
36 IT Pro May/June 2012 P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 1520-9202/12/$31.00 © 2012 IEEE

E-HEaltH tEcHnologiEs

Chris J. Lu, Lynn McCreedy, Destinee Tormey, and Allen C. Browne, US National Library of Medicine

Medical language processing seeks to analyze linguistic patterns in
electronic medical records, which requires managing lexical variations.
A systematic approach to generating derivational variants, including
prefixes, suffixes, and zero derivations, has improved precision and
recall rates.

T
he demand for natural language pro-
cessing (NLP) in medicine has grown
significantly in recent years and is only
expected to increase due to the con-

tinuing adoption of electronic medical records
(EMRs). Medical language processing (MLP)
seeks to analyze linguistic patterns found not
only in EMRs but also in published biomedical
research, clinical trial reports, and other sources.
Natural language has a great deal of lexical varia-
tion, so managing this variability is an important
key to MLP’s success.1,2

Since 1994, the US National Library of Medicine
(NLM) has been distributing its SPECIALIST
Lexicon, a large syntactic lexicon of biomedical

and general English, as one of the Unified Medi-
cal Language System (UMLS) knowledge sources.
The lexicon (denoted “Specialist” Lexicon through-
out), along with Lexical Tools and the Metath-
esaurus (a collection of multiple vocabularies,
code sets, and standards), provide the NLP and
MLP communities with rich NLP resources and
an extensive NLP toolset.3 One of these tools,
Lexical Variant Generation (LVG), is designed to
handle lexical variations (a key factor determin-
ing precision and recall in NLP applications) and
generate derivational variants.

Here, we present a novel systematic approach to
automatically generating derivational variants using
LVG in conjunction with the Specialist Lexicon.

A Systematic
Approach for
Medical Language
Processing:
Generating Derivational
Variants

itpro-14-03-Lu.indd 36 5/2/12 12:25 PM

 computer.org/ITPro 3 7

The Specialist Lexicon
The Lexicon was designed to provide the lexi-
cal information needed for the Specialist NLP
system,4 which includes SemRep (an application
for automatic semantic interpretation), MetaMap
(an application that maps biomedical text to the
Metathesaurus concepts), and the Lexical Tools.
Each lexicon entry records the syntactic, mor-
phological, and orthographic information that
the Specialist NLP system needs. This informa-
tion includes a syntactic category, inflectional
variation, spelling variation, abbreviations, acro-
nyms, and allowable complementation patterns.

Building Lexical Records
NLM linguists build lexical records through a
Web-based tool called LexBuild (http://umlslex.
nlm.nih.gov/lexBuild). Integrated into this tool is
the LexCheck software package (http://umlslex.
nlm.nih.gov/lexCheck), which validates the re-
cords’ syntax and contents in real time. Lex-
Check also provides Java APIs to convert the
lexical records into three forms—text, XML, and
Java objects—for NLP research using the Spe-
cialist Lexicon. In addition to these three for-
mats, computer programs generate more than
14 LR (lexical records) files in a relational table
format (expressing the same information). The
programs then distribute these files to maximize
their usefulness for different NLP applications.
Each table contains lexical information retrieved
from the Specialist Lexicon, such as lexical-
record agreement and inflection, abbreviation
and acronym, and spelling variations.

The Lexicon (http://umlslex.nlm.nih.gov/lexicon)
comprises all of this information and makes it
searchable through a Web tool called LexAccess
(http://umlslex.nlm.nih.gov/lexAccess). With this
comprehensive computer-aided system, the Lexi-
con has grown from 66,059 records and 112,990
forms with its first release in 1994 to 462,129 re-
cords and 836,066 forms in the 2012 release, pro-
viding many NLP projects a corpus with wider
coverage and higher quality.

Lexical Variant Generation
The Specialist Lexical Tools provide a compre-
hensive toolset for lexical variant generation and
other NLP tasks in MLP. In particular, the set
includes the LVG tool (http://umlslex.nlm.nih.
gov/lvg), which helps with lexical variation as well

as other fundamental and commonly used NLP
functions, such as normalization, Unicode-to-
ASCII conversions, tokenization, and stopword
removal. Each function is represented as a flow
component (f low) in LVG. The 2012 release
of the Lexical Tools set includes seven tools,
62 flows, 37 options, and Java APIs.

LVG uses the Lexicon to generate lexical vari-
ants. A set of computer programs retrieves lexical
information from the Lexicon and automatically
generates relational database tables for lexical
variations. These tables are updated annually
with each new Lexicon release. The derivational
variants table, however, is manually maintained
because there’s no direct derivational informa-
tion coded in the Lexicon.

Derivational Variant Generation in LVG
Derivational processes such as suffixation and
prefixation create new words based on existing
words. Words are derivational variants of each

other if they’re related by a derivational process.
They need not be synonymous, and, in fact, deri-
vation often entails a complete change in meaning.

For example, the adjective “unkind,” the ad-
verb “kindly,” and the noun “kind” are all derived
from the adjective “kind” though the derivational
processes of prefixation (“un”), suffixation (“ly”),
and zero derivation (category change without
affixation—in this case, changing an adjective
to a noun), respectively. Because we’re interested
in relatedness rather than history, we don’t re-
cord the direction of derivation but consider each
member of a derivational pair (dPair) a derivational
variant of the other without regard to which came
first. We code the information that such a dPair
exists (not including which word is the root word)
in LVG for use in NLP applications.

Figure 1 shows the derivational network for
the “kind” family. Each link and the associ-
ated two nodes in derivational network define a
dPair. For example, kindness|noun and kind|adj

The Lexicon has grown to 462,129
records and 836,066 forms, providing
many NLP projects a corpus with wider
coverage and higher quality.

itpro-14-03-Lu.indd 37 5/2/12 12:25 PM

38 IT Pro May/June 2012

E-HEaltH tEcHnologiEs

are a dPair because they connect directly. This
dPair is coded in LVG’s derivational fact table
as kindness|noun|kind|adj. Derivational pairs
include base forms as well as syntactic category
information, are bidirectional, and can be catego-
rized into three types: prefix derivation (prefixD),
suffix derivation (suffixD), and zero derivation
(zeroD). Each dPair can only involve one deriva-
tional affix (or none) in the case of zero derivation.
This isn’t to say that each pair of terms can only
contain one derivational affix—just that only one
affix will be pertinent to a given dPair.

In contrast, terms that aren’t directly con-
nected don’t constitute a dPair. For example,
kindness|noun and kindly|adv aren’t a dPair
because they connect through kind|adj. LVG
handles both cases via two derivational genera-
tion flow components: direct (-f:d) and recursive
(-f:R). The recursive derivational flow also pro-
vides the distance (number of dPairs involved).
For example, kindness|noun and kindly|adv
have a distance of two because two dPairs are
involved.

Using the LVG derivational flow components
lets users find closely related terms that might
differ in syntactic category but are nonetheless
usefully related. For example, if the source vo-
cabulary includes hyperuricemic|adj, the deri-
vational variant generation flow will map it to
hyperuricemia|noun, which is a UMLS Meta-
thesaurus term (http://umls.nlm.nih.gov). More
information, such as concepts (C0740394—the
concept unique identifier for “hyperuricemia”)
and synonyms, can be retrieved from the Meta-
thesaurus for further NLP analysis.

The LVG derivational flow component is based
on a “Rules and Facts” paradigm designed to cap-
ture the morphological relations between terms.
It’s handled by a list of known dPairs (Facts) and

a set of rules with exceptions (Rules). Derivational
rules should exhibit high frequency and have a
high precision rate. In practice, Rules-generated
derivational variants tend to have higher coverage
(recall rates) with lower precision rates. A list of
known exceptions for each rule is added to in-
crease the precision.

Before the 2012 release, our linguists manu-
ally maintained derivational Facts and Rules.
The maintenance task involved collecting,
validating, and tagging dPairs, and it required
derivational analysis, which is complicated
when more than one affix is involved. For ex-
ample, multioptional|adj could be derived from
optional|adj with the prefix “multi” or from
multioption|noun with suffix “al.” It’s even more
complicated when more affixes are involved,
such as “pseudo-hyper-para-thyroid-ism.” In such
cases, we must check the usage of all related
words and determine the order of derivation for
accurate analysis and tagging. This process is
time consuming and labor intensive, which is
why derivational Facts and Rules in LVG haven’t
grown proportionally with the Lexicon.

A Systematic Approach
Here we present a systematic approach to semi-
automated data-mining processes for generating
dPairs of prefixD, suffixD, and zeroD for LVG
using information already contained in the 2012
Lexicon.

Prefix Derivations
Placing a prefix at the beginning of a base word
to form another word creates a prefixD pair. We
developed a series of computer-aided processes
to generate prefixD pairs. First, the Lexical Sys-
tems Group (LSG) collects 143 unique and com-
monly used prefixes for derivations. We include
both prefixes (such as “re”) and combining forms
(such as “multi”), because both could generate
prefixD pairs. The LSG updates this prefix list5
annually with the Lexical Tools release.

Second, the LSG retrieves all base forms (cita-
tions and spelling variants) from the Lexicon.

Third, three types of raw prefixD pairs are gen-
erated if they match the following prefix patterns:

•	 prefix: nonsignificant|significant;
•	 prefix and a dash: non-significant|significant; or
•	 prefix and a space: non significant|significant.

Figure 1. Derivational network example for the
“kind” family. Each link and the associated two
nodes in derivational network define a dPair.

kindness | noun

kind | noun

kindly | adv unkindly | adv

unkind | adjkind | adj

unkindness | noun

kindliness | noun unkindliness | noun

itpro-14-03-Lu.indd 38 5/2/12 12:25 PM

 computer.org/ITPro 3 9

We then sent the resulting 115,139 raw prefixD
pairs to our linguists for final tagging.

Because of limited resources for this labor-
intensive process, the LSG decided to tag only
the most frequent and user-requested prefixes in
the Lexicon for the 2012 release. Of the 86,333
tagged prefixD pairs, 65.67 percent (56,694)
were valid. Among the valid prefixD pairs, 24.54
percent (13,914) involved a category change,
such as the prefixD pair fog|noun|antifog|adj,
in which the category changes from noun to
adjective. Also, 0.83 percent (472) of valid
prefixD pairs involved abbreviations or ac-
ronyms (such as “MDR,” the acronym for
“multidrug resistance,” which occurs in the
valid prefixD pair MDR|noun|antiMDR|adj).
Accordingly, no category filter, abbreviation
filter, or acronym filter was implemented in
the prefixD generation program to preserve
the high recall rate. The prefixD tagging re-
sults were recorded so that only data newly
added to the Lexicon will be tagged for future
releases.

Table 1 shows the frequency ranking, pre-
fix word, raw prefixD counts (percentage), and
valid prefixD counts (percentage) of prefixD
pairs found in the Lexicon. The maximum valid
rate (80.31 percent) of the prefix “post” and the
average valid rate (65.67 percent) weren’t high
enough to implement prefixD rules to autogen-
erate prefixD pairs.

Suffix Derivation Facts
and Nominalizations
In linguistics, a suffix is an affix placed after a
word stem. We limit our scope on suffix deri-
vation Facts (SD-Facts) to suffixes that create
nominalizations, because this information is en-
coded in the Specialist Lexicon. Nominalization
is a process that relates a verb or adjective to a
synonymous noun with matching complemen-
tation. Nominalization derivation (nomD) is a
type of suffixD.

We developed a series of computer-aided pro-
cesses to retrieve nomD. First, nominalization
information in the lexical records is retrieved
from the Java object format of the Specialist
Lexicon. For example, state|verb|statement|noun
is retrieved from nominalization=statement|noun|
E0057700 in the lexical record for the verb “state”
in the Lexicon, as follows:

{base=state
entry=E0057695
 cat=verb
 variants=reg
 tran=fincomp(t)
 tran=np
 tran=whfincomp
 tran=whinfcomp:arbc
 cplxtran=np,infcomp:objr
 nominalization=statement|noun|
 E0057700
}

Note that the nominalization is symmetric
(bidirectional), so the code nominalization_of=
state|verb|E0057695 is in the lexical record of
“statement.” In our system, only one nomD pair
(of these two symmetric nomD pairs) is added to
remove the redundancy. We found 14,445 raw
nomD pairs in the Lexicon. NomD pairs are
overgenerated, and filter algorithms subsequently
eliminate invalid nomD pairs.

Pattern filter. The most common way to nomi-
nalize a verb is to add a suffix, but not every
nominalization occurs that way. Thus, not ev-
ery nominalization is a derivation. Nominal-
izations with verb particles are identified as
invalid derivations. We identify four patterns of
verb particle nominalizations as invalid nomD
pairs and presented associated examples in
Table 2.

In Table 2, the “base” and “infl” represent base
forms and inflectional variants of the base forms,
respectively. Particles are classified as preposi-
tions in the Lexicon. However, the preposition
“per” isn’t included in the particle list because
it filters out valid nomD pairs. For example,
shopper|noun|shop|verb is a valid nomD pair and
shouldn’t be removed.

Table 1. Statistical data for the most frequent, tagged,
and raw prefixD pairs.

Frequency
ranking Prefix Raw prefixD Valid prefixD

1 non 16,471 (14.31%) 12,598 (76.49%)

2 pre 9,651 (8.38%) 7,224 (74.85%)

3 post 9,490 (8.24%) 7,621 (80.31%)

4 anti 6,500 (5.65%) 5,051 (77.71%)

5 sub 4,262 (3.70%) 2,698 (63.30%)

tagged pairs 86,333 (74.98%) 56,694 (65.67%)

Raw pairs 115,139 (100%)

itpro-14-03-Lu.indd 39 5/2/12 12:25 PM

40 IT Pro May/June 2012

E-HEaltH tEcHnologiEs

Exception filter. Other known invalid nomD
pairs from nominalizations are filtered out as ex-
ceptions. These are identified by linguists from
a computer-generated list comparing the first
and last three characters between base forms of
dPairs. Some of these exceptions are

•	 face-saving|noun|save|verb,
•	 decision-making|noun|make|verb, and
•	 lovemaking|noun|make|verb.

As a result, filter programs removed 0.5 percent
(72) nomD pairs, so 99.5 percent (14,373) of
nomD pairs are valid dPairs from Lexicon. These
program-generated nomD pairs are used for the
SD-Facts table in LVG.

Suffix Derivation Rules
In addition to SD-Facts, LVG also uses SD-
Rules to generate suffixD variants to cover
suffixDs that aren’t nomD. LSG derives 97 SD-
Rules6 from the most common English suffixes
for derivations in LVG. For example, the suffix
“ment” can be added to a verb to create a noun,
which is then the suffix derivational variant of
the word. Thus, adding “ment” to “retire” cre-
ates “retirement,” expressible as the suffixD pair
retire|verb|retirement|noun.

SD-Rules can be applied to generate suffixD
pairs in both directions. This SD-Rule is coded in
the following format in LVG: $|verb|ment$|noun,
where “$” means the end of the word. SD-Rules
are stored and retrieved through a persistent
Trie7 mechanism for generating suffixD vari-
ants in the LVG rule-based generation. Again,
the SD-Rules over-generate suffixD pairs. Four
heuristic algorithms are implemented in LVG to
eliminate these nonrealistic derivational variants
and increase precision.

The first is the exception filter, which handles
exceptions (invalid dPairs) for each SD-Rule.
For example, depart|verb|department|noun is
an invalid suffixD pair that is filtered out and
added to the exception list for the SD-Rules

listed earlier. Linguists maintain exceptions
for each rule and implement them as part
of Trie.

The second algorithm addresses minimum
word length. If a term is too short (less than
three characters is the default), the word is usu-
ally an acronym or abbreviation and SD-Rules
shouldn’t be applied. For example, mo|verb
generated from moment|noun is an invalid suf-
fixD pair and is removed because “mo” is too
short.

The third algorithm addresses the minimum
stem length in the Trie. The stem length is the
length of the word minus the length of its suffix.
If the stem is too short (less than three characters
is the default), usually the generated suffix deri-
vational variants are invalid. For example, the stem
size of “lament” is two, so the invalid suffixD pair
lament|noun|la|verb is removed.

The final algorithm is the domain filter. It
lets users eliminate invalid results in which the
SD-Rules generate suffixD pairs that aren’t both
in the Lexicon. For example, “colorment|noun,”
an SD-Rules generated derivational variant of
“color|verb,” is eliminated because it’s not in the
Lexicon.

These last three algorithms are configurable in
LVG to provide more flexibility for different NLP
goals.

SD-Rules Validation
We developed a set of programs to validate SD-
Rules using SD-Facts. First, a program identifies
possible SD-Rules by stripping the same starting
characters of each valid dPair in SD-Facts. For ex-
ample, an SD-Rule of ion$|noun|e$|verb is iden-
tified by stripping “locat” from “location” and
“locate” in the dPair location|noun|locate|verb. In
this way, we can identify 496 possible SD-Rules
from SD-Facts.

These identified possible SD-Rules must be
further analyzed and decomposed by adding lin-
guistic knowledge to form more finely-grained
SD-Rules that have high precision and frequency

Table 2. Verb particle nominalizations identified as invalid nominalization derivation
(nomD) pairs.

Pattern Invalid nomD pairs Example

1 baseParticle|noun|base|verb backup|noun|back|verb

2 base-Particle|noun|base|verb cut-through|noun|cut|verb

3 inflParticle|noun|base|verb grownup|nou|grow|verb

4 infl-Particle|noun|base|verb salting-in|noun|salt|verb

itpro-14-03-Lu.indd 40 5/2/12 12:25 PM

 computer.org/ITPro 41

so they can be used in LVG for automatic Rules-
generated derivations. For example, the SD-Rule
ion$|noun|e$|verb is identified with 1,694 in-
stances in the SD-Facts. We can further ana-
lyze this rule into seven linguistic SD-Rules (see
Table 3). The two most frequent SD-Rules of
this example are used in LVG. Table 4 shows
that LVG uses seven SD-Rules from the five
most frequently identified SD-Rules from the
SD-Facts.

Zero Derivations
Zero derivation is a linguistic process that assigns
an already existing word to a new syntactic cat-
egory without any concomitant change in form.
This process is also known as a functional shift
or conversion. For example, flex|noun|flex|verb
is a zeroD pair. As expected, the zeroD pair has
the same base form (“flex”) and different cat-
egory (noun and verb). We developed a series
of computer-aided processes to generate zeroD
pairs.

First, the base forms and category informa-
tion can be retrieved because they’re coded
in the Lexicon. All words from the Lexicon
with the same base form but different categories
are paired up as a raw zeroD pair list.

Next, a filter algorithm is applied to eliminate
two types of invalid zeroD pairs: abbreviations
and acronyms and all words with a length of
less than two. This information can be retrieved
from the Lexicon in the Java object format for
the filter algorithm. For example, the invalid
zeroD pair AAIR|noun|AAIR|adj is removed
because “AAIR” is coded as an acronym in the
Lexicon.

At this point, the filtered zeroD pairs list in-
cludes all possible zeroD pairs. Our linguists
then go through this list for final tagging
to remove invalid zeroD pairs. For example,
round|adj|round|prep is an invalid zeroD pair be-
cause their etymologies are unrelated. The tags

of all zeroD pairs are recorded so that future
releases will require only newly added Lexicon
data to be tagged.

The result shows that programs automati-
cal ly f i ltered out 10.52 percent (1,935) raw
zeroD pairs (18,400), so 80.14 percent (14,747)
of raw zeroD pairs are valid. Given these re-
sults, no zeroD Rules are identified because of
the relatively low precision rate of valid dPairs
(80.14 percent).

Final Compile
An affix validation program validates all dPairs
from prefixD, suffixD, and zeroD by checking
the first and last three characters between base
forms to ensure only one affix is involved. An
exception filter used in this program preserves
valid dPairs. For example, long|adj|length|noun
is valid (an exception) even though “long” and
“length” have different first and last three
characters.

This exception filter also accounts for spelling
variants. For example, “dysmature” is a spelling
variant of “dismature.” Therefore, the exception
filter passes dysmaturity|noun|dismature|adj as a
valid dPair.

Table 3. Suffix Derivation (SD) Rules from ion$|noun|e$|verb (“$” indicates the end of the word).

Linguistic SD-Rules Example No.

ation$|noun|ate$|verb location|noun|locate|verb 1,547

sion$|noun|se$|verb tension|noun|tense|verb 77

ution$|noun|ute$|verb delution|noun|delute|verb 37

etion$|noun|ete$|verb completion|noun|complete|verb 22

otion$|noun|ote$|verb devotion|noun|devote|verb 6

ition$|noun|ite$|verb ignition|noun|ignite|verb 4

cion$|noun|ce$|verb coercion|noun|coerce|verb 1

Table 4. The five most frequent SD-Rules identified
from SD-Facts.

Identified rules SD-Rules in LVG Counts

ness$|noun|$|adj ness$|noun|$|adj 2,481

ion$|noun|e$|verb

ation$|noun|ate$|verb 1,547

sion$|noun|se$|verb 77

others ... 70

ity$|noun|$|adj ity$|noun|$|adj 881

icity$|noun|ic$|adj 745

ility$|noun|le$|adj ability$|noun|able$|adj 1,036

others ... 253

ation$|noun|e$|verb ation$|noun|e$|verb 1,133

itpro-14-03-Lu.indd 41 5/2/12 12:25 PM

42 IT Pro May/June 2012

E-HEaltH tEcHnologiEs

Finally, the three validated lists of dPairs
(prefixD, suffixD, and zeroD) are combined
and used as Facts in LVG derivational variants
generation.

U sing the systematic data-mining ap-
proach, various filter algorithms, and
expert tagging processes for the Lexi-

cal Tools 2012 release resulted in a dramatic in-
crease in dPairs Facts in the LVG—from 4,559
to 89,950. Ideally, the precision in Facts should
reach virtually 100 percent, assuming an error-
free tagging process. These improvements in
both precision and recall rates provide better
results in NLP applications when using the Spe-
cialist Lexical Tools.

For future releases, in addition to the annual
update processes to generate dPairs from the lat-
est Lexicon, three new tasks will be necessary.
First, we’ll update the prefix list and complete
tagging processes for all collected prefixes to in-
crease coverage of prefixD pairs.

Second, we’ll develop a set of processes to
retrieve more dPairs in suffixD Facts by suf-
fix list (not limited to nomD) and thoroughly
validate LVG SD-Rules and associated excep-
tions by all possible raw suffixD pairs in the
Lexicon to ensure the quality of generated suf-
fixD pairs.

Finally, we’ll further investigate the possibility
of including syntactic category and other linguis-
tic knowledge for rules-based-generated dPairs
and more rules-based filters on zeroD and prefixD
pairs.

References
 1. M.G. Pacak, L.M. Norton, and G.S. Dunham,

“Morphosemantic Analysis of -ITIS Forms in Medi-
cal Language,” J. Methods of Information in Medicine,
vol. 19, no. 2, 1980, pp. 99–105.

 2. S. Wolff, “Automatic Coding of Medical Vocabu-
lary,” Medical Information Processing—Computer Man-
agement of Narrative Data, Addison Wesley, 1987,
pp. 145–162.

 3. A.T. McCray et al., “UMLS Knowledge for Biomedi-
cal Language Processing,” Bull. Medical Library Assoc.,
vol. 81, no. 2, 1993, pp. 184–194.

 4. A.T. McCray, S. Srinivasan, and A.C. Browne, “Lexi-
cal Methods for Managing Variation in Biomedical
Terminologies,” Proc. 18th Ann. Symp. Computer

Applications in Medical Care, Am. Medical Informatics
Assoc., 1994, pp. 235–239.

 5. “Derivational Prefix List,” Lexical Tools 2012, Nov.
2011; http:// lexsrv3.nlm.nih.gov/LexSysGroup/
Projects/lvg/2012/docs/designDoc/UDF/derivations/
prefixList.html.

 6. “Derivational Suffix Rules,” Lexical Tools 2012,
Oct. 2011; http://lexsrv3.nlm.nih.gov/LexSysGroup/
Projects/lvg/2012/docs/designDoc/UDF/derivations/
suffixRules.html.

 7. A.V. Aho, J.D. Ullman, J.E. Hopcroft, Data Structure
and Algorithms, Addison Wesley, 1983, pp. 163–169.

Chris J. Lu is a systems architect in the Lexical Systems
Group (LSG) at the US National Library of Medicine.
His research interests include natural language processing,
software development, and system integration. Lu received
his PhD in computer integrated manufacturing and design
(CIMAD) in the mechanical engineering department of the
University of Maryland. He’s a member of the American
Medical Informatics Association (AMIA). Contact him at
lu@nlm.nih.gov.

Lynn McCreedy is a linguist and lexicographer for the
UMLS Specialist Lexicon at the US National Library of
Medicine. Her research interests include discourse analy-
sis and sociolinguistics. McCreedy received her PhD in
linguistics from Georgetown University. Contact her at
mccreedy@nlm.nih.gov.

Destinee Tormey is a linguist and lexicographer for the
UMLS Specialist Lexicon at the US National Library
of Medicine. Her research interests include natural lan-
guage processing, corpus linguistics, and computational
linguistics. Tormey received her MS in computational lin-
guistics from Georgetown University. Contact her at dln4@
georgetown.edu.

Allen C. Browne is an information research special-
ist at the Lister Hill Center in the US National Li-
brary of Medicine, where he’s the leader of the Lexical
Systems Group. His research interests include natural
language processing, biomedical informatics, and socio-
linguistics. Browne received his MS in linguistics from
Georgetown University. Contact him at browne@nlm.
nih.gov.

 Selected CS articles and columns are available
 for free at http://ComputingNow.computer.org.

itpro-14-03-Lu.indd 42 5/2/12 12:25 PM

