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Medical language processing seeks to analyze linguistic patterns in 
electronic medical records, which requires managing lexical variations. 
A systematic approach to generating derivational variants, including 
prefixes, suffixes, and zero derivations, has improved precision and 
recall rates.

T
he demand for natural language pro-
cessing (NLP) in medicine has grown 
significantly in recent years and is only 
expected to increase due to the con-

tinuing adoption of electronic medical records 
(EMRs). Medical language processing (MLP) 
seeks to analyze linguistic patterns found not 
only in EMRs but also in published biomedical 
research, clinical trial reports, and other sources. 
Natural language has a great deal of lexical varia-
tion, so managing this variability is an important 
key to MLP’s success.1,2

Since 1994, the US National Library of Medicine 
(NLM) has been distributing its SPECIALIST 
Lexicon, a large syntactic lexicon of biomedical 

and general English, as one of the Unified Medi-
cal Language System (UMLS) knowledge sources. 
The lexicon (denoted “Specialist” Lexicon through-
out), along with Lexical Tools and the Metath-
esaurus (a collection of multiple vocabularies, 
code sets, and standards), provide the NLP and 
MLP communities with rich NLP resources and 
an extensive NLP toolset.3 One of these tools, 
Lexical Variant Generation (LVG), is designed to 
handle lexical variations (a key factor determin-
ing precision and recall in NLP applications) and 
generate derivational variants.

Here, we present a novel systematic approach to 
automatically generating derivational variants using 
LVG in conjunction with the Specialist Lexicon.

A Systematic 
Approach for 
Medical Language 
Processing:
Generating Derivational 
Variants
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The Specialist Lexicon
The Lexicon was designed to provide the lexi-
cal information needed for the Specialist NLP 
system,4 which includes SemRep (an application 
for automatic semantic interpretation), MetaMap 
(an application that maps biomedical text to the 
Metathesaurus concepts), and the Lexical Tools. 
Each lexicon entry records the syntactic, mor-
phological, and orthographic information that 
the Specialist NLP system needs. This informa-
tion includes a syntactic category, inflectional 
variation, spelling variation, abbreviations, acro-
nyms, and allowable complementation patterns.

Building Lexical Records
NLM linguists build lexical records through a 
Web-based tool called LexBuild (http://umlslex.
nlm.nih.gov/lexBuild). Integrated into this tool is 
the LexCheck software package (http://umlslex.
nlm.nih.gov/lexCheck), which validates the re-
cords’ syntax and contents in real time. Lex-
Check also provides Java APIs to convert the 
lexical records into three forms—text, XML, and 
Java objects—for NLP research using the Spe-
cialist Lexicon. In addition to these three for-
mats, computer programs generate more than 
14 LR (lexical records) files in a relational table 
format (expressing the same information). The 
programs then distribute these files to maximize 
their usefulness for different NLP applications. 
Each table contains lexical information retrieved 
from the Specialist Lexicon, such as lexical- 
record agreement and inflection, abbreviation 
and acronym, and spelling variations.

The Lexicon (http://umlslex.nlm.nih.gov/lexicon) 
comprises all of this information and makes it 
searchable through a Web tool called LexAccess 
(http://umlslex.nlm.nih.gov/lexAccess). With this 
comprehensive computer-aided system, the Lexi-
con has grown from 66,059 records and 112,990 
forms with its first release in 1994 to 462,129 re-
cords and 836,066 forms in the 2012 release, pro-
viding many NLP projects a corpus with wider 
coverage and higher quality.

Lexical Variant Generation
The Specialist Lexical Tools provide a compre-
hensive toolset for lexical variant generation and 
other NLP tasks in MLP. In particular, the set 
includes the LVG tool (http://umlslex.nlm.nih.
gov/lvg), which helps with lexical variation as well 

as other fundamental and commonly used NLP 
functions, such as normalization, Unicode-to-
ASCII conversions, tokenization, and stopword 
removal. Each function is represented as a flow  
component (f low) in LVG. The 2012 release  
of the Lexical Tools set includes seven tools, 
62 flows, 37 options, and Java APIs.

LVG uses the Lexicon to generate lexical vari-
ants. A set of computer programs retrieves lexical 
information from the Lexicon and automatically 
generates relational database tables for lexical 
variations. These tables are updated annually 
with each new Lexicon release. The derivational 
variants table, however, is manually maintained 
because there’s no direct derivational informa-
tion coded in the Lexicon.

Derivational Variant Generation in LVG
Derivational processes such as suffixation and 
prefixation create new words based on existing 
words. Words are derivational variants of each 

other if they’re related by a derivational process. 
They need not be synonymous, and, in fact, deri-
vation often entails a complete change in meaning.

For example, the adjective “unkind,” the ad-
verb “kindly,” and the noun “kind” are all derived 
from the adjective “kind” though the derivational 
processes of prefixation (“un”), suffixation (“ly”), 
and zero derivation (category change without  
affixation—in this case, changing an adjective 
to a noun), respectively. Because we’re interested 
in relatedness rather than history, we don’t re-
cord the direction of derivation but consider each 
member of a derivational pair (dPair) a derivational 
variant of the other without regard to which came 
first. We code the information that such a dPair 
exists (not including which word is the root word) 
in LVG for use in NLP applications.

Figure 1 shows the derivational network for 
the “kind” family. Each link and the associ-
ated two nodes in derivational network define a 
dPair. For example, kindness|noun and kind|adj 

The Lexicon has grown to 462,129 
records and 836,066 forms, providing 
many NLP projects a corpus with wider 
coverage and higher quality.
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are a dPair because they connect directly. This 
dPair is coded in LVG’s derivational fact table 
as kindness|noun|kind|adj. Derivational pairs 
include base forms as well as syntactic category 
information, are bidirectional, and can be catego-
rized into three types: prefix derivation (prefixD), 
suffix derivation (suffixD), and zero derivation 
(zeroD). Each dPair can only involve one deriva-
tional affix (or none) in the case of zero derivation.  
This isn’t to say that each pair of terms can only 
contain one derivational affix—just that only one 
affix will be pertinent to a given dPair.

In contrast, terms that aren’t directly con-
nected don’t constitute a dPair. For example, 
kindness|noun and kindly|adv aren’t a dPair 
because they connect through kind|adj. LVG 
handles both cases via two derivational genera-
tion flow components: direct (-f:d) and recursive 
(-f:R). The recursive derivational flow also pro-
vides the distance (number of dPairs involved). 
For example, kindness|noun and kindly|adv 
have a distance of two because two dPairs are  
involved.

Using the LVG derivational flow components 
lets users find closely related terms that might 
differ in syntactic category but are nonetheless 
usefully related. For example, if the source vo-
cabulary includes hyperuricemic|adj, the deri-
vational variant generation flow will map it to 
hyperuricemia|noun, which is a UMLS Meta-
thesaurus term (http://umls.nlm.nih.gov). More 
information, such as concepts (C0740394—the 
concept unique identifier for “hyperuricemia”) 
and synonyms, can be retrieved from the Meta-
thesaurus for further NLP analysis.

The LVG derivational flow component is based 
on a “Rules and Facts” paradigm designed to cap-
ture the morphological relations between terms. 
It’s handled by a list of known dPairs (Facts) and 

a set of rules with exceptions (Rules). Derivational 
rules should exhibit high frequency and have a 
high precision rate. In practice, Rules-generated 
derivational variants tend to have higher coverage 
(recall rates) with lower precision rates. A list of 
known exceptions for each rule is added to in-
crease the precision. 

Before the 2012 release, our linguists manu-
ally maintained derivational Facts and Rules. 
The maintenance task involved collecting, 
validating, and tagging dPairs, and it required 
derivational analysis, which is complicated 
when more than one affix is involved. For ex-
ample, multioptional|adj could be derived from 
optional|adj with the prefix “multi” or from 
multioption|noun with suffix “al.” It’s even more 
complicated when more affixes are involved, 
such as “pseudo-hyper-para-thyroid-ism.” In such  
cases, we must check the usage of all related 
words and determine the order of derivation for 
accurate analysis and tagging. This process is 
time consuming and labor intensive, which is 
why derivational Facts and Rules in LVG haven’t 
grown proportionally with the Lexicon.

A Systematic Approach
Here we present a systematic approach to semi-
automated data-mining processes for generating 
dPairs of prefixD, suffixD, and zeroD for LVG 
using information already contained in the 2012 
Lexicon.

Prefix Derivations
Placing a prefix at the beginning of a base word 
to form another word creates a prefixD pair. We 
developed a series of computer-aided processes 
to generate prefixD pairs. First, the Lexical Sys-
tems Group (LSG) collects 143 unique and com-
monly used prefixes for derivations. We include 
both prefixes (such as “re”) and combining forms 
(such as “multi”), because both could generate 
prefixD pairs. The LSG updates this prefix list5 
annually with the Lexical Tools release.

Second, the LSG retrieves all base forms (cita-
tions and spelling variants) from the Lexicon.

Third, three types of raw prefixD pairs are gen-
erated if they match the following prefix patterns:

•	 prefix: nonsignificant|significant;
•	 prefix and a dash: non-significant|significant; or
•	 prefix and a space: non significant|significant.

Figure 1. Derivational network example for the 
“kind” family. Each link and the associated two 
nodes in derivational network define a dPair.

kindness | noun

kind | noun

kindly | adv unkindly | adv

unkind | adjkind | adj

unkindness | noun

kindliness | noun unkindliness | noun
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We then sent the resulting 115,139 raw prefixD 
pairs to our linguists for final tagging.

Because of limited resources for this labor- 
intensive process, the LSG decided to tag only 
the most frequent and user-requested prefixes in 
the Lexicon for the 2012 release. Of the 86,333 
tagged prefixD pairs, 65.67 percent (56,694) 
were valid. Among the valid prefixD pairs, 24.54 
percent (13,914) involved a category change, 
such as the prefixD pair fog|noun|antifog|adj, 
in which the category changes from noun to 
adjective. Also, 0.83 percent (472) of valid 
prefixD pairs involved abbreviations or ac-
ronyms (such as “MDR,” the acronym for 
“multidrug resistance,” which occurs in the 
valid prefixD pair MDR|noun|antiMDR|adj). 
Accordingly, no category filter, abbreviation 
filter, or acronym filter was implemented in 
the prefixD generation program to preserve 
the high recall rate. The prefixD tagging re-
sults were recorded so that only data newly 
added to the Lexicon will be tagged for future  
releases.

Table 1 shows the frequency ranking, pre-
fix word, raw prefixD counts (percentage), and 
valid prefixD counts (percentage) of prefixD 
pairs found in the Lexicon. The maximum valid 
rate (80.31 percent) of the prefix “post” and the 
average valid rate (65.67 percent) weren’t high 
enough to implement prefixD rules to autogen-
erate prefixD pairs.

Suffix Derivation Facts  
and Nominalizations
In linguistics, a suffix is an affix placed after a 
word stem. We limit our scope on suffix deri-
vation Facts (SD-Facts) to suffixes that create 
nominalizations, because this information is en-
coded in the Specialist Lexicon. Nominalization 
is a process that relates a verb or adjective to a 
synonymous noun with matching complemen-
tation. Nominalization derivation (nomD) is a 
type of suffixD.

We developed a series of computer-aided pro-
cesses to retrieve nomD. First, nominalization 
information in the lexical records is retrieved 
from the Java object format of the Specialist 
Lexicon. For example, state|verb|statement|noun  
is retrieved from nominalization=statement|noun| 
E0057700 in the lexical record for the verb “state” 
in the Lexicon, as follows:

{base=state
entry=E0057695
 cat=verb
 variants=reg
 tran=fincomp(t)
 tran=np
 tran=whfincomp
 tran=whinfcomp:arbc
 cplxtran=np,infcomp:objr
 nominalization=statement|noun|
  E0057700
}

Note that the nominalization is symmetric 
(bidirectional), so the code nominalization_of= 
state|verb|E0057695 is in the lexical record of 
“statement.” In our system, only one nomD pair 
(of these two symmetric nomD pairs) is added to 
remove the redundancy. We found 14,445 raw 
nomD pairs in the Lexicon. NomD pairs are 
overgenerated, and filter algorithms subsequently 
eliminate invalid nomD pairs.

Pattern filter. The most common way to nomi-
nalize a verb is to add a suffix, but not every 
nominalization occurs that way. Thus, not ev-
ery nominalization is a derivation. Nominal-
izations with verb particles are identified as 
invalid derivations. We identify four patterns of 
verb particle nominalizations as invalid nomD 
pairs and presented associated examples in  
Table 2.

In Table 2, the “base” and “infl” represent base 
forms and inflectional variants of the base forms, 
respectively. Particles are classified as preposi-
tions in the Lexicon. However, the preposition 
“per” isn’t included in the particle list because 
it filters out valid nomD pairs. For example, 
shopper|noun|shop|verb is a valid nomD pair and 
shouldn’t be removed.

Table 1. Statistical data for the most frequent, tagged, 
and raw prefixD pairs.

Frequency 
ranking Prefix Raw prefixD Valid prefixD

1 non 16,471 (14.31%) 12,598 (76.49%)

2 pre 9,651 (8.38%) 7,224 (74.85%)

3 post 9,490 (8.24%) 7,621 (80.31%)

4 anti 6,500 (5.65%) 5,051 (77.71%)

5 sub 4,262 (3.70%) 2,698 (63.30%)

tagged pairs  86,333 (74.98%) 56,694 (65.67%)

Raw pairs 115,139 (100%)
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Exception filter. Other known invalid nomD 
pairs from nominalizations are filtered out as ex-
ceptions. These are identified by linguists from 
a computer-generated list comparing the first 
and last three characters between base forms of 
dPairs. Some of these exceptions are

•	 face-saving|noun|save|verb,
•	 decision-making|noun|make|verb, and
•	 lovemaking|noun|make|verb.

As a result, filter programs removed 0.5 percent 
(72) nomD pairs, so 99.5 percent (14,373) of 
nomD pairs are valid dPairs from Lexicon. These 
program-generated nomD pairs are used for the 
SD-Facts table in LVG.

Suffix Derivation Rules
In addition to SD-Facts, LVG also uses SD-
Rules to generate suffixD variants to cover 
suffixDs that aren’t nomD. LSG derives 97 SD-
Rules6 from the most common English suffixes 
for derivations in LVG. For example, the suffix 
“ment” can be added to a verb to create a noun, 
which is then the suffix derivational variant of 
the word. Thus, adding “ment” to “retire” cre-
ates “retirement,” expressible as the suffixD pair 
retire|verb|retirement|noun.

SD-Rules can be applied to generate suffixD 
pairs in both directions. This SD-Rule is coded in 
the following format in LVG: $|verb|ment$|noun, 
where “$” means the end of the word. SD-Rules 
are stored and retrieved through a persistent 
Trie7 mechanism for generating suffixD vari-
ants in the LVG rule-based generation. Again, 
the SD-Rules over-generate suffixD pairs. Four 
heuristic algorithms are implemented in LVG to 
eliminate these nonrealistic derivational variants 
and increase precision.

The first is the exception filter, which handles 
exceptions (invalid dPairs) for each SD-Rule. 
For example, depart|verb|department|noun is 
an invalid suffixD pair that is filtered out and 
added to the exception list for the SD-Rules 

listed earlier. Linguists maintain exceptions 
for each rule and implement them as part  
of Trie.

The second algorithm addresses minimum 
word length. If a term is too short (less than 
three characters is the default), the word is usu-
ally an acronym or abbreviation and SD-Rules 
shouldn’t be applied. For example, mo|verb 
generated from moment|noun is an invalid suf-
fixD pair and is removed because “mo” is too  
short.

The third algorithm addresses the minimum 
stem length in the Trie. The stem length is the 
length of the word minus the length of its suffix. 
If the stem is too short (less than three characters  
is the default), usually the generated suffix deri-
vational variants are invalid. For example, the stem 
size of “lament” is two, so the invalid suffixD pair 
lament|noun|la|verb is removed.

The final algorithm is the domain filter. It 
lets users eliminate invalid results in which the  
SD-Rules generate suffixD pairs that aren’t both 
in the Lexicon. For example, “colorment|noun,” 
an SD-Rules generated derivational variant of 
“color|verb,” is eliminated because it’s not in the 
Lexicon.

These last three algorithms are configurable in 
LVG to provide more flexibility for different NLP 
goals.

SD-Rules Validation
We developed a set of programs to validate SD-
Rules using SD-Facts. First, a program identifies 
possible SD-Rules by stripping the same starting 
characters of each valid dPair in SD-Facts. For ex-
ample, an SD-Rule of ion$|noun|e$|verb is iden-
tified by stripping “locat” from “location” and 
“locate” in the dPair location|noun|locate|verb. In 
this way, we can identify 496 possible SD-Rules 
from SD-Facts.

These identified possible SD-Rules must be 
further analyzed and decomposed by adding lin-
guistic knowledge to form more finely-grained 
SD-Rules that have high precision and frequency 

Table 2. Verb particle nominalizations identified as invalid nominalization derivation  
(nomD) pairs.

Pattern Invalid nomD pairs Example

1 baseParticle|noun|base|verb backup|noun|back|verb

2 base-Particle|noun|base|verb cut-through|noun|cut|verb

3 inflParticle|noun|base|verb grownup|nou|grow|verb

4 infl-Particle|noun|base|verb salting-in|noun|salt|verb
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so they can be used in LVG for automatic Rules-
generated derivations. For example, the SD-Rule 
ion$|noun|e$|verb is identified with 1,694 in-
stances in the SD-Facts. We can further ana-
lyze this rule into seven linguistic SD-Rules (see  
Table 3). The two most frequent SD-Rules of 
this example are used in LVG. Table 4 shows 
that LVG uses seven SD-Rules from the five 
most frequently identified SD-Rules from the  
SD-Facts.

Zero Derivations
Zero derivation is a linguistic process that assigns 
an already existing word to a new syntactic cat-
egory without any concomitant change in form. 
This process is also known as a functional shift 
or conversion. For example, flex|noun|flex|verb 
is a zeroD pair. As expected, the zeroD pair has 
the same base form (“flex”) and different cat-
egory (noun and verb). We developed a series 
of computer-aided processes to generate zeroD 
pairs.

First, the base forms and category informa-
tion can be retrieved because they’re coded  
in the Lexicon. All words from the Lexicon 
with the same base form but different categories 
are paired up as a raw zeroD pair list.

Next, a filter algorithm is applied to eliminate 
two types of invalid zeroD pairs: abbreviations 
and acronyms and all words with a length of 
less than two. This information can be retrieved 
from the Lexicon in the Java object format for 
the filter algorithm. For example, the invalid 
zeroD pair AAIR|noun|AAIR|adj is removed 
because “AAIR” is coded as an acronym in the  
Lexicon.

At this point, the filtered zeroD pairs list in-
cludes all possible zeroD pairs. Our linguists 
then go through this list for final tagging 
to remove invalid zeroD pairs. For example, 
round|adj|round|prep is an invalid zeroD pair be-
cause their etymologies are unrelated. The tags 

of all zeroD pairs are recorded so that future 
releases will require only newly added Lexicon 
data to be tagged.

The result shows that programs automati-
cal ly f i ltered out 10.52 percent (1,935) raw  
zeroD pairs (18,400), so 80.14 percent (14,747) 
of raw zeroD pairs are valid. Given these re-
sults, no zeroD Rules are identified because of 
the relatively low precision rate of valid dPairs  
(80.14 percent).

Final Compile
An affix validation program validates all dPairs 
from prefixD, suffixD, and zeroD by checking 
the first and last three characters between base 
forms to ensure only one affix is involved. An 
exception filter used in this program preserves 
valid dPairs. For example, long|adj|length|noun 
is valid (an exception) even though “long” and 
“length” have different first and last three 
characters.

This exception filter also accounts for spelling 
variants. For example, “dysmature” is a spelling 
variant of “dismature.” Therefore, the exception 
filter passes dysmaturity|noun|dismature|adj as a 
valid dPair.

Table 3. Suffix Derivation (SD) Rules from ion$|noun|e$|verb (“$” indicates the end of the word).

Linguistic SD-Rules Example No.

ation$|noun|ate$|verb location|noun|locate|verb 1,547

sion$|noun|se$|verb tension|noun|tense|verb 77

ution$|noun|ute$|verb delution|noun|delute|verb 37

etion$|noun|ete$|verb completion|noun|complete|verb 22

otion$|noun|ote$|verb devotion|noun|devote|verb 6

ition$|noun|ite$|verb ignition|noun|ignite|verb 4

cion$|noun|ce$|verb coercion|noun|coerce|verb 1

Table 4. The five most frequent SD-Rules identified 
from SD-Facts.

Identified rules SD-Rules in LVG Counts

ness$|noun|$|adj ness$|noun|$|adj 2,481

ion$|noun|e$|verb 

 

ation$|noun|ate$|verb 1,547

sion$|noun|se$|verb 77

others ... 70

ity$|noun|$|adj ity$|noun|$|adj 881

icity$|noun|ic$|adj 745

ility$|noun|le$|adj ability$|noun|able$|adj 1,036

others ... 253

ation$|noun|e$|verb ation$|noun|e$|verb 1,133
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Finally, the three validated lists of dPairs 
(prefixD, suffixD, and zeroD) are combined 
and used as Facts in LVG derivational variants 
generation.

U sing the systematic data-mining ap-
proach, various filter algorithms, and 
expert tagging processes for the Lexi-

cal Tools 2012 release resulted in a dramatic in-
crease in dPairs Facts in the LVG—from 4,559 
to 89,950. Ideally, the precision in Facts should 
reach virtually 100 percent, assuming an error-
free tagging process. These improvements in 
both precision and recall rates provide better 
results in NLP applications when using the Spe-
cialist Lexical Tools.

For future releases, in addition to the annual 
update processes to generate dPairs from the lat-
est Lexicon, three new tasks will be necessary. 
First, we’ll update the prefix list and complete 
tagging processes for all collected prefixes to in-
crease coverage of prefixD pairs.

Second, we’ll develop a set of processes to 
retrieve more dPairs in suffixD Facts by suf-
fix list (not limited to nomD) and thoroughly 
validate LVG SD-Rules and associated excep-
tions by all possible raw suffixD pairs in the 
Lexicon to ensure the quality of generated suf-
fixD pairs.

Finally, we’ll further investigate the possibility 
of including syntactic category and other linguis-
tic knowledge for rules-based-generated dPairs 
and more rules-based filters on zeroD and prefixD 
pairs. 
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