or tool and introduce and refer to each utility as this funny thing called a
“FLOW COMPONENT” I’ll explain later.
There are 54 tools, or FLOW COMPONENTS with more on the way.
I’m going to flip through an alphabetical list of some of these tools. (Not all are listed here. They are fully specified in the documentation).

The mnemonic on the left is what you would specify on the command line.
These include tools to grab acronyms and their expansions.
Uninflection tools, tokenxization tools.

leave

leave
leaves

leaving

left

inflect

Lexical Tools: Flows

Presenter
Presentation Notes
Some characteristics about the lexical tools:

Each of the utilities can be used separately.
Here is an example of the inflect tool.
This tool generates all known inflections of a word.
There is a notion of a flow is a serial combination of these tools put together.
Thus the name for each tool: a flow component.

> lvg –f:i
leave
leave|leave|128|1|i|1|
leave|leave|128|512|i|1|
leave|leaves|128|8|i|1|
leave|left|1024|64|i|1|
leave|left|1024|32|i|1|
leave|leave|1024|1|i|1|
leave|leave|1024|262144|i|1|
leave|leave|1024|1024|i|1|
leave|leaves|1024|128|i|1|
leave|leaving|1024|16|i|1|

Lexical Tools: Flows

Presenter
Presentation Notes
The example shows just how such a tool is invoked from the command line.
Don’t pay any attention to those pesky fields with numbers in them right now.
Pay attention to the fact that we put leave into this tool and leave, leaves, left, and leaving were returned.

[That same information should be shown in the GUI tool].

Lexical Tools: Fielded Output

Input Term Output Term Categories Inflections

Flow history

Flow Number

leavesleaves 1152 1136 L |||||

> lvg –f:L
leaves

Presenter
Presentation Notes
On each output line, five additional fields are added to the input fields.

The output or transformed term,
what categories and inflections the output term can be,
what transformations or flow components produced it. This is also known as the flow history,
And,
the flow number that produced it.

Categories

verb

plural

pres3ps

Output
term

Inflections

leaves
noun

Lexical Tools: Fielded Output

Presenter
Presentation Notes
Imagine, if you will, that some flow produced the output term “leaves”.
Leaves can be either the plural form of a noun or the present third person singular of a verb.

That’s what conceptually will be part of the output for this term.

Categories

1152

ad
j

ad
v

au
x

co
m

pl

co
nj

de
t

m
od

al

no
un

pr
ep

pr
on

ve
rb

000 101 000 00

Category bit vector

Lexical Tools: Categories

Presenter
Presentation Notes
But, that’s not easy to stuff into a concise, machine parsable, single line representation that can be used by other tools. A somewhat less readable bit vector representation of category and inflection was adopted to be the concise, parsable form that could be used by other tools.

Let’s concentrate on category for a minute. The bit vector for category consists of 11 bits in this order. To represent the categories that leaves take on, the bits for noun and verb are set to one.

What appears on the command line output is the decimal representation of this bit vector.

ad
j

ad
v

au
x

co
m

pl

co
nj

de
t

m
od

al

no
un

pr
ep

pr
on

ve
rb

068 7910 345 12

Lexical Tools: Categories

Bit Vector
positions

Adjective 1

Adverb 2

Auxiliary 4

Complement 8

Conjunction 16

Determiner 32

Modal 64

Noun 128

Preposition 256

Pronoun 512

Verb 1024

Presenter
Presentation Notes
Here is the decimal representation of these categories.

Inflections
136

ba
se

co
m

pa
ra

tiv
e

su
pe

rl
at

iv
e

pl
ur

al

Pr
es

en
t p

ar
tic

ip
le

Pr
es

en
t 3

ps

0100 00

Pr
es

en
t 3

ps

10000000000000

Lexical Tools: Inflections

Presenter
Presentation Notes
Likewise, inflections are stored in a bit vector representing inflections. Here, the base form is a simplified form for singular if the term is a noun, infinitive if the term is a verb, and positive if the term is an adjective or adverb.

Leaves in the example can be either the plural form of a noun or the present third person singular of a verb.
Those bits are set, which, when represented as a decimal, add up to be 136.

Lexical Tools: Inflections
Base 1

Comparative 2

Superlative 4

Plural 8

Present Participle 16

Past 32

Past Participle 64

Present 3rd

Person Singular
128

Presenter
Presentation Notes
Here are the basic inflections viewed in their decimal representation.

Lexical Tools: Fielded Input

CategoriesInput
term

leaves noun

Inflections

Presenter
Presentation Notes
If the output knows about category and infection, it would reason that we should be able to tell each tool any category and inflection information about an input term.

We can.
We can put on the input, via fielded input, category and inflection information.
Suppose we have leaves as an input term, and we know we are talking about the leaves, the noun, as in “the leaves of a tree”.

Lexical Tools: Fielded Input

> lvg –f:L –t:1 –cf:2

leaves|128
leaves|leaves|128|8|L|1

Input category fieldInput term field

Presenter
Presentation Notes
On the command line, we tell the tool which field to look for the term, and which field to look for the category information.

On the input, we then can put the categories in the field, using the bit vector form.

Lexical Tools: Post Flow Options

SC Show category names

SI Show inflection names

ccgi Mark the end of the set of variants returned

F:Int[:Int] Specify fields for outputs

ti Display the only input term in the output
when using fielded input

R:Int Restrict the number of variants returned

Output
terms

Input
term

Presenter
Presentation Notes
The lexical tools have some useful post processing options that are of note.
For the most part these options are filters. Though some of these options add information to the end of the processing.
Here are some miscellaneous but useful options.

 Show the categories and inflections in string form, not in bit vector form.

-ccgi, an end of processing marker.

-F followed by the fields you want to have in your output.

-ti Forget about passing through all the input fields, only pass through the field you are picking up the term from.

-R followed by a number to restrict the number of output rows. This is useful, say when you are generating lots of forms, but you only need the top 10.

Lexical Tools: Post Flow Options

Show category names

Show inflection names

> lvg -f:L -SC -SI
phosphoprotein
phosphoprotein|phosphoprotein|<noun>|<base+singular>|L|1|
sclerosing
sclerosing|sclerosing|<adj+verb>|<base+presPart+positive>|L|1|

Show the category and
inflection names

Presenter
Presentation Notes
These options are necessary for those of us who cannot do the math.
 It displays the categories and inflections as strings rather than bit vectors.
I generally use these for debugging purposes.
The fields can get quite long for terms that can be many categories and inflections.

Input
term

Remove possessive

lowercase

Strip punctuation

Remove stop words

Strip diacritics

Word order sort

Output
term

Flow components can be arranged so that the output of one is the input to
another.

Lexical Tools: A Serial Flow

Presenter
Presentation Notes
Here’s an example of such a serial combination. That is,
where the output of one tool serves as
 the input to the next tool.
In this example, we are first lowercasing the input, then stripping diacritics, removing possessives, removing stop words, stripping punctuation, and finally sorting the resulting words in ASCII sort order.
The example shows just how this flow is invoked on the command line.

• Classpath
• NormApi()
• LvgCmdApi()

Lexical Tools:
Embedding These Tools into Your Application

Your application

Input
term Output

terms

Presenter
Presentation Notes

Here’s the section for developers and those that want to embed the lexical tools into their apps.
I’m going to cover the prerequisites, and the basic classes to use, from the simplest to the more featured interfaces.

The full code to the next examples can be found in the appendix to this tutorial, and are distributed as examples within the source code distribution.

http://umlslex.nlm.nih.gov/lvg/2002/docs/userDoc/api.html�

CLASSPATH = ${CLASSPATH}:
${LVG_DIR}:
${LVG_DIR}/lib/lvg2003dist.jar:

Lexical Tools:
Embedding These Tools into Your Application

Presenter
Presentation Notes
But first, some prerequisates: Classpath, classpath, classpath. Here’s what you need to add to your classpath to use our tools.

The LVG_DIR, the lvg2002.jar file, and one of the following depending on if you are using the IDB database or MySQL database.

import gov.nih.nlm.nls.lvg.Api.*;

NormApi normalize = new NormApi();
String input2Norm = null;
Vector outputFromNorm = null;

Lexical Tools:
Embedding Norm into Your Application

Presenter
Presentation Notes
Here are the important pieces of code that are needed to imbed this into your app.

You need to import the Lvg.Api.* packages.
You need to instantiate the NormApi class.
Better have handy a string and a vector variable …

while ((input2Norm = stdIn.readLine()) != null) {

outputFromNorm= normalize.Mutate(input2Norm);
for (int i = 0; i < outputFromNorm.size(); i++) {

System.out.println((String) outputFromNorm.get(i));
}

}
normalize.CleanUp();

Lexical Tools:
Embedding Norm into Your Application

Presenter
Presentation Notes
I’m going to assume that you know how to read terms in from some stream, or method.
This bit of code shows that you can call the normalize.Mutate method over and over again
In a loop. This Mutate method (yes it’s an uppercase M, by design) takes a string as input,
And returns a vector of strings.

This example shows looping through the resulting output vector, printing out the resulting
Normalized terms.

When your done, be nice, clean up. This method closes open files, open database connections.

Your application

LvgCmd
Api

Input
term

Output
terms

Lexical Tools:
Embedding Lvg into Your Application

Presenter
Presentation Notes
Now, for a simple way to embed other lexical tools into your application.
For simple tasks, there is the LvgCmdApi() that takes a term from the input
And returns a vector of strings. It’s similar in structure to the NormApi()

import gov.nih.nlm.nls.lvg.Api.*;

LvgCmdApi lvgApi = new LvgCmdApi(“-f:b –CR:o –SC –SI”);
String input2Lvg = null;
Vector outputFromLvg = null;

Lexical Tools:
Embedding Lvg into Your Application

Presenter
Presentation Notes
Again, you need to import the LvgApi packages.

You will need to instantiate the LvgCmdApi with an argument. The argument is a string.
That string should contain what you would have put on the command line if you were
Running the process from the command line.

Lexical Tools:
Embedding Lvg into Your Application

while ((input2Lvg = stdIn.readLine()) != null) {

outputFromLvg= lvgApi.MutateToString(input2Lvg);

for (int i = 0; i < outputFromLvg.size(); i++) {

System.out.println((String) outputFromLvg.get(i));
}

}

lvgApi.CleanUp();

Presenter
Presentation Notes
This bit of code shows that you can call the normalize.Mutate method over and over again
In a loop. This Mutate method (yes it’s an uppercase M, by design) takes a string as input,
And returns a vector of strings.

This example shows looping through the resulting output vector, printing out the resulting
mutated terms. The output is the same as what would have gone out to standard out
From the command line.

When your done, be nice, clean up. This method closes open files, open database connections.

Metathesaurus
English
Strings

Using The Lexical Tools with
The Metathesaurus

norm Normalized string index

Normalized word index

WordInd

MRXNS.ENG

MRXNW.ENG

Presenter
Presentation Notes
Here’s where the lexical tools fit in with the UMLS Metathesaurus.
The norm program normalizes the Metathesaurus strings to produce the normalized string index. Each normalized string is also associated with three types of identifiers, a concept identifier, a lexical term identifier, and a string identifier. These ids are keys into all the other tables. The normalized string index is then broken into a normalized word index via wordind, carrying along the identifiers.

Using The Lexical Tools with
The Metathesaurus

norm
Normalized string index

Normalized word index

Metathesaurus
Concepts

Query Normed
term

SUIS

Metathesaurus
Concepts that match

The normalized query

Presenter
Presentation Notes
Application developers put the norm program between queries and the Metathesaurus.
Normalized queries are then used get entries from either the normalized string or word index to get the ids to retrieve Metathesaurus concept information.
Metathesaurus concept information is then returned to satisfy the request.

Using The Lexical Tools with
The Metathesaurus

normQuery Normed
term

dry eye syndrome

Dry Eyes
Syndrome

Presenter
Presentation Notes
Here’s a simple minded example. Suppose the query is Dry eyes syndrome.
The query gets normalized.

ENG|dry eye syndrome|C0013238|L0013238|S0004019|
ENG|dry eye syndrome|C0013238|L0013238|S0035652|
ENG|dry eye syndrome|C0013238|L0013238|S0090228|
ENG|dry eye syndrome|C0013238|L0013238|S0090454|
ENG|dry eye syndrome|C0013238|L0013238|S0220550|
ENG|dry eye syndrome|C0013238|L0013238|S0368350|
ENG|dry eye syndrome|C0013238|L0013238|S1459074|

Normed
term SUIS

Using The Lexical Tools with
The Metathesaurus

Presenter
Presentation Notes
All entries that share the normalized form are retreived from the normalized string index. The string unique identifiers to these rows are used ...

Using The Lexical Tools with
The Metathesaurus

C0013238|ENG|P|L0013238|VS |S0004019|Dry eye syndrome
C0013238|ENG|P|L0013238|VS |S0368350|Dry Eye Syndrome
C0013238|ENG|P|L0013238|VS |S1459074|dry eye syndrome
C0013238|ENG|P|L0013238|VWS|S0090228|Syndrome, Dry Eye
C0013238|ENG|P|L0013238|VWS|S0220550|Dry, eye syndrome
C0013238|ENG|P|L0013238|VW |S0090454|Syndromes, Dry Eye

SUIS
MRCON

C0013238|ENG|P|L0013238|PF |S0035652| Dry Eye Syndromes

Presenter
Presentation Notes
To retrieve Metathesurus concept information.
If one of the things you want to return are the the concept names, not the string names for the query, you can review all the returned strings to see which ones are the concept names. I’ve got one of these rows highlighted that indicates that it’s the preferred term for that group of strings, and that group of strings is considered the preferred group for that concept. All told, this is what we consider the concept name.

Building an Index Using The
Lexical Tools

• Can we build a tool that increases precision?

Case

Constrain by part of speech

Filter to the lexicon

• Can we a tool that increases recall?

synonyms

derivations

acronyms and their expansions

spelling variants

Presenter
Presentation Notes
We may want to have case be significant.
Or we may only want to handle words that we know about.

Building an Index Using The
Lexical Tools

Metathesaurus
Strings

String
index

Word index

Wordind

Presenter
Presentation Notes
Just as norm was used to create the normalized word and string index, we can come up with our own.
I’ve got a really small set of rows from the Metatheaurus, that we can use to create an index on, load into mysql, then retrieve via a web page that uses our norm.
We can create our norm by putting our flavor in script that is called by the indexing script as well as the web page behind the query.

Building an Index Using The
Lexical Tools

String index

Metathesaurus
Concepts

Query Transformed
query

SUIS

Metathesaurus
Concepts that match

the transformed query

Presenter
Presentation Notes
On the retrieval side, I’ve created simple java program that calls our norm script to transform the query, retrieves entries from our norm’d index, gets the suis, and uses the suis to get strings from the Metathesaurus.
I’ve got it set up as word index.
Now to demonstrate that ….

Gspell: Introduction

•The GSpell program is a spelling suggestion tool that
uses a mix of algorithms to retrieve close neighbors.
This application is best suited to applications that
index at the word or term level of tokenization.

•BagOWordsPlus is a phrase retrieval tool. This tool is
useful to retrieve closest matching phrases to data such
as strings from the Metathesaurus.

GSpell: Usage
Usage

GSpellFind.[sh|bat]

--dictionary=NameOfDictionary

[--inputFile=Source] [--outputFile=target]

[--truncate=N] [--considerNCandidates=N]

[--maxEditDistance=N]

GSpell: Indexing
Usage

GSpellIndex.[sh|bat]

--dictionary=NameOfDictionary

--inputFile=SourceFile

[--reportTime] [--version][--help]

• Format for the input file
– One word per line

GSpell: Output

anonomous|anonymous|1.0|0.87|NGrams|

anonomous|allonomous|2.0|0.58|NGrams|

anonomous|autonomous|2.0|0.58|NGrams|

anonomous|anadromous|3.0|0.29|NGrams|

anonomous|analogous|3.0|0.29|NGrams|

anonomous|anomalous|3.0|0.29|NGrams|

anonomous|anonymously|3.0|0.29|NGrams|

anonomous|anonymes|3.0|0.29|Metaphone|

anonomous|anonyms|3.0|0.29|Metaphone|

anonomous|acoprous|4.0|0.11|NGrams|

Input Term Suggestion

Edit

Distance Rank Method Message

GSpell: API
import gov.nih.nlm.nls.gspell.GSpell; // <-------These come from the gspell.jar

import gov.nih.nlm.nls.gspell.Candidate;

GSpell gspell = new GSpell(_dictionaryName,
GSpell.READ_ONLY);

Vector candidates = gspell.find(aTerm);

if (candidates != null)

for (int i = 0; i < candidates.length; i++)

System.out.println(candidates[i].toString());

else

System.out.println("No Suggestions");

gspell.cleanup();

BagOWordsPlus: Usage
Usage

BagOWordsPlusFind.[sh|bat]

--dictionary=NameOfDictionary

[--inputFile=Source] [--outputFile=target]

[--truncate=N] [--considerNCandidates=N]

[--maxEditDistance=N]

BagOWordsPlus: Indexing
Usage

BagOWordsPlusIndex.[sh|bat]

--dictionary=NameOfDictionary

--inputFile=SourceFile

[--reportTime] [--version][--help]

• Format for the input file
– One phrase per line

BagOWordsPlus: Output

sleep|sleep|0.0

sleep|S-sleep|2.0

sleep|S sleep|2.0

sleep|REM sleep|4.0

sleep|deep sleep|5.0

Input Term Suggestion

Edit

Distance

BagOWordsPlus: API
import gov.nih.nlm.nls.gspell.BagOWordsPlus; // <-------These come from the gspell.jar

import gov.nih.nlm.nls.gspell.Candidate;

BagOWordsPlus ir = new BagOWordsPlus(args);

Vector candidates = ir.get(aTerm);
if (candidates != null)

for (int i = 0; i < candidates.length; i++)

System.out.println(candidates[i].toString());

else

System.out.println("No Suggestions");

ir.cleanup();

SPECIALIST NLP Tools:
Table of Contents

• Logical/physical views of the functionalities

• The tools as stand-alone applications

– Command line options

– Example output

• API functionalities

– The model of a document

– Parts list

– Structure

– Details: Lexical Element

– Details: Token

Table of Contents

• Example applications using the API's

– Sentence Tokenizer

– Noun Phrase Tokenizer

Introduction: Logical View

• Word Tokenizer

• Term Tokenizer

• Phrase Tokenizer

• Sentence Tokenizer

• Section Tokenizer

Introduction: Physical View

• Section/Sentence/Word Tokenizer

• Term Tokenizer
– a.k.a lexical lookup, term recognizer

• Phrase Tokenizer
– a.k.a phrase chunker, noun phrase extractor, parser

Document

Section

Sentence

Token

•Tokenizes text into

–Sections (paragraphs)

–Sentences

–Tokens

SPME determination of volatile aldehydes for evaluation
of in-vitro antioxidant activity

Elena E. Stashenko, Miguel A. Puertas, Jairo R. Martínez
A1 Chromatography Laboratory, Research Center for
Biomolecules, School of Sciences, Industrial University of
Santander. A.A. 678, Bucaramanga, Colombia

Abstract:
Abstract. The in-vitro antioxidant activity of natural (essential
oils, vitamin E) or synthetic substances (tert-butyl hydroxy
anisole (BHA), Trolox) has been evaluated by monitoring
volatile carbonyl compounds released in model lipid systems
subjected to peroxidation. The procedure employed
methodology previously developed for the determination of
carbonyl compounds as their pentafluorophenylhydrazine
derivatives which were quantified, with high sensitivity, by
means of capillary gas chromatography with electron-capture
detection. Linoleic acid and sunflower oil were used as model
lipid systems. Lipid peroxidation was induced in linoleic acid
by the Fe2+ ion (1 mmol L-1, 37 ˚C, 12 h) and in sunflower oil
by heating in the presence of O2 (220 ˚C, 2 h).

Section/Sentence/Word
Tokenizer

SPECIALIST NLP Tools:
Tokenizer

Usage
tokenize.[bat|sh] [Options]

--fileName=fileName
--outputFileName=fileName
--inputType=[freeText|medlineCitations]
--sections
--sentences
--tokens
--pipedOutput
--indicate_citation_end

SPECIALIST NLP Tools:
Tokenizer

Sentence|1|97|182|But those follow-up tests have been inconclusive, state
and federal officials said.

Token|16|97|99|0|0|But|||
Token|17|101|105|1|0|those|||
Token|18|108|113|2|0|follow|||
Token|19|114|114|2|0|-|||
Token|20|115|116|3|0|up|||
Token|21|118|122|4|0|tests|||
Token|22|124|127|5|0|have|||
Token|23|129|132|6|0|been|||
Token|24|134|145|7|0|inconclusive|||

tokenize.bat --inputFile=5.txt --inputType=freeText --sentences --tokens
--pipedOutput

SPECIALIST NLP Tools:
Tokenizer

// =============+ Create a TokenizeAPI object +==

TokenizeAPI tokenizer = new TokenizeAPI(argv);

// =======================+ Tokenize the file +==

Document aDocument =

tokenizer.processDocument(aFile);
Vector tokens = aDocument.getTokens() ;
int numberOfTokens = tokens.size();

Token aToken = null;

// ====================+ Print the tokens out +==

for (int i = 0; i < numberOfTokens; i++) {

aToken = (Token) tokens.get(i);

System.out.println(aToken.toPipedString());
}

SPME determination of volatile aldehydes for evaluation
of in-vitro antioxidant activity

Elena E. Stashenko, Miguel A. Puertas, Jairo R. Martínez
A1 Chromatography Laboratory, Research Center for
Biomolecules, School of Sciences, Industrial University of
Santander. A.A. 678, Bucaramanga, Colombia

Abstract:
Abstract. The in-vitro antioxidant activity of natural (essential
oils, vitamin E) or synthetic substances (tert-butyl hydroxy
anisole (BHA), Trolox) has been evaluated by monitoring
volatile carbonyl compounds released in model lipid systems
subjected to peroxidation. The procedure employed
methodology previously developed for the determination of
carbonyl compounds as their pentafluorophenylhydrazine
derivatives which were quantified, with high sensitivity, by
means of capillary gas chromatography with electron-capture
detection. Linoleic acid and sunflower oil were used as model
lipid systems. Lipid peroxidation was induced in linoleic acid
by the Fe2+ ion (1 mmol L-1, 37 ˚C, 12 h) and in sunflower oil
by heating in the presence of O2 (220 ˚C, 2 h).

SPECIALIST NLP Tools:
Term Tokenizer

• Chunks tokens
into

terms
– From

SPECIALIST

Lexicon

– From regular

expressions

Document

Section

Sentence

Lexical Element

Usage
LexicalLookup.[bat|sh] [Options]

--fileName=fileName
--outputFileName=fileName
--inputType=[freeText|HTML|medlineCitations]
--sections
--sentences
--lexicalElements
--lexicalEntries
--tokens
--pipedOutput

SPECIALIST NLP Tools:
Term Tokenizer

SPECIALIST NLP Tools:
Term Tokenizer

Lexical Element|12|SHAPE:Unlabeled|unknown|Richmond|67|74

Lexical Element|13|LEXICON|prep|for|76|78

Lexical Element|14|LEXICON|adj|further|80|86

Lexical Element|15|LEXICON|verb|testing|88|94

Lexical Element |16|PUNCTUATION|punctuation|.|95|95

Lexical Element |17|LEXICON|prep|But|97|99

Lexical Element |18|LEXICON|det|those|101|105

Lexical Element |20|LEXICON|adj|follow-up|108|116

Lexical Element |23|LEXICON|noun|tests|118|122

Lexical Element |24|LEXICON|aux|have|124|127

LexicalLookup.bat --inputFile=5.txt --inputType=freeText
--lexicalElements --lexicalEntries --pipedOutput

SPECIALIST NLP Tools:
Term Tokenizer

Lexical Element|17|LEXICON|prep|But|97|99
LexicalEntry|but|conj|base|E0014465
LexicalEntry|but|prep|base|E0014464

Lexical Element|18|LEXICON|det|those|101|105
LexicalEntry|those|det|plural|E0060728
LexicalEntry|those|pron|base|E0060729

Lexical Element|20|LEXICON|adj|follow-up|108|116
LexicalEntry|follow-up|adj|base|E0028422

Lexical Element|23|LEXICON|noun|tests|118|122
LexicalEntry|tests|verb|pres3s|E0060349
LexicalEntry|tests|noun|plural|E0060348

LexicalLookup.bat --inputFile=5.txt --inputType=freeText
--lexicalElements --lexicalEntries --pipedOutput

SPECIALIST NLP Tools:
Term Tokenizer

// ==========+ Create a LexicalLookupAPI object +==

LexicalLookupAPI look = new LexicalLookupAPI(argv);

// ============================+ Chunk the file +==

Document aDocument = look.processDocument(aFile);

Vector les = aDocument.getLexicalElements();
int numberOfLexElements = les.size();

LexicalElement aLexElement = null;

// =============+ Print the LexicalElements out +==

for (int i = 0; i< numberOfLexElements; i++) {

aLexElement = (LexicalElement) les.get(i);

System.out.println(aLexElement.toPipedString());
}

SPECIALIST NLP Tools:
Phrase Tokenizer

• Chunks sentences

into simple phrases

Document

Section 1

Sentence 1

Lexical Element 1

Sentences

Phrases

LexicalElements

Tokens

Sections

SPECIALIST NLP Tools:
Phrase Tokenizer

Usage
npParser.[bat|sh] [Options]

--fileName=fileName
--outputFileName=fileName
--inputType=[freeText|HTML|medlineCitations]
--sections
--sentences
--phrases|--nps|--mincoMan
--lexicalElements
--lexicalEntries
--tokens
--pipedOutput

SPECIALIST NLP Tools:
Phrase Tokenizer

Phrase|0|0|10|The company|company

Phrase|1|12|14|has|

Phrase|2|16|24|forwarded|

Phrase|3|26|39|some materials|materials

Phrase|4|41|62|to a state laboratory|state laboratory

Phrase|5|64|74|in Richmond|Richmond

Phrase|6|76|86|for further|further

Phrase|7|88|94|testing|

npParser.bat --inputFile=5.txt --inputType=freeText --phrases
--pipedOutput

SPECIALIST NLP Tools:
Phrase Tokenizer

// ====================+ Create a Parser object +==

Parser parser = new Parser(argv);

// ============================+ Parse the file +==

Document aDocument = parser.processDocument(aFile);

Vector phrases = aDocument.getPhrase() ;
Int numberOfPhrases = phrases.size();

Phrase aPhrase = null;

// =====================+ Print the Phrases out +==

for (int i = 0; i < numberOfPhrases; i++) {

aPhrase = (Phrase) phrases.get(i);

System.out.println(aPhrase.toPipedString());
}

Document: A Model
How it’s put together

Image from: www.themodelcarmuseum.org/ 49box0.jpg

Document Model: Parts List

– Sections

– Sentences

– Phrases

– Terms

– Words

– Lexicon Entries

SPME determination of volatile aldehydes for evaluation of in-vitro
antioxidant activity

Elena E. Stashenko, Miguel A. Puertas, Jairo R. Martínez
A1 Chromatography Laboratory, Research Center for Biomolecules,
School of Sciences, Industrial University of Santander. A.A. 678,
Bucaramanga, Colombia

Abstract:
Abstract. The in-vitro antioxidant activity of natural (essential oils,
vitamin E) or synthetic substances (tert-butyl hydroxy anisole (BHA),
Trolox) has been evaluated by monitoring volatile carbonyl compounds
released in model lipid systems subjected to peroxidation. The
procedure employed methodology previously developed for the
determination of carbonyl compounds as their
pentafluorophenylhydrazine derivatives which were quantified, with high
sensitivity, by means of capillary gas chromatography with electron-
capture detection. Linoleic acid and sunflower oil were used as model
lipid systems. Lipid peroxidation was induced in linoleic acid by the Fe2+

ion (1 mmol L-1, 37 ˚C, 12 h) and in sunflower oil by heating in the
presence of O2 (220 ˚C, 2 h).

Document Model: Parts List

– Sections

– Sentences

– Phrases

– Terms

– Words

– Lexicon Entries

SPME determination of volatile aldehydes for evaluation of in-vitro
antioxidant activity

Elena E. Stashenko, Miguel A. Puertas, Jairo R. Martínez
A1 Chromatography Laboratory, Research Center for Biomolecules,
School of Sciences, Industrial University of Santander. A.A. 678,
Bucaramanga, Colombia

Abstract:
The in-vitro antioxidant activity of natural (essential oils, vitamin E) or
synthetic substances (tert-butyl hydroxy anisole (BHA), Trolox) has
been evaluated by monitoring volatile carbonyl compounds released in
model lipid systems subjected to peroxidation. The procedure
employed methodology previously developed for the determination of
carbonyl compounds as their pentafluorophenylhydrazine derivatives
which were quantified, with high sensitivity, by means of capillary gas
chromatography with electron-capture detection. Linoleic acid and
sunflower oil were used as model lipid systems. Lipid peroxidation was
induced in linoleic acid by the Fe2+ ion (1 mmol L-1, 37 ˚C, 12 h) and in
sunflower oil by heating in the presence of O2 (220 ˚C, 2 h).

T
itle

A
bstract

Document Model: Parts List

– Sections

– Sentences

– Phrases

– Terms

– Words

– Lexicon Entries

SPME determination of volatile aldehydes for evaluation of in-vitro
antioxidant activity

Elena E. Stashenko, Miguel A. Puertas, Jairo R. Martínez
A1 Chromatography Laboratory, Research Center for Biomolecules,
School of Sciences, Industrial University of Santander. A.A. 678,
Bucaramanga, Colombia

Abstract:
The in-vitro antioxidant activity of natural (essential oils, vitamin E) or
synthetic substances (tert-butyl hydroxy anisole (BHA), Trolox) has
been evaluated by monitoring volatile carbonyl compounds released in
model lipid systems subjected to peroxidation. The procedure
employed methodology previously developed for the determination of
carbonyl compounds as their pentafluorophenylhydrazine derivatives
which were quantified, with high sensitivity, by means of capillary gas
chromatography with electron-capture detection. Linoleic acid and
sunflower oil were used as model lipid systems. Lipid peroxidation was
induced in linoleic acid by the Fe2+ ion (1 mmol L-1, 37 ˚C, 12 h) and in
sunflower oil by heating in the presence of O2 (220 ˚C, 2 h).

Document Model: Parts List

– Sections

– Sentences

– Phrases

– Terms

– Words

– Lexicon Entries

SPME determination of volatile aldehydes for evaluation of in-vitro
antioxidant activity

Elena E. Stashenko, Miguel A. Puertas, Jairo R. Martínez
A1 Chromatography Laboratory, Research Center for Biomolecules,
School of Sciences, Industrial University of Santander. A.A. 678,
Bucaramanga, Colombia

Abstract:
The in-vitro antioxidant activity of natural (essential oils, vitamin E) or
synthetic substances (tert-butyl hydroxy anisole (BHA), Trolox) has
been evaluated by monitoring volatile carbonyl compounds released in
model lipid systems subjected to peroxidation. The procedure
employed methodology previously developed for the determination of
carbonyl compounds as their pentafluorophenylhydrazine derivatives
which were quantified, with high sensitivity, by means of capillary gas
chromatography with electron-capture detection. Linoleic acid and
sunflower oil were used as model lipid systems. Lipid peroxidation was
induced in linoleic acid by the Fe2+ ion (1 mmol L-1, 37 ˚C, 12 h) and in
sunflower oil by heating in the presence of O2 (220 ˚C, 2 h).

Document Model: Parts List

– Sections

– Sentences

– Phrases

– Terms

– Words

– Lexicon Entries

SPME determination of volatile aldehydes for evaluation of in-vitro
antioxidant activity

Elena E. Stashenko, Miguel A. Puertas, Jairo R. Martínez
A1 Chromatography Laboratory, Research Center for Biomolecules,
School of Sciences, Industrial University of Santander. A.A. 678,
Bucaramanga, Colombia

Abstract:
The in-vitro antioxidant activity of natural (essential oils, vitamin E) or
synthetic substances (tert-butyl hydroxy anisole (BHA), Trolox) has
been evaluated by monitoring volatile carbonyl compounds released in
model lipid systems subjected to peroxidation. The procedure
employed methodology previously developed for the determination of
carbonyl compounds as their pentafluorophenylhydrazine derivatives
which were quantified, with high sensitivity, by means of capillary gas
chromatography with electron-capture detection. Linoleic acid and
sunflower oil were used as model lipid systems. Lipid peroxidation was
induced in linoleic acid by the Fe2+ ion (1 mmol L-1, 37 ˚C, 12 h) and in
sunflower oil by heating in the presence of O2 (220 ˚C, 2 h).

Multi-word term
single-word term

Document Model: Parts List

– Sections

– Sentences

– Phrases

– Terms

– Words

– Lexicon Entries

SPME determination of volatile aldehydes for evaluation of in-vitro
antioxidant activity

Elena E. Stashenko, Miguel A. Puertas, Jairo R. Martínez
A1 Chromatography Laboratory, Research Center for Biomolecules,
School of Sciences, Industrial University of Santander. A.A. 678,
Bucaramanga, Colombia

Abstract:
The in-vitro antioxidant activity of natural (essential oils, vitamin E) or
synthetic substances (tert-butyl hydroxy anisole (BHA), Trolox) has
been evaluated by monitoring volatile carbonyl compounds released in
model lipid systems subjected to peroxidation. The procedure
employed methodology previously developed for the determination of
carbonyl compounds as their pentafluorophenylhydrazine derivatives
which were quantified, with high sensitivity, by means of capillary gas
chromatography with electron-capture detection. Linoleic acid and
sunflower oil were used as model lipid systems. Lipid peroxidation was
induced in linoleic acid by the Fe2+ ion (1 mmol L-1, 37 ˚C, 12 h) and in
sunflower oil by heating in the presence of O2 (220 ˚C, 2 h).

Document Model: Parts List

– Sections

– Sentences

– Phrases

– Terms

– Words

– Lexicon Entries
Specialist Lexicon

Document Model: Parts List

– Sections

– Sentences

– Phrases

– Terms

– Words

– Lexicon
Entries

Specialist Lexicon

Document Model: Structure

Document Model: Structure

Sentence

Section

Document

Token

One to Many
Relationship

Phrase

Lexical
Element

Document Model: Structure

Sentence

Section

Document

Token

One to Many
Relationship

Phrase

Lexical
Element

Document Model: Structure

Sentence

Section

Document

Token

One to Many
Relationship

Phrase

Lexical
Element

Document Model: Structure

Sentence

Section

Document

Token

One to Many
Relationship

Phrase

Lexical
Element

Document Model: Structure

Token

One to Many
Relationship

Lexical
Element

Lexical
Entry

Document Model:
Lexical Element

SPME determination of volatile aldehydes for evaluation of in-vitro
antioxidant activity

Elena E. Stashenko, Miguel A. Puertas, Jairo R. Martínez
A1 Chromatography Laboratory, Research Center for Biomolecules,
School of Sciences, Industrial University of Santander. A.A. 678,
Bucaramanga, Colombia

Abstract:
The in-vitro antioxidant activity of natural (essential oils, vitamin E) or
synthetic substances (tert-butyl hydroxy anisole (BHA), Trolox) has
been evaluated by monitoring volatile carbonyl compounds released in
model lipid systems subjected to peroxidation. The procedure
employed methodology previously developed for the determination of
carbonyl compounds as their pentafluorophenylhydrazine derivatives
which were quantified, with high sensitivity, by means of capillary gas
chromatography with electron-capture detection. Linoleic acid and
sunflower oil were used as model lipid systems. Lipid peroxidation was
induced in linoleic acid by the Fe2+ ion (1 mmol L-1, 37 ˚C, 12 h) and in
sunflower oil by heating in the presence of O2 (220 ˚C, 2 h).

Multi-word term

single-word term

vitamin E

Document Model:
Lexical Element

Token:
E

Lexical Element:

Vitamin E
Token: vitamin

Token: E

Token:
vitamin

Token:
vitamin

Token:
E

Lexical Entry:
{base=vitamin E
entry=E0064781
cat=noun

Tagger
Part of
speech

tag

Document Model:
Token

Token

Part of Speech Tag
Span

Span

Char begin offset
Char end offset

Document Model:
Phrase

Phrase
String displayTags()
String displayVariants()
List getAllVariants()
UMLS_ConceptPointer getConceptPointer()
UMLS_ConceptPointer[] getConcepts()
List getDerivedPhrases()
ArrayList getFinalMappings()
List getLexicalElements()
List getNp()
String getNpString()
List getNpTokens()
String getOriginalString()

Phrase (cont.)
int getPhrasePosition()
int getSizeOfPhrase()
String getTrimmedString()
boolean isOfPhrase()
boolean isPrepPhrase()
String toMincoManString()
String toMoString()
String toPipedString()
String toString()
String toSyntaxString()

Assembly Instructions

Term Tokenizer
SPME determination of volatile aldehydes for evaluation
of in-vitro antioxidant activity

Elena E. Stashenko, Miguel A. Puertas, Jairo R. Martínez
A1 Chromatography Laboratory, Research Center for
Biomolecules, School of Sciences, Industrial University of
Santander. A.A. 678, Bucaramanga, Colombia

Abstract:
Abstract. The in-vitro antioxidant activity of natural (essential
oils, vitamin E) or synthetic substances (tert-butyl hydroxy
anisole (BHA), Trolox) has been evaluated by monitoring
volatile carbonyl compounds released in model lipid systems
subjected to peroxidation. The procedure employed
methodology previously developed for the determination of
carbonyl compounds as their pentafluorophenylhydrazine
derivatives which were quantified, with high sensitivity, by
means of capillary gas chromatography with electron-capture
detection. Linoleic acid and sunflower oil were used as model
lipid systems. Lipid peroxidation was induced in linoleic acid
by the Fe2+ ion (1 mmol L-1, 37 ˚C, 12 h) and in sunflower oil
by heating in the presence of O2 (220 ˚C, 2 h).

Sentence

Lexical Element

Token Lexical
Entry

Phrase Tokenizer
SPME determination of volatile aldehydes for evaluation
of in-vitro antioxidant activity

Elena E. Stashenko, Miguel A. Puertas, Jairo R. Martínez
A1 Chromatography Laboratory, Research Center for
Biomolecules, School of Sciences, Industrial University of
Santander. A.A. 678, Bucaramanga, Colombia

Abstract:
Abstract. The in-vitro antioxidant activity of natural (essential
oils, vitamin E) or synthetic substances (tert-butyl hydroxy
anisole (BHA), Trolox) has been evaluated by monitoring
volatile carbonyl compounds released in model lipid systems
subjected to peroxidation. The procedure employed
methodology previously developed for the determination of
carbonyl compounds as their pentafluorophenylhydrazine
derivatives which were quantified, with high sensitivity, by
means of capillary gas chromatography with electron-capture
detection. Linoleic acid and sunflower oil were used as model
lipid systems. Lipid peroxidation was induced in linoleic acid
by the Fe2+ ion (1 mmol L-1, 37 ˚C, 12 h) and in sunflower oil
by heating in the presence of O2 (220 ˚C, 2 h).

Sentence

Lexical Element

Token Lexical
Entry

	Slide Number 1
	Slide Number 2
	Lexical Tools: Introduction
	Lexical Tools: Introduction
	Lexical Tools: Introduction
	Lexical Tools: WordInd
	Lexical Tools: WordInd
	Lexical Tools: WordInd
	Lexical Tools: WordInd
	Lexical Tools: Norm
	Lexical Tools: Norm
	Lexical Tools: Norm
	Lexical Tools: Norm�
	Lexical Tools: Norm�
	Lexical Tools: Norm�
	Lexical Tools: Norm�
	Lexical Tools: Norm�
	Lexical Tools: Norm�
	Lexical Tools: Norm
	Lexical Tools
	Lexical Tools: Flow Components
	Lexical Tools: Flows
	Lexical Tools: Flows
	Lexical Tools: Fielded Output
	Lexical Tools: Fielded Output
	Lexical Tools: Categories
	Lexical Tools: Categories
	Lexical Tools: Inflections
	Lexical Tools: Inflections
	Lexical Tools: Fielded Input
	Lexical Tools: Fielded Input
	Lexical Tools: Post Flow Options
	Lexical Tools: Post Flow Options
	Lexical Tools: A Serial Flow
	Lexical Tools:� Embedding These Tools into Your Application
	Lexical Tools:� Embedding These Tools into Your Application
	Lexical Tools:� Embedding Norm into Your Application
	Lexical Tools:� Embedding Norm into Your Application
	Lexical Tools:� Embedding Lvg into Your Application
	Lexical Tools:� Embedding Lvg into Your Application
	Lexical Tools:� Embedding Lvg into Your Application
	Using The Lexical Tools with The Metathesaurus
	Using The Lexical Tools with The Metathesaurus
	Using The Lexical Tools with The Metathesaurus
	Using The Lexical Tools with The Metathesaurus
	Using The Lexical Tools with The Metathesaurus
	Building an Index Using The Lexical Tools
	Building an Index Using The Lexical Tools
	Building an Index Using The Lexical Tools
	Slide Number 50
	Gspell: Introduction
	GSpell: Usage
	GSpell: Indexing
	GSpell: Output
	GSpell: API
	BagOWordsPlus: Usage
	BagOWordsPlus: Indexing
	BagOWordsPlus: Output
	BagOWordsPlus: API
	SPECIALIST NLP Tools:�Table of Contents
	Table of Contents
	Introduction: Logical View
	Introduction: Physical View
	Section/Sentence/Word Tokenizer
	SPECIALIST NLP Tools: Tokenizer
	SPECIALIST NLP Tools: Tokenizer
	SPECIALIST NLP Tools: Tokenizer
	SPECIALIST NLP Tools: �Term Tokenizer
	SPECIALIST NLP Tools: �Term Tokenizer
	SPECIALIST NLP Tools: �Term Tokenizer
	SPECIALIST NLP Tools: �Term Tokenizer
	SPECIALIST NLP Tools: �Term Tokenizer
	SPECIALIST NLP Tools: �Phrase Tokenizer
	SPECIALIST NLP Tools: �Phrase Tokenizer
	SPECIALIST NLP Tools: �Phrase Tokenizer
	SPECIALIST NLP Tools: �Phrase Tokenizer
	Document: A Model
	Document Model: Parts List
	Document Model: Parts List
	Document Model: Parts List
	Document Model: Parts List
	Document Model: Parts List
	Document Model: Parts List
	Document Model: Parts List
	Document Model: Parts List
	Document Model: Structure
	Document Model: Structure
	Document Model: Structure
	Document Model: Structure
	Document Model: Structure
	Document Model: Structure
	Document Model: �Lexical Element
	Document Model: �Lexical Element
	Document Model: �Token
	Document Model: �Phrase
	Assembly Instructions
	Slide Number 97
	Term Tokenizer
	Phrase Tokenizer

