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ABSTRACT 

Pneumonia is a severe inflammatory condition of the lungs that leads to the formation of pus and other liquids in the air 
sacs. The disease is reported to affect approximately 450 million people across the world, resulting in 2 million pediatric 
deaths every year.  Chest X-ray (CXR) analysis is the most frequently performed radiographic examination for diagnosing 
the disease. Unlike pneumonia in adults, pediatric pneumonia is poorly studied. Computer-aided diagnostic (CADx) tools 
aim to improve disease diagnosis and supplement decision making while simultaneously bridging the gap in effective 
radiological interpretations during mobile field screening. These tools make use of handcrafted and/or convolutional neural 
networks (CNN) extracted image features for visual recognition. However, CNNs are perceived as black boxes since their 
performance lack explanations and poorly understood. The lack of transparency in the learned behavior of CNNs is a 
serious bottleneck in medical screening/diagnosis since poorly interpreted model behavior could unfavorably impact 
decision-making. Visualization tools are proposed to interpret and explain model predictions. In this study, we highlight 
the advantages of visualizing and explaining the activations and predictions of CNNs applied to the challenge of 
pneumonia detection in pediatric chest radiographs. We evaluate and statistically validate the models’ performance to 
reduce bias, overfitting, and generalization errors.  

Keywords: Deep learning, computer-aided diagnosis, pneumonia, convolutional neural networks, visualization, 
explanation, chest radiographs, decision-making 
 

1. INTRODUCTION 
 

Pneumonia is a significant cause of mortality in pediatrics across the world. According to the World Health Organization 
(WHO), around 2 million pneumonia-related deaths are reported every year in children under 5 years of age, making it the 
most significant cause of pediatric death1. Nearly 95% of the community-acquired pediatric pneumonia occurs in Africa 
and Southeast Asia. The disease is caused by bacterial and viral pathogens2 that require different forms of management. 
Bacterial pneumonia is treated immediately with antibiotics while that caused by the viral pathogens, with supportive care. 
Timely diagnosis and treatment are highly indispensable for short- and long-term health outcomes. Chest X-ray (CXR) 
analysis is the most frequently performed radiographic examination for diagnosing and differentiating the disease3,4. Fig. 
1 shows the instances of normal, bacterial and viral pneumonia infected CXRs. Rapid radiographic diagnoses and treatment 
are adversely impacted by the lack of expert radiologists in resource-constrained regions where pediatric pneumonia is 
highly endemic with alarming mortality rates. There are occasions when the radiologists fail to appreciate normal 
variations and influence of technical factors on the appearance of CXRs. This leads to inter/intra-observer variability and 
poses a serious threat to reliable interpretation. 

Computer-aided diagnostic (CADx) tools aim to supplement medical decision making and reduce expert intervention in 
screening/diagnosis, particularly in disease-endemic regions with resource-constrained settings5. A vast majority of these 
tools make use of machine learning (ML) algorithms that employ handcrafted features for clinical decision-making6. 
However, these features are extracted with rule-based feature descriptors, the performance depends on the human expertise 
in developing algorithms to account for the variability in the morphology and position of the region of interest (ROI) and 
is computationally intensive. The process is adversely impacted by the restricted visibility to the degree of variability in 
the data during large-scale diagnoses7. On the other hand, data-driven approaches including deep learning (DL) overcome 
these limitations by self-discovering/learning hierarchical feature representation from the raw input pixels. DL models 
have revolutionized screening and diagnosis in medical visual recognition tasks. In convolutional neural network (CNN) 
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based DL models, the lower-level features are abstracted to form higher-level features toward the process of learning 
complex, non-linear functions. This results in “end-to-end” feature extraction and classification that avoids the intricacies 
of using traditional feature extraction/classification methods8. Unlike kernel algorithms, the performance of CNNs scale 
with data and computational resources. CNNs are shown to be remarkable in object localization and detection tasks to 
signify the contribution of individual pixels toward decision-making9.  

Figure 1. Pediatric CXRs. (a) Normal CXR showing clear lungs with no abnormal opacification, (b) Bacterial pneumonia exhibiting 
focal lobar consolidation in the right upper lobe and (c) Viral pneumonia manifesting with diffuse interstitial patterns in both lungs. 

CNNs are shown to deliver superior results under the availability of a huge amount of annotated data. Under circumstances 
of sparse annotated data availability as with medical images, researchers use transfer learning methods that employ pre-
trained CNNs to transfer the knowledge learned in the form of generic image features from large-scale datasets like 
ImageNet to the current task10. The transfer of knowledge is rather general than being task-specific. The pre-trained 
weights are either fine-tuned on the current task or the models are used as fixed feature extractors toward visual 
recognition11.  

Study of the literature reveals several works pertaining to the usage of CADx tools that employ handcrafted and/or CNN 
extracted features toward the challenge of pneumonia detection in CXRs.  The authors of12 developed a CAD system 
named PneumoCAD that uses handcrafted features to diagnose pediatric pneumonia. An AUC of 0.97 and 0.94 and a 
specificity of 80% and 90% is reported through different methods of weighting image classification. The authors of5 
released the National Institutes of Health (NIH) CXR dataset that contains 112,120 frontal CXRs, individually labeled to 
include up to 14 different diseases. The disease labels are text-mined from the radiological reports using natural language 
processing tools. The authors performed a multi-label image classification together with ROI localization to detect and 
spatially locate the disease. An AUC of 0.6333 is reported for pneumonia detection. In another study, the authors13 
proposed a 121-layer densely connected neural network to output the probability of pneumonia and localize the ROI with 
heat maps. The model is trained on the NIH CXR dataset and its performance is compared with that of four practicing 
radiologists, on a test set of 420 CXRs. It is observed that the model exceeded the average performance of the radiologists 
in the F1-metric. An AUC of 0.7680 is reported in detecting pneumonia. The authors of14 used a pre-trained Inception-V3 
network as a fixed feature extractor toward classifying normal and pneumonia and further distinguishing bacterial and 
viral pneumonia in pediatric chest radiographs. An accuracy of 92.8%, recall of 93.2%, specificity of 90.1%, and AUC of 
0.968 is reported in classifying normal and pneumonia. An accuracy of 90.7%, recall of 88.6%, specificity of 90.9%, and 
AUC of 0.940 is reported in distinguishing bacterial and viral pneumonia in CXRs. 

Despite the promising performance of CNNs in visual recognition, there is a lack of clarity on their learned behavior and 
predictions. While the literature discusses several methods for classification, very few researchers provide an explanation 
of the model predictions and/or validate how the performance is achieved15,16. Exploratory studies need to be performed 
in qualitatively understanding and interpreting the model performance and suggesting possible improvements. The lack of 
transparency in the learned representations of CNNs is a serious issue in medical applications since poorly understood 
behavior could adversely impact decision-making17. A comprehensive understanding and interpretation of the architecture, 
the internal operations and the learned behavior assists in trusting and explaining the predictions that indicate 
disease/abnormality. It is sensible to mention that the current literature leaves much room for progress in these aspects. 
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The unresolved issue of visualizing, understanding and explaining the predictions of CNNs applied to the challenge of 
pneumonia detection in pediatric CXRs is principally relevant and is the rationale behind this study.  

In this study, we visualize the activations and explain the predictions of CNNs applied to the challenge of classifying 
normal and pneumonia infected CXRs and further differentiate bacterial and viral pneumonia to facilitate rapid referrals 
that require urgent medical intervention. We demonstrate that in the process of using the optimal model architecture and 
parameters for the underlying task, a trustworthy model can be built and the predictions are explained toward 
discriminating the classes. We evaluate and statistically validate the performance of an optimized, custom CNN and a 
pretrained VGG1618 model to provide an accurate and timely diagnosis of the pathology. The study is organized as follows: 
Section 2 elaborates on the materials and methods, Section 3 discusses the results and Section 4 concludes the study. 

 

2. MATERIALS AND METHODS 
2.1 Data Collection and Preprocessing 

The pediatric CXRs used in this study are made publicly available by the authors of14. The dataset includes anteroposterior 
chest radiographs collected from pediatrics of 1 to 5 years of age from Guangzhou women and children’s medical center, 
Guangzhou. The characteristics of the dataset are mentioned in Table 1. Radiological imaging is performed as part of 
patients’ clinical care. The radiographs are interpreted to confirm a diagnosis and referral decisions made thereafter. 
Bacterial pneumonia is referred for urgent antibiotic treatment while viral pneumonia is treated with supportive care. All 
CXRs are screened for quality control by removing unreadable scans. Training and testing data are graded by expert 
physicians to account for grading errors. 
     Table 1. Dataset and their characteristics. 

Category # Samples # Training samples #Test samples Type Depth 
Normal 1583 1349 234 JPG 8-bit 
Bacterial Pneumonia 2780 2538 242 JPG 8-bit 
viral pneumonia 1493 1345 148 JPG 8-bit 

 

The CXRs contain regions other than the lungs that are irrelevant toward pneumonia detection. The lung boundaries are 
detected using our atlas-based lung boundary detection algorithm19,20. It uses a reference set of radiographs with expert 
delineated lung boundaries as models to register with the objective CXRs. Fig. 2 shows the detected boundaries for the 
sample CXRs from the dataset under study.   

     Figure 2. Detected boundaries in example pediatric CXRs. 

As models, we used pediatric chest radiographs and their corresponding lung masks that were collected and studied in20. 
When a patient CXR is presented, the algorithm finds the most similar CXRs in the reference model set to the objective 
CXR. The similarity between the CXRs is measured by comparing their horizontal and vertical intensity histograms, which 
are rough shape models of the lung blobs. As mentioned in19,20, we used the Bhattacharyya distance as the similarity 
measure. The main purpose of measuring the similarity is to increase the correspondence performance and decrease the 
computational expense during registration. After model selection, the algorithm computes a correspondence map between 
the model CXRs and the objective chest radiograph using local image features and finds the most similar locations with 
the SIFT-flow algorithm21. This map is the transformation mapping applied to the model masks to morph them into the 
approximate lung model for the objective CXR. The segmented images are cropped to the size of a bounding box that 
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includes the lung pixels. The cropped lung ROI is resampled to 1024×1024 pixel dimensions and mean normalized to 
assist the models in faster convergence. We used the NIH Biowulf Linux cluster and the NVIDIA DGX-1 facility available 
at the National Library of Medicine (NLM), Keras® with Tensorflow® backend, Matlab R2017b® and CUDA 8.0/cuDNN 
5.1 dependencies for GPU acceleration.  
2.2. Model Configuration 

We evaluated the performance of a custom CNN and pre-trained VGG16 network to classify normal and pneumonia and 
further differentiate between bacterial and viral pneumonia in CXRs. Selecting and tuning the custom CNN model 
parameters is extremely complex and computationally expensive. We performed Bayesian optimization22 to search for the 
optimal model parameters and training options for the underlying task. The process helps in optimizing non-differentiable, 
discontinuous and computationally expensive functions by internally using a Gaussian process model of an objective 
function and its evaluation in model training. The optimization variables used in this study include network depth, initial 
learning rate, momentum, and L2 regularization. The number of filters in the convolutional layer is increased by a factor 
of two when the spatial dimensions are down-sampled with max-pooling layers to ensure roughly the same number of 
computations. The convolutional layer is followed by a rectified linear unit (ReLU) layer to introduce non-linearity into 
the computations and prevent vanishing gradients8. The search ranges for the network depth, initial learning rate, 
momentum, and L2 regularization are set as [1 9], [1e-5 1e-1], [0.8 0.95] and [1e-10 1e-1] respectively. An objective 
function is defined to take the optimization variables as inputs, train, validate, and save the optimal network. The number 
of objective function evaluations is specified. Optimization is achieved by minimizing the classification error on the test 
set. We also evaluated the performance of a pre-trained VGG16 network for the underlying task. The architecture and pre-
trained weights are downloaded from the GitHub repository23. The model is truncated in the deepest convolutional layer. 
A global average pooling (GAP) and a logistic layer are added on top of the truncated model as shown in Fig. 3. The model 
is optimized for hyper-parameters by a randomized grid search method24. The search ranges for the learning rate, SGD 
momentum and L2-regularization parameters are set to [1e-3 5e-2], [0.8 0.95] and [1e-10 1e-1] respectively. The pre-
trained model is trained end-to-end with very small weight updates. Hold-out testing is performed after every step using 
the test set independent of the training set by passing each test image through the model without performing 
backpropagation and gradient descent. Callbacks are used to view the internal states and statistics during the training phase 
and the best performing model is kept for analysis. The performance of the customized and pre-trained CNNs is evaluated 
in terms of accuracy, area under the receiver operating characteristic (ROC) curve (AUC), precision, recall, specificity, 
F1-metric, and Matthews correlation coefficient (MCC).  

     Figure 3. VGG16 network truncated at the deepest convolutional layer and added with a GAP and dense layer. 

2.3. Visualizing the network layer activations 

The learned behavior of the trained model is understood by visualizing its activations to gain a comprehensive knowledge 
of the input patterns that activate the filters in a given convolutional layer9. The learned weights have high interpretability 
in the earlier layers than in the deeper layers. The network layer activations of an optimally trained model are compared 
with the input image to interpret the learned features toward classifying normal and pneumonia and to further distinguish 
bacterial and viral pneumonia in chest radiographs.  

2.4. Visual explanations through gradient weighted class activation mapping 

It is imperative to understand the parts of the image the model looked in to arrive at the predictions. Gradient weighted 
class activation maps (grad-CAM)25 helps to visualize and debug the predictions of the CNN particularly in the case of a 
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classification error when the network arrives at a decision based on the surrounding context. This helps in answering 
questions pertaining to the model’s ability to categorize and localize the ROI in an image specific to the expected class. 
CXRs are fed to the trained model and the output feature map of the deepest convolutional layer is recorded. The gradient 
of the expected class with respect to the output feature map of this convolutional layer is computed and pooled to compute 
the mean intensity of the gradient over the feature map channels. Each channel in the feature map array is multiplied by 
the weights with respect to the expected class. The heat map of the class activation is obtained by the channel-wise mean 
of the resultant feature map. The generated heat map is superimposed on the input CXR to localize the ROI with respect 
to the expected class. The localized regions explain how the model answers the difference between the classes.  

2.5. Local Interpretable Model-Agnostic Explanations (LIME) 

Training metrics can be misleading since the data may accidentally leak into the held-out data and/or the model predicts 
based on the surrounding context and not the ROI. In ML applications, particularly in medical screening/diagnosis, a 
measure of trust is often necessitated prior to deployment. Despite the fact that DL models are perceived as black-boxes, 
interpreting the rationale behind the predictions helps to decide their trustworthiness. An “explainer” is needed to explain 
the predictions to highlight the features that are most relevant to decision-making and crucial for effective human-computer 
interactions. Local Interpretable Model-Agnostic Explanations (LIME) is an effective visualization tool that explains the 
predictions and evaluates the usefulness of the models in decision-making26.  

Being model-agnostic, LIME provides a qualitative understanding of the relationship between the interpretable 
components and predictions. The image is divided into contiguous superpixels, a dataset of perturbed instances is generated 
by turning on/off these interpretable components. The perturbed images are weighted by their similarity to the explained 
instance. An explanation is generated by approximating the complex, non-linear model by a linear one weighted in the 
neighborhood of the prediction to be explained. The superpixels with the highest positive weights are finally presented as 
an explanation. The process helps to select the model with reduced generalization errors, improve model performance by 
optimizing its parameters and gain crucial insights into its behavior.  

Let y ∈ ℝd be the original instance to be explained. Let y’ ∈ {0, 1} d be the binary vector for its interpretable representation 
that denotes the presence/absence of a superpixel. Let h ∈ H denote the model explanation where H denotes a class of 
potentially interpretable linear models. Let Ω(h) denote the measure of the complexity of the explanation h ∈ H. For a 
linear model, Ω(h) denotes the number of non-zero weights. Let g: ℝd → ℝ denote the model to be explained and g(y), the 
probability that y belongs to a certain class. Let Πy(z) denote the proximity measure between the instance z to y and L (g, 
h, Πy), a measure of low fidelity of h in approximating g in the locality defined by Πy. The value L (g, h, Πy) is minimized 
to ensure interpretability. The number of non-zero coefficients Ω(h) remains low enough to be interpretable. The 
explanations produced are given by,  

                                                                          ℽ(𝑦𝑦) = argmin
h ∈ H

𝐿𝐿�𝑔𝑔,ℎ,𝛱𝛱𝑦𝑦� + Ω(ℎ)                                                                             (1)                                                                                               

The value L (g, h, Πy) is approximated by drawing samples weighted by Πy. Instances are sampled around y by drawing 
non-zero elements of y’ uniformly at random. Given a perturbed sample a’ ∈ {0, 1} d’ that contain a fraction of non-zero 
elements of y’, the sample is recovered in the original representation a ∈ ℝd to obtain g(a) that is used as a label for the 
explanation model given by, 

                                                                                   Π𝑦𝑦𝑎𝑎 = exp(−𝐷𝐷 (𝑦𝑦,𝑎𝑎)2

σ2
)                                                                       (2) 

An exponential kernel defined on the L2-distance function (D) with width σ is given by, 

𝐿𝐿�𝑔𝑔,ℎ,𝛱𝛱𝑦𝑦� = ∑ 𝛱𝛱𝑦𝑦𝑎𝑎 (𝑔𝑔(𝑎𝑎) − ℎ(𝑎𝑎′))2𝑎𝑎,𝑎𝑎′∈𝐴𝐴                                                 (3) 

LIME is model-agnostic, leverages simple concepts, helps to decide the trustworthiness of predictions, improve the model 
performance with parameter optimization and identify why the model should not be trusted.  
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3. RESULTS AND DISCUSSIONS 
3.1. Bayesian optimization applied to custom CNN 

The objective function takes as input, the optimization variables including network depth, initial learning rate, momentum, 
and L2 regularization, trains, validates, and saves the optimized model. The number of objective function evaluations is 
set to 100. Optimization is achieved by minimizing the classification error on the test set. The optimal values for the 
network depth, initial learning rate, momentum, and L2 regularization are found to be 6, 1e-3, 0.9 and 1e-6 respectively. 
The configuration of the optimized custom CNN is shown in Fig. 4.  

 

     Figure 4. The optimized architecture of custom CNN. 

3.2. Performance Evaluation 

The performance of optimized custom CNN and pretrained VGG16 network are evaluated as two separate tasks: (i) 
classifying normal and pneumonia; and, (ii) distinguishing bacterial and viral pneumonia in pediatric CXRs. We evaluated 
the models with the baseline data and cropped lung ROI from the CXRs. In classifying normal and pneumonia, we found 
that the performance of custom CNN is better with the cropped ROI in terms of AUC, precision, and specificity. In 
differentiating bacterial and viral pneumonia infected CXRs, no significant difference in performance is observed between 
the baseline data and cropped ROI, except for AUC where cropped ROI gave better results. Table 2 shows the performance 
of the optimized custom CNN with respect to the baseline and cropped lung ROI. Similar trends are observed in evaluating 
the performance of a pretrained VGG16 network that is trained end-to-end for the current task. No significant difference 
in performance is observed with the baseline data and cropped ROI in classifying bacterial and viral pneumonia. However, 
cropped ROI gives better results than the baseline in terms of all performance metrics except for recall, in classifying 
normal and pneumonia infected CXRs. Table 3 shows the performance of the pretrained VGG16 network with the baseline 
and cropped lung ROI. The pretrained VGG16 network outperforms the optimized custom CNN in all performance metrics 
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except for recall, in both the classification tasks. This may be due to the fact that the availability of a fewer number of 
training samples didn’t give enough opportunity for the custom CNN to learn discriminative features across the classes. 
The pretrained VGG16 network learned generic image features from the large-scale ImageNet dataset to transfer to the 
current task. Compared to random weight initialization, the pretrained ImageNet weights served as a good initialization 
that is fine-tuned end-to-end on the current task to assist in earlier convergence, reduced overfitting, bias, and 
generalization errors.   
     Table 2. Performance of custom CNN with baseline and cropped lung ROI. 

Data Task Accuracy AUC Precision Recall F1 Specificity MCC 

Baseline Normal v. Pneumonia 0.943 0.983 0.920 0.995 0.957 0.855 0.878 

Bacterial v. Viral 
Pneumonia 0.928 0.954 0.909 0.984 0.946 0.838 0.848 

Cropped Lung 
ROI 

Normal v. Pneumonia 0.941 0.984 0.930 0.980 0.955 0.877 0.873 

Bacterial v. Viral 
Pneumonia 0.928 0.956 0.909 0.984 0.946 0.838 0.848 

 

     Table 3. Performance of pretrained VGG16 network with baseline and cropped lung ROI. 

Data Task Accuracy AUC Precision Recall F1 Specificity MCC 
Baseline Normal v. Pneumonia 0.957 0.990 0.951 0.983 0.967 0.915 0.908 

Bacterial v. Viral 
Pneumonia 0.936 0.962 0.920 0.984 0.951 0.860 0.862 

Cropped Lung 
ROI 

Normal v. Pneumonia 0.962 0.993 0.977 0.962 0.970 0.962 0.918 

Bacterial v. Viral 
Pneumonia 0.936 0.954 0.920 0.984 0.951 0.860 0.862 

 

Fig. 5 shows the confusion matrices for the performance of the pretrained VGG16 network with the cropped lung ROI and 
Fig. 6 shows the AUC achieved for the corresponding tasks. The lack of significant difference in performance of the 
models with the baseline and cropped ROI may be attributed to the fact that the baseline data already appeared as cropped, 
except for a few training and testing instances. The lung segmentation algorithm resulted in under-segmentation in a few 
instances near the costophrenic angle. We observed that the test accuracy and loss are better than the training metrics since 
noisy, low-quality images are included in the training set to reduce bias, overfitting and generalization errors.  The CXRs 
are fed to the VGG16 network and the filter activations are compared with the corresponding input pixel locations. Strong 
positive activations are visible as white pixels and negative activations as black pixels. Fig. 7 shows a random selection of 
activations observed in the filters of different convolutional layers in the VGG16 network when presented with an input 
CXR. We observed that the earlier network layers act as a collection of various edge detectors and the activations retain 
almost all information present in the input image. The activations begin to encode higher level features, become less 
interpretable and more abstract with increasing depth. These higher representations carry increasingly less representation 
about the visual contents of the image and more information pertaining to the expected class.  The sparsity of activations 
is also found to increase with the layer depth. In the earlier layers, all filters are activated by the input image wherein the 
deeper layers, more filters are blank that infer that the patterns encoded by these filters are not found in the input image.  
The CNN acts as an information distillation pipeline in which the input pixels are transformed to filter out irrelevant 
information and useful characteristics pertaining to the class of the image is magnified and retained. CXRs are fed to the 
VGG16 network and its predictions are decoded. When presented with a CXR infected with pneumonia, grad-CAM 
generates a heat map for the expected pneumonia class that indicates the visual differences in the “pneumonia-like” parts 
of the image. The heat map is generated as a two-dimensional grid of scores, computed for each pixel location in the input 
image to indicate the importance of the location with respect to the expected class. The generated heat map is superimposed 
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on the input CXR to localize the ROI with respect to the pneumonia class. The process helps in locating the spread of the 
disease and also explains why the model considered the CXR to belong to the pneumonia class.  

Figure 5. Confusion matrices for the performance of pretrained VGG16 network on the classification tasks. (a)  Normal/pneumonia 
and (b) Bacterial/viral pneumonia. 

Figure 6. AUC for the performance of pretrained VGG16 network on the classification tasks. (a) Normal/pneumonia and b) 
Bacterial/viral pneumonia. 

Fig. 8 shows several instances of pneumonia infected CXRs, their corresponding grad-CAM, and LIME outputs. The lung 
masks are applied to the original images to extract the lung regions. It is interesting to note that the regions of high opacity 
are strongly activated which probably made the network to classify the image to belong to the pneumonia class. The 
explanations generated by the LIME explainer are shown as the superpixels with the highest positive weights, 
superimposed on the original input. The explainer shows that the model is forcing on the regions of high opacity. There 
are also a few false positive superpixels reported.  

The current implementation uses linear models to approximate local behavior. The assumption holds well when looking 
into the neighborhood of prediction but not powerful enough to explain the behavior of the original, non-linear model. The 
explanation may not be faithful if the underlying model exhibits a high degree of non-linearity in the locality of predictions.  
It may be for this reason that we could observe a number of false positive superpixels been reported in the explanations. 
These explanations result from a random sampling process, the exact same explanation could not be expected. In these 
circumstances, the number of samples is increased to improve the confidence in the explanation.  
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Figure 7. Visualizing a random selection of filter activations in the VGG16 model. (a) first convolutional layer, (b) eighth 
convolutional layer, and (c) deepest convolutional layer. 

 
Figure 8. Visual explanations through class activation maps and LIME. (a) original image, (b) lung mask, (c) cropped lung 
regions, (d) grad-CAM visualization and e) LIME visualization. 

The results obtained with the cropped lung ROI are compared to the state-of-the-art as shown in Table 4. We observed 
that the pretrained VGG16 network trained end-to-end on the cropped lung ROI outperformed the state-of-the-art in all 
performance metrics in classifying normal and pneumonia and further differentiating bacterial and viral pneumonia. 
However, the optimized custom CNN demonstrated better results for recall. If a model has to be selected considering the 
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balance between precision and recall as demonstrated by the F1 metric and MCC, the pretrained VGG16 outperformed the 
custom CNN and the state-of-the-art in the classification tasks.  
     Table 4. Comparing the classification performance with the state-of-the-art. 

Task Model Accuracy AUC Precision Recall specificity F1 MCC 

  
Normal v. Pneumonia 
  

Pre-trained 
VGG16 

0.962 0.993 0.977 0.962 0.962 0.970 0.918 

Custom CNN 0.941 0.984 0.930 0.980 0.877 0.955 0.873 

Kermany et 
al.14  

0.928 0.968 - 0.932 0.901 - - 

Bacterial v. Viral 
Pneumonia 

Pre-trained 
VGG16 

0.936 0.954 0.919 0.984 0.859 0.951 0.862 

Custom CNN 0.928 0.956 0.909 0.984 0.838 0.946 0.848 

Kermany et 
al.14  

0.907 0.940 - 0.886 0.909 - - 

*Bold numbers indicate superior performance. 

4. CONCLUSION 
We proposed a DL based AI system to diagnose pneumonia in pediatric CXRs to expedite diagnosis, facilitate early 
treatment and improve clinical decision-making. We also explained the model predictions through ROI localization that 
is most relevant to decision-making and crucial for effective human-computer interactions. The study presents a 
generalized platform to apply to an extensive range of medical applications. Classifying CXRs is a difficult task due to the 
presence of a large number of variable objects that are extraneous to pneumonia diagnosis. The promising performance of 
the pretrained VGG16 network trained end-to-end on the pediatric pneumonia dataset suggests that the pretrained model 
effectively learns from progressively complicated data with reduced bias and generalization errors using a relatively small 
data collection. The transfer learning mechanism can further be explored and analyzed for other biomedical imaging 
applications including screening/diagnosis of common diseases.  
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