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ABSTRACT 

The burden of cervical cancer disproportionately falls on low- and middle-income countries (LMICs).  Automated 
visual evaluation (AVE) is a technology being considered as an adjunct tool for the management of HPV-positive 
women.  AVE involves analysis of a white light illuminated cervical image using machine learning classifiers. It is of 
importance to analyze various impacts of different kinds of image degradations on AVE. In this paper, we report our 
work regarding the impact of one type of image degradation, Gaussian noise, and one of its remedies we have been 
exploring. The images, originated from the Natural History Study (NHS) and ASCUS-LSIL Triage Study (ALTS), 
were modified by the addition of white Gaussian noise at different levels. The AVE pipeline used in the experiments 
consists of two deep learning components:  a cervix locator which uses RetinaNet (an object detection network), and 
a binary pathology classifier that uses the ResNeSt network. Our findings indicate that Gaussian noise, which 
frequently appears in low light conditions, is a key factor in degrading the AVE’s performance. A blind image 
denoising technique which uses Variational Denoising Network (VDNet) was tested on a set of 345 digitized 
cervigram images (115 positives) and evaluated both visually and quantitatively. AVE performances on both the 
synthetically generated noisy images and the corresponding denoised images were examined and compared. In 
addition, the denoising technique was evaluated on several real noisy cervix images captured by a camera-based 
imaging device used for AVE that have no histology confirmation. The comparison between the AVE performances 
on images with and without denoising shows that denoising can be effective at mitigating classification performance 
degradation. 
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1. INTRODUCTION
Cervical cancer is one of the most common cancers affecting women’s health worldwide with the greatest impact in 
low- and middle-income countries (LMICs) where 84% of the new cases and almost 90% of the deaths occur [1]. 
Early detection and prevention are important for reducing morbidity and mortality rate. In LMICs, “visual inspection 
with acetic acid” (VIA) is commonly used for cervical cancer screening. The technique uses naked-eye human visual 
evaluation of the uterine cervix and its changes after the application of weak acetic acid. VIA is simple, inexpensive, 
and has the merit of providing screening result and possible treatment at the same visit. However, the performance on 
predicting lesions through VIA has been observed to be inadequate due to high inter- and intra-reader variability [2].  

To improve the VIA performance, medical practitioners and field workers in several screening programs have been 
equipped with relatively inexpensive and easy-to-use mobile colposcope and imaging devices [3,4]. Such programs 
mainly use digital images for the training of nurses or practitioners in VIA in combination with remote consultation 
with experienced colposcopists and, minimally, for documentation of clinical examination. More recently, with the 
advance and promise of deep learning in other applications, we and other researchers have been employing deep 
learning techniques to automatically analyze the captured cervical images to identify abnormal cases [5,6]. Such 
approaches are named automated visual evaluation (AVE). 



Although AVE has demonstrated its promise in proof-of-concept works [5,6], there are a number of challenges need 
to be addressed for real-world usage. One of them is image quality control. The aim of image quality control is to 
acquire standardized “good-quality” images of cervix as well as identifying and filtering out “bad/low quality” images. 
The variance among appearance of images is usually large due to variations in device, light source, woman age and 
parity, cervix anatomy and condition, and decision and discretion of users. Image quality can be affected by both non-
clinical factors and clinical factors. Non-clinical factors that may cause quality degradation include blur, glare, 
shadow, noise, zoom, angle, embedded text, low contrast, discolor, occlusion of clinical instruments, among others. 
Clinical factors contain cervix 4-quadrant visibility, existence of blood or mucus that blocks the cervix region, 
transformation zone visibility, post-surgery or treatment, or non-precancerous pathology. To improve or control image 
quality, there are three general approaches: 1) strengthening user training; 2) improving hardware (optics and light 
source); and 3) developing automatic aided methods. To the end of development of automatic methods, our previous 
work includes filtering out non-cervix images [7], identifying green-filtered images and iodine-applied images [8], 
separating sharp images from non-sharp images [9], and deblurring blurry images [10]. We also have been working 
on analyzing the effects of various image quality degradation factors on the performance of AVE and exploring ways 
to alleviate the issues. In this paper, we focus and report our work regarding one of the image quality degradation 
factors, image noise. 
 
It is common to have some degree of noise in digital images. The extent of digital camera introduced noise can be due 
to several factors such as the amount of scene illumination, camera sensitivity setting, duration of exposure, and color 
temperature setting. Image noise becomes more significant when the images are taken in low light situations. The 
cervix is the lowermost portion of uterus and is located at the end of the vaginal canal (with length around 4-10cm 
and mid-lower average width around 3cm, respectively [11]). Unlike the colposcopes used in clinics for the 
examination of the cervix, low-cost alternative imaging devices that could be used in LMIC (such as smartphones) 
often do not have optical zoom capability and may lack sufficient illumination. As a result, images taken with low-
cost imaging devices for AVE may have noticeable image noise and the level of image noise may be significant. Some 
key questions are: whether and how significantly image noise degrades AVE model performance? To answer these 
questions, we carried out experiments to quantitively examine and evaluate the AVE results on different levels of 
image noise. We confirmed that noise (and the level at which it) affects AVE results considerably.  
 
Besides the approaches of improving the imaging device and user training so that captured images are as clear as 
possible in the first place, there are several other ways to deal with image noise, especially for the images that have 
already been captured. Those approaches include: 1) making the AVE models more robust to noise; 2) using a method 
to identify noisy images and asking users to retake images if the image is too noisy; and, 3) using a method to denoise 
the images automatically. We have been exploring and pursuing on all these directions. In this paper, we report our 
work on the last approach, i.e., reducing the image noise by applying a denoising method. In the following sections, 
we describe the dataset used, the AVE pipeline and models, the methods for generating synthesized noisy images, the 
applied denoising network, the metrics used to evaluate the denoising performance, the performance of cervix 
detection and classification for both noisy and denoised images, and the results on both synthetic and real-world noisy 
images.  
 

2. METHODOLOGY 
2.1 Datasets 

The data used for the experiments consists of images collected from two studies that were organized and funded by 
National Cancer Institute (NCI). One study is the population-based longitudinal natural history study (NHS) that was 
carried out in Guanacaste, Costa Rica (a rural area with a moderate risk that was poorly screened previously) [12].  
The other is the ASCUS-LSIL Triage Study (ALTS) that was conducted in four colposcopic clinical centers in the 
United States and aimed to compare alternative management plans for women with mild cytological abnormalities 
[13]. The data in both studies was de-identified and approved for secondary use in subsequent data analytic studies.  
Both studies were conducted about 20 years ago, and the cervix images collected by both studies were cervigrams that 
were taken using a film-based imaging device (cerviscope) with a high depth-of-field optics and a ring illumination. 
Those cervigrams were later scanned and digitized. The images in both datasets are considered to be satisfactory and 
of good quality based on manual visual review by medical experts. Several examples of images in both datasets are 
shown in Figure 1. The differences of image characteristics between “controls” (have no lesions of precancer or 
cancer) and “cases” (have lesions of precancer or cancer) in the ALTS dataset are expected to be more subtle and less 



differentiable than those in the NHS dataset. Researchers at NCI have labeled a subset of images in both datasets that 
are clean controls and clean cases based on histopathologic confirmation and other related information. We randomly 
split this data subset, at the subject level, into training, validation, and test sets, respectively, in order to train and test 
the AVE classifier. The test set contains 345 images with 115 cases.  

    
Figure 1. Examples of cervigrams 

In addition to this combined data of NHS and ALTS, we also have a few noisy cervix images donated by Liger Medical 
that were captured using the IRIS imaging device they developed (an older version) [14]. The IRIS images do not 
have ground truth labels for AVE classification as they do not have histological confirmation information, hence, we 
used them only for evaluating denoising. 
 
2.2 AVE pipeline and models 

The AVE pipeline used in this work consists of two components: cervix detection and cervix classification. As shown 
in Figure 1, there is a large region outside the cervix in each image. This non-cervix region may contain vaginal walls, 
parts of clinical instruments (cotton swab, speculum), and clinically non-relevant text. To reduce interference and 
make AVE classification algorithm focus mainly on the region-of-interest (cervix), we remove the non-cervix region 
as the first step. We applied the RetinaNet [15] object detection network to locate the cervix region. RetinaNet is a 
one-stage object detector which achieves state-of-the-art performance by using feature pyramid networks (FPN) (to 
utilize and combine multiscale features) and focal loss (to deal with class imbalance problem). We trained the 
RetinaNet cervix detector using images obtained from a different study (Costa Rica Vaccine Trial [16], also organized 
and funded by the NCI) which have manual cervix markings. Cervix detection results on several NHS and ALTS 
images are displayed in Figure 2. The cervix region is cropped out after the cervix locator predicts coordinates of the 
cervix region box in the image, and resized before being passed on to the AVE classifier. 
 

    
Figure 2. Examples of cervix detection 

For AVE classification, we applied the ResNeSt network [17]. ResNeSt is a recently proposed variant of the well-
known classification network ResNet. It incorporates channel-wise attention with multi-path representation and 
introduces a new block module called the “split attention” block. Specifically, in each “split attention” block, feature 
maps are first divided into several “cardinal groups”. The feature maps in each cardinal group are then separated 
channel-wise into subgroups (“splits”). The features across subgroup splits are combined (“attention”) before being 
concatenated for all the groups. We fine-tuned the ImageNet pretrained ResNeSt model using the cervix images in 
our dataset. We also applied the following augmentation methods to increase the number of training images: random 
rotation, color jitter, horizontal flip, and principal component analysis (PCA) color normalization. We did not include 
random noise as one of augmentation methods for this study. We will consider adding slight noise in augmentation 
for the approach of improving the robustness of AVE model.  
 
2.3 Analysis of effects of image degradation on AVE  

It is of importance to systematically examine the impact of different image degradations on the performance of AVE 
models and identify the key factors to address and improve. To this end, we have been working on generating 
synthetically degraded images by adding different types of defects with various degrees to the good quality image set 
and examining the test performance of the AVE models (trained with good quality images) on those degraded images. 



Several types of degradations that are less difficult to mimic and generate, such as, blur, recoloring, partial obstruction 
on cervix, and noise, have been explored. For evaluating noise, we synthesized two types of noisy images using a 
simple method. White Gaussian noise with zero mean and different levels of local variance were added either to each 
of the three RGB channels or to the intensity channel only (the V channel after converting images to the Hue-
Saturation-Value color space), respectively. Figure 3 shows examples of the generated noisy images (variance = 0.01 
for the first-row noisy images or 0.02 for the second-row noisy images). In Figure 3, the first column ((a) and (d)) is 
the original image with a cropped region (in the original resolution) next to it to show details, the second column ((b) 
and (e)) has noise added to three channels (RGB), and the third column ((c) and (f)) has noise added to one channel 
(V) only. We observed that for the same value of variance, especially when it is small, the noise added to three color 
channels appeared more noticable than that added only to the intensity channel due to greater human-vision sensitivity 
to color. We sent the original test set images and the corresponding noisy images to the AVE pipeline and examined 
the outputs of both cervix detector and cervix classifier. Of note, both models were not retrained using noisy images 
and remained unchanged in the experiments. Retraining models with noisy images will be considered in the effort for 
making the models more robust. The test results we obtained indicate noise can negatively affect the cervix 
classification performance significantly although much less on cervix detection performance. 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 3. Examples of synthetic noisy images with Gaussian noise of zero-mean and local variance of 0.01 (for a-c) or 
0.02 (for d-f) added: (a)(d) the original image; (b)(e) noise added to RGB channels; (c)(f) noise added to V channel only. 

2.4 Denoising network 

As our experiments have identified noise as one key issue and challenge for maintaining the high performance of AVE 
classifier trained with good quality images, we have been exploring different ways to address and alleviate this issue. 
One of them is applying denoising techniques. Image denoising has been actively studied in the research field. Besides 
classical approaches, there are deep learning-based approaches developed in recent years. For a good overview and 
survey of the methods proposed in the literature, please refer to [18]. For our dataset, we applied the Variational 
Denoising Network (VDNet) [19]. It was proposed for blind image denoising and does both automatic noise estimation 
and image denoising. The main idea of VDNet is to use a deep neural network to learn an approximate posterior from 
the latent variables (which represent clean image and noise variances) conditioned on the input noisy image. The 
network consists of two main sub-networks: D-Net and S-Net, in which D-Net uses an encoder and decoder 
architecture (U-Net) for the prediction of posterior parameters of latent variable representing clean image while S-Net 
uses DnCNN [20] for predicting posterior parameters of latent variable representing noise variance. It has 
demonstrated and achieved state-of-the-art performance on general domain images for reducing both i.i.d. and 
complicated non-i.i.d. noise. In our application, we did not train the VDNet with our synthetic noisy images but used 
the model that was trained on a real-world dataset (SIDD medium dataset [21]), since it is more appealing to 
incorporate real-world noise and we hypothesize that the real-world noise in general domain noisy images have similar 
characteristics to that in real noisy cervix images. The SIDD medium dataset consists of 320 image pairs of noisy and 
ground-truth clean images. The images in SIDD were taken using five representative smartphone cameras under 
different lighting conditions [21]. We tested the VDNet models on our synthetic noisy cervix images as well as several 
IRIS real noisy cervix images. The denoised cervix images were then input to the AVE pipeline and compared the 
results with those obtained from noisy images and original images. 



2.5 Evaluation methods 

To evaluate the performance of image denoising, we used four metrics: Peak Signal-to-Noise Ratio (PSNR), Structural 
similarity (SSIM) [22], Perception-based Image Quality Evaluator (PIQE) [23], and Naturalness Image Quality 
Evaluator (NIQE) [24]. PSNR and SSIM require a reference image while PIQE and NIQE are no-reference image 
quality metrics, respectively. The larger the value of PSNR (SSIM), the better. The smaller the value of PIQE (NIQE), 
the better. We calculated all four measures for the synthetic noisy images, but only the PIQE and NIQE scores for the 
real noisy images since they do not have corresponding ground-truth noise-free images. We assessed the cervix 
detection results qualitatively as there are no expert markings for the cervix in those images. For quantitative 
evaluation, we calculated the difference between the detection from the noisy and denoised image and that from the 
original image with respect to the center, width, area, and aspect ratio of the box. We used the area under the curve 
(AUC) value of ROC plot as the metric to compare the effects of the increase in the amount of image noise as well as 
that of denoising on AVE classification performance. 

3. EXPERIMENTAL RESULTS AND DISCUSSIONS 
The data consists of 3374 digitized cervigrams from 1143 study subjects that were labeled as either clean controls or 
clean cases. Subsets of images were randomly grouped, at patient level, into training, validation, and test sets, 
respectively. The number of images in each class in the training, validation, and test set is provided in Table 1. In our 
experiments, the images were resized with a longer edge to be 1200 pixels while maintaining the original aspect ratio. 
This size was empirically determined in prior studies and is maintained here for consistency. First, the cervix regions 
in these images were extracted by the RetinaNet cervix detector trained on cervix images from a different dataset. 
Next, the detected cervix regions in the training set were used to train a ResNeSt-based AVE classifier. The classifier 
used ResNet50 as the base network and the model was initialized with weights from ImageNet pretrained model. The 
loss function was cross entropy with label smoothing. The Adam optimizer was used with a learning rate of 1e-5. The 
batch size was 8. The model was trained for 100 epochs and the one with the highest performance on validation set 
was selected. The ROC curve and precision-recall (PR) curve for the classification results on the 345 original images 
in the test set (230 controls and 115 cases) are shown in Figure 4. The confusion matrix (at threshold 0.5) is shown in 
Table 2. The precision, recall (sensitivity), specificity, accuracy, and F-1 score are 0.83, 0.74, 0.87, 0.86, and 0.78, 
respectively. 

Table 1. Number of images in training/validation/test set 

 Controls Cases 
Training Set 1645 843 
Validation Set 359 182 
Test Set 230 115 

 

Table 2. Confusion matrix for classification performance on 
the test set of the original images 

 Ground truth 
Case Control 

Pr
ed

. Case 85 18 

Control 30 212 
 

 

  
(a) ROC curve (b) PR curve 

Figure 4. AVE classification performance on the test set of the original images 



 
 

    
(a) Noisy image (variance = 0.01, RGB channels) (b) Noisy image  (variance = 0.015, RGB channels) 

    
(c) Denoised image of (a) (d) Denoised image of  (b) 

    
(e) Noisy image (variance = 0.01, V channel) (f) Noisy image (variance = 0.015, V channel) 

    
(g) Denoised image of (e) (h) Denoised image of (f) 

    
(i) Original image (j) Original image 

    
(k) Denoised image of (i) (l) Denoised image of (j) 

Figure 5. Examples of denoising results for synthetic noisy images  

To create noisy images, additive white Gaussian noise (AWGN) with zero mean and local variance ranging from 
0.001 to 0.02 (with step 0.001) was added to the original images in two ways. One was to salt each of the RGB 
channels and the other was to salt the V channel in HSV color space. We applied the VDNet model trained with SIDD 
image dataset to denoise both types of synthetic noisy images. Figure 5 shows a couple of noisy images (variance = 
0.010 and 0.015 respectively) and their corresponding denoised ones. By comparing the close-ups in Figure 5 (a) – 



(h), we observed that noise can be reduced significantly by the denoising network although denoising may introduce 
some small degree of blur. We also applied denoising to the original images to check the effect of denoising on clean 
images. The denoised images may look a little bit blurry compared to the original images, and examples are shown in 
Figure 5 (i)-(l).  
 
To quantitatively evaluate the denoising performance, we calculated the PSNR, SSIM, PIQE, and NIQE values for all 
the test set images. For PSNR and SSIM, the original images were used as the reference. Figure 6 shows the mean and 
std values of all four measures obtained from noisy (in blue or yellow color) and denoised images (in red or purple 
color) with respect to noise variance, respectively. For PSNR and SSIM, the larger the value is, the better. For PIQE 
and NIQE, the smaller the value is, the better. The values for denoised images become significantly better than those 
of the noisy images with the increase of noise variance.  
 

  

  
Figure 6. Results of quantitative evaluation for denoising cervigrams 

 
Besides synthetic noisy images, we also evaluated denoising on the few real noisy images visually as well as 
quantitatively (using PIQE and NIQE since there are no corresponding reference images). An example of real noisy 
images and its denoised version are shown in Figure 7. The noise in the IRIS image is not easy to tell and can be 
observed as weak pixelation in the close-up image (in the original resolution) in Figure 7(a). As shown by Figure 7(b), 
denoising can reduce the noise to a degree and the denoised image looks smoother. As listed in Table 3, the mean and 
standard deviation)values of NIQE for denoised images are both better, while PIQE has slightly larger mean value 
and smaller standard deviation value for denoised images. 
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(a) Original (b) Denoised 

Figure 7. Example of denoising results for IRIS noisy images  

Table 3. Quantitative quality evaluation for IRIS images 
 PIQE NIQE 

Original  16.43±4.21 6.83±0.60 
Denoised  17.16±1.90 4.98±0.31 

 

Figure 8 shows examples of cervix detection on the original images, images with noise added to RGB channel (or V 
channel), and denoised images, respectively. We observed that the detected region boxes may have some changes, but 
the detection results are satisfactory with respect to containing cervix. To quantitatively compare the detection results, 
we used the cervix box detected from the original images as reference and computed the following values for noisy 
or denoised images: distance between box centers (normalized to the sum of cervix width and height in the original 
image), and the ratios with respect to box width, area, and aspect ratio (width/height), respectively. Figure 9 shows 
their mean and standard deviation values w.r.t. the increase of noise variance. In general, the change of detection is 
moderate although it appears to be larger (box may be less tight) when noise variance is larger, and denoising can 
reduce the changes of detection significantly at large noise variances.  
 
The effects on AVE classification are shown in Figure 10 in which y-axis is the AUC value and x-axis is the variance 
of noise added to the original images ranging from 0 to 0.02 with step 0.001 (noisy images: blue and yellow curves, 
denoised images: red and purple curves). The plots indicate both types of noise can reduce the AVE performance 
significantly and denoising can mitigate the classification degradation to a considerable extent. The AUC values at x 
= 0 in both blue and yellow curves were calcuated from the original images and they are higher than those at x = 0 for 
the denoised ones, indicating the blur introduced by denoising the original images can lower the AVE classification 
performance. 
 

     

     
(a) Original (b) Noisy (0.01, RGB) (c) Denoised of (b) (d) Noisy (0.01, V) (e) Denoised of (d) 

Figure 8. Examples of cervix detection  



  

  
Figure 9. Quantitative comparison of cervix detection performance  

 

  
Figure 10. Comparison of AVE classification performance  
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4. CONCLUSIONS AND FUTURE WORK 
The morbidity and mortality rates of cervix cancer are high in LMIC, and VIA is often used in LMIC as a screening 
method. AVE, which uses computerized technology such as machine learning and image processing techniques to 
incorporate with low-cost imaging device, has been proposed as a promising way to improve VIA performance. One 
key issue and challenge of AVE is image quality control. There are multiple factors that can affect and degrade image 
quality. In this paper, we report our work on the analysis of the effects of one of the image quality degradation factors, 
image noise, on AVE performance, as well as the alleviation method we used to reduce it. Specifically, we presented 
an AVE pipeline that consists of a RetinaNet cervix detector and a ResNeSt cervix classifier, examined the impact of 
noise on both cervix detection and classification using two types of generated synthetic noisy images, and applied an 
blind image denoising deep learning network proposed for reducing both i.i.d. and complicated non-i.i.d. noise 
(VDNet) which was trained with real-world general-domain clean and noisy image pairs. The denoising was evaluated 
visually and quantitatively on both synthetic and real noisy images of cervix. Based on the comparison of AVE 
pipeline test performance on the original, noisy and denoised images, we find noise can degrade AVE classification 
performance considerably (although its impact on cervix detection is moderate) and denoising can be effective at 
mitigating performance degradation. In the future, we will explore other remedy approaches including improving the 
robustness of AVE models to image quality degradation and developing an image quality classifier to identify low 
quality images. 
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