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Abstract—This study investigates using deep convolutional
neural networks (CNN) for automatic detection of cardiomegaly
in digital chest X-rays (CXRs). First, we employ and fine-
tune several deep CNN architectures to detect presence of car-
diomegaly in CXRs. Next, we introduce a CXR-based pre-trained
model where we first fully train an architecture with a very large
CXR dataset and then fine-tune the system with cardiomegaly
CXRs. Finally, we investigate the correlation between softmax
probability of an architecture and the severity of the disease.
We use two publicly available datasets, NLM-Indiana Collection
and NIH-CXR datasets. Based on our preliminary results (i)
data-driven approach produces better results than prior rule-
based approaches developed for cardiomegaly detection, (ii) our
preliminary experiment with alternative pre-trained model is
promising, and (iii) the system is more confident if severity
increases.

I. INTRODUCTION

Chest radiography is commonly used in early diagnosis to
detect lung and heart pathologies such as atelectasis, consol-
idation, pneumothorax, pleural effusion, cardiac hyperinfla-
tion [1] and is a primary tool for mass screening [2][3][4]. It is
accessible, inexpensive and dose-effective compared to other
imaging tools. The literature has many studies for automated
analysis of chest X-rays (CXR) in radiological analysis or for
population screening in endemic locations [2][3][5][4][6]. One
of these is computation of radiographic indexes as indicator
for cardiac diseases such as cardiomegaly.

Cardiomegaly is a medical condition in which the heart
is enlarged. Figure 1 shows example CXRs from National
Library of Medicine (NLM) Indiana Collection (c.f. Sec-
tion IV-A). Left image is of a healthy subject; right image
shows a heart that is moderate to severely enlarged. Although,
2D-echocardiography is considered as gold standard for the
diagnosis of cardiomegaly [7], access to these services may
not be widely available in under-resourced regions. Automated
approaches could lead to use in a CXR-based triage tool.

With advances in GPU technology, computer vision systems
designed with deep neural networks trained on massive amount
of data have been shown to produce more accurate results than
conventional approaches. Especially, convolutional neural net-
works (CNN) have received considerable attention for image
analysis, since they preserve the spatial relationship between
image pixels. In this study, we use CNN models for automatic
detection of cardiomegaly in CXRs. We first apply pre-trained
CNN and fine tune the models with cardiomegaly CXRs.
In the second part, we introduce a CXR-based pre-trained
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Fig. 1. Two example CXRs from NLM - Indiana Collection. Left image
belongs to a healthy patient. The clinical findings for the right image is that
the heart size is moderate to severely enlarged.

model. We fully train a deep CNN architecture (e.g. VGG-
16) with a very large CXR dataset and fine-tune the model
with cardiomegaly CXRs. The difference from the earlier fine-
tuning approach is training the architecture only with CXRs
instead of the ImageNet dataset. We expect better classification
performance, since earlier layers of the system is trained with
CXR images. In the last part, we examine correlation between
the softmax probability and severity of the disease. For the
experiments, we used two large publicly available datasets:
NLM-Indiana Collection and National Institutes of Health
(NIH)-CXR dataset [8]. The rest of the paper is organized as
follows. Section II presents a brief overview of cardiomegaly
detection methods developed for CXRs. In Section III, our
contribution and methodology is presented, followed by results
in Section I'V-D. Finally, Section V concludes this study.

II. BACKGROUND

Rule-based Approaches: A well-known radiographic index
is the cardiothoracic ratio (CTR) which is defined as the
ratio between the maximum transverse cardiac diameter and
the maximum thoracic diameter measured between the inner
margins of ribs [9]. There is no consensus for optimal CTR
for cardiomegaly [10][11]. Generally, CTR higher than 0.5 is
considered as a sign of heart enlargement [12][13]. One of the
earlier methods for automated cardiomegaly detection is pre-
sented in [14]. The authors measured the maximum diameter
of heart shadow and the maximum diameter of the rib-cage
shadow from CXRs with vertical intensity histogram analysis.
In [15], researchers compute CTR by fitting a Fourier shape to
hearth boundary profiles. In [16] [17], the CTR computation
is used as a clinical application of lung boundary detection
algorithm. Although, traditional CTR is widely accepted as
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a standard index for heart analysis in CXRs, literature has
alternative radiographic indexes. In [18], 2D-CTR is proposed
as the ratio between the pixel counts of the cardiac outline
and the whole thorax. In [19], CTAR is defined as the ratio
of the area of heart region to the area of lung region. The
comparison of radiographic indexes are investigated in [20].

Machine Learning Approaches: To our knowledge, there
is only one study that investigated the performance of a
traditional machine learning approach by training a support
vector machine with radiographic indexes [20]. However, this
approach uses limited image feature (only radiographic in-
dexes) without considering other image characteristic in CXRs
using a general image descriptor [21][22]. With the recent
advancement in artificial intelligence, researchers developed
deep learning based algorithms for medical image analysis
[23][24]. However, the studies which focus on cardiomegaly
detection are limited. In [25], several pre-trained models are
tested on NLM-Indiana dataset, however, the system is trained
only with approximately 250 CXRs. Although researchers
compare their system with earlier rule-based approaches, they
did not comment on reasons why deep learning architectures
tend to perform better than rule-based systems. The other
reported scores for cardiomegaly detection are in [8] where
researchers trained a multi-labeled deep CNN architecture
and reported detection scores for 8 pathologies in NIH-CXR
dataset including cardiomegaly. In [26], researchers trained
121-layer CNN with NIH-CXR dataset for pneumonia de-
tection, and tested dense-net for 14 pathologies including
cardiomegaly. However, pathology labels in NIH-CXR dataset
are text-mined from radiologist reports and contain errors.
Therefore, system scores reported on NIH dataset are not
considered reliable.

Our contributions are i) investigating pre-trained CNN
model’s performance by training them with the largest car-
diomegaly set (combination of NIH-CXR and NLM-Indiana
collection) and reporting on radiologist annotated NLM-
Indiana collection; ii) discussing why data-driven approach
performs better than earlier rule-based system, iii) introduc-
ing CXR-based pre-training model; and iv) investigating the
correlation between softmax probability of CNN and disease
severity. We anticipate that (iii) and (iv) can be applied for
other diseases which can be detected on CXRs.

III. CNNS FOR CARDIOMEGALY DETECTION IN CXRS

CNN is a feed-forward artificial neural network which
is composed of a set of convolutional, pooling and fully
connected layers. The architecture convolves image with filters
and creates stack of filtered images. These convolutional layers
model image patterns at multiple levels; earlier layers learn
low level features such as lines, corners, and deeper layers
learn global features.

A. Fine-tuning pre-trained models

Training a deep neural network architecture requires large
amount of annotated data which is generally limited in
biomedical imaging domain due to need for expert annotation.

One solution for working with limited data is using pre-trained
models. The pre-trained models are trained with 1.2 million
general images with 1000 categories from ImageNet [27].
For our problem, low level features are used from the pre-
trained model; higher level features are learned by fine-
tuning the system with the limited dataset. In this section, we
report the performance of pre-trained models for cardiomegaly
detection. We adopt the following pre-trained models that
have different depths and architecture: (i) AlexNet [28] as a
relatively shallow network, (i) VGG-16 and VGG-19 [29] as
middle size networks, and (iii) InceptionV3 [30] as a very
deep network. We use the layers of pretrained networks (with
their learned weights) till first fully connected layer of the
architecture. Then, we insert two fully connected layers, two
drop-out layers among these fully connected layers in order to
reduce the over-fitting, and a final output layer which produces
the probability of cardiomegaly. We then fine-tune the added
layers with the cardiomegaly dataset. Experimental results are
in Section I'V-D.

B. CXR-based pre-trained models for CXRs

As we mentioned in Section III-A, when training deep
neural networks with limited data we use a pre-trained model
and apply fine-tuning to the final layers with the available
training data. However, all pre-trained models are trained with
ImageNet which contains general images, thus have different
visual features than chest X-rays. We propose a new pre-
trained model for CXRs and test the model for cardiomegaly
detection. Recently, NIH released a large CXR dataset [8]
which contains 112,120 frontal view X-ray images of 30,805
patients. The dataset contains several lung abnormalities (c.f.
Section IV-A). We apply end-to-end training to a CNN ar-
chitecture (e.g. VGG-16) only with NIH-CXR dataset and
then fine-tune the final layers of this model with limited car-
diomegaly CXRs. Thus, earlier layers learn low level features
from general abnormal CXR images, and final layers learn
more specific features to cardiomegaly from cardiomegaly
CXR images. The proposed idea is illustrated in Figure 2.
We present the idea for cardiomegaly classification problem,
however, it can be generalized to other pulmonary diseases in

CXRs.
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Fig. 2. The system is trained with NIH-CXR dataset which has several lung
abnormalities. This pre-trained system is fine-tuned with cardiomegaly CXRs.
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C. Automated grading of disease level

Cardiomegaly diagnosis has several levels of severity such
as borderline, moderate and severe. One way to detect the
disease level is training a multi-class classification system with
images at different levels. However, there is not enough labeled
data to train such a system. As an alternative, we investigate
the correlation between softmax probability and disease level.
Using radiologist report, we classify cardiomegaly images
in NLM-Indiana collection into severity classes, then, we
measure the softmax probability of CXR in each class. We
expect higher softmax probability for severe cardiomegaly
cases than mild cases.

IV. EXPERIMENT

A. Datasets

We use two largest and publicly available chest X-ray
datasets: NLM-Indiana Collection and NIH-CXR dataset.

NLM-Indiana Collection is a set of images de-identified at
source that are collected from various hospitals affiliated with
the Indiana University School of Medicine (NIH IRB#5357).
The set contains approximately 4000 frontal and lateral CXRs
with several lung abnormalities and corresponding radiologist
reports. Among these, 283 CXRs have cardiomegaly at various
levels such as borderline, moderate, and severe, shown in
Table I. The set is publicly available through Open-i® [31],
which is a multimodal biomedical literature search engine
developed by NLM. For experiments, we use 283 CXRs
with cardiomegaly and 283 CXRs with normal cases. Using
available radiology readings, we classify CXRs according to
cardiomegaly severity. Each CXR is placed into one of the
following categories: borderline, mild, moderate and severe.
Some reports do not have severity designation, therefore, we
could not classify their severity.

Severity [ Borderline Mild Moderate  Severe  Non-classified
# of CXRs | 47 107 18 4 107
TABLE I

CXR IMAGES WITH CARDIOMEGALY IN NLM INDIANA COLLECTION

NIH CXRs dataset [8] is currently the largest publicly
available CXR dataset which contains 112,120 frontal-view
X-ray images of 30,805 patients. The dataset contains several
lung abnormalities including atelectasis, cardiomegaly, effu-
sion, pulmonary infiltration and pneumothorax. The disease
labels are text mined from the radiology reports by the data
providers using natural language processing claiming 90%
accuracy [8]. However they do not assign a severity grade to
the disease label. Further, due to admitted text-mining errors
the NIH dataset may be unsuitable for testing. Therefore, we
use this set only to train CNN architectures. For our study, we
extract CXRs labeled as “cardiomegaly” and obtained 2762
CXRs.

B. Evaluation

We use accuracy, sensitivity, specificity, and area under
curve metrics. Accuracy is the ratio of number of correctly
classified CXRs to the number of CXRs in the dataset.
Sensitivity is the ratio of the correctly classified cardiomegaly
patients. Specificity is the ratio of the correctly classified
normal patients. Area under receiver operating characteristics
curve (AUC) is the total area under the receiver operating
characteristics curve which is the plot of sensitivity against
1-specificity.

C. Parameters

First, we apply histogram equalization to the images. Next,
we downsize the images to the size of the input size of pre-
trained model. We also apply augmentation to increase the
number of training images. The organ ratios in CXRs are
important features for cardiomegaly. Therefore, we carefully
augment images by using only translation and rotation. We
follow 3-fold cross validation approach. We use the entire
NIH-CXR dataset for training. We randomly divide the NLM-
Indiana collection into 3 subsets. We add one subset into
training set, and the rest of the images (2 subsets) are used
for testing. We repeat the process for each subset and compute
the average of obtained scores. During training, we tune layers
through validation set within the training set (10%). We use
stochastic gradient descent as loss function. All experiments
were performed using Keras framework with Tensorflow li-
brary for numerical computations in Python 3.5.

D. Experiment Results

1) Fine-tuning pre-trained models: Table II lists evalu-
ation scores of pre-trained models to detect the presence
of cardiomegaly. Our earlier study [20] investigated the ra-
diographic index performance for cardiomegaly classification
on NLM-Indiana dataset. We also listed these results for a
comparison between rule-based and data-driven approaches.
One reason of lower accuracy of rule-based systems is that
there is no consensus for the optimal value of radiographic
indexes. However, data-based approaches could learn the best
discriminatory features with their optimal value in training
process. For cardiomegaly case, these features would be the
optimal measurements to detect the heart enlargement. The
other reason is that radiographic index computation needs
heart and lung boundaries which introduces additional error
during boundary detection.

2) CXR-based pre-trained models: We investigate the
performance of CXR-based pre-trained model. We train a
VGG-16 architecture from scratch with NIH-CXR dataset.
This dataset contains several lung pathologies including car-
diomegaly. We then fine-tune the final convolutional layer and
fully connected layers with only cardiomegaly CXRs. The
cardiomegaly detection performance of standard pre-trained
and CXR-based pre-trained models are tested on NLM-Indiana
dataset and evaluation results are listed in Table III. We
obtained higher overall accuracy and higher specificity with
500 training iterations. The gain in specificity is compensated
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Rule-based approach
Radiographic Index Accuracy | Sensitivity | Specificity
CTR [20] 0.736 0.872 0.60
2D-CTR [20] 0.708 0.704 0.712
CTAR [20] 0.756 0.856 0.656

Conventional Machine
Learning

Accuracy ‘ Sensitivity ‘ Specificity

SVM Classifier [20] | 0765 [ 0771 [ 0.764
Data-Driven Approach
Pre-trained Models Accuracy | Sensitivity | Specificity F1 AUC
Fine-tuned AlexNet 0.8764 0.8911 0.8675 0.8773 | 0.9436
Fine-tuned VGG-16 0.8824 0.9258 0.8392 0.8873 | 0.9487
Fine-tuned VGG-19 0.8189 0.9487 0.6892 0.8399 | 09178
InceptionV3 0.5627 0.1943 0.9311 0.3063 | 0.6151
TABLE II

EVALUATING PRE-TRAINED MODELS: TRAINING SET: NIH SET + 30% OF INDIANA COLLECTION; TEST SET: 70% OF INDIANA COLLECTION.

by a small drop in sensitivity. Even at this performance, the
solution is valuable for global-health applications, particularly
for under-resourced regions, where specificity (finding normals
as normal) is as important as sensitivity (finding abnormal as
abnormal). This classifier would act like a triage tool mini-
mizing the burden on the under-resourced radiology analysis
system. However, we conjecture that with a higher number of
training iterations we will see an overall improvement.

Pre-trained VGG-16 | Accuracy | Sensitivity | Specificity

Trained with ImageNet 0.8824 0.9258 0.8392
CXR-based pre-trained model 0.8986 0.8881 0.9091
TABLE I

COMPARISON BETWEEN ARCHITECTURE PRE-TRAINED WITH IMAGE-NET
AND SAME ARCHITECTURE PRE-TRAINED WITH NIH-CXR DATASET

3) Automated grading of disease level: We investigate the
correlation between the severity and the softmax probability of
the CNN architecture; a fine-tuned VGG-16. We measure the
softmax proability of VGG-16 for each CXRs in each severity
classes. The distribution of softmax values of each severity
class are plotted in Figure 3. Each box represents one severity
class. As expected, severe cases spread in the high end of the
softmax probability with smaller variability and higher median
average. Moderate and mild cases spread with larger variability
towards lower end of the probability. Borderline cases have
the largest distribution variability with several outliers towards
lower end of the probability. The average probability of each
severity class is listed in Table IV. Based on the average
scores, the system confidence increases with the severity of
the disease.

Severity | Severe | Moderate | Mild | Borderline
Avg. Softmax Prob. | 0.9844 | 09237 | 08588 | 0.7701
TABLE IV

AVERAGE SOFTMAX PROBABILITY FOR EACH SEVERITY CLASS
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Fig. 3. Correlating softmax probability of CXRs with disease levels. Average
softmax probability of each class is listed in Table IV.

V. CONCLUSIONS AND DISCUSSION

In this study, we investigated the performance of deep
CNNs for automatic cardiomegaly detection. We first used
pre-trained models and compared their cardiomegaly detec-
tion performance with radiographic indexes. We obtained
higher accuracy with CNN models since system learns the
discriminatory features and their best values from the data.
In addition, radiographic index computation needs heart and
lung boundaries which introduces possible segmentation er-
rors. In data-driven approach, system learns the features from
the whole image without boundary detection stage. In the
second part, we introduced CXR-based pre-trained models
for pulmonary classification in CXRs and tested the idea
for cardiomegaly classification. We observed a significant
improvement in specificity. We expect this to improve as we
train further. We anticipate that CXR-based pre-trained models
can be extended for other pathologies in CXRs as well as
other imaging modalities (e.g. CT, MRI). As the final part
of the study, we observed the correlation between softmax
probability and severity of the disease. The distribution of
each severity class and average probabilities show that system
confidence increases with severity.

112



There are thoracic dimension and thoracoabdominal con-
figuration differences between genders. The lung region, rib-
cage dimensions and diaphragm length are smaller in fe-
males [32]. Further, thoracic dimension changes with aging.
The mean transverse cardiac diameter increases gradually with
age and males having slightly greater cardiac diameter than
females [33]. In clinical examination of CXR, radiologist
considers age and gender information in their decision making
process in addition to visual clues in CXR. To our knowledge,
any automated cardiomegaly detection approach in literature
explicitly includes meta data to their system. However, age
and gender information are implicitly contained in CXRs.
The data-driven approaches could learn these differences and
implicitly consider age-gender information during classifica-
tion. For example, dense opacity of breast tissue and breast
contour are visible differences in female CXRs. Lung size,
rib-cage dimensions and diaphragm lengths are dimension-
related differences between genders [32], and can be clue
for an automated system to detect the gender [34]. The
greater inclination of ribs in females [32] creates different
textural pattern in female CXRs. In addition to lung size, lung
shape differences between different age groups [35][36] and
bone appearance [37] can be clue for the patient age. As a
future study, we will systematically investigate these factors
in addition to image-based clues.
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