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ABSTRACT  

According to the World Health Organization (WHO), tuberculosis (TB) remains the most deadly infectious disease in 
the world. In a 2015 global annual TB report, 1.5 million TB related deaths were reported. The conditions worsened in 
2016 with 1.7 million reported deaths and more than 10 million people infected with the disease. Analysis of frontal 
chest X-rays (CXR) is one of the most popular methods for initial TB screening, however, the method is impacted by the 
lack of experts for screening chest radiographs. Computer-aided diagnosis (CADx) tools have gained significance 
because they reduce the human burden in screening and diagnosis, particularly in countries that lack substantial 
radiology services. State-of-the-art CADx software typically is based on machine learning (ML) approaches that use 
hand-engineered features, demanding expertise in analyzing the input variances and accounting for the changes in size, 
background, angle, and position of the region of interest (ROI) on the underlying medical imagery. More automatic 
Deep Learning (DL) tools have demonstrated promising results in a wide range of ML applications. Convolutional 
Neural Networks (CNN), a class of DL models, have gained research prominence in image classification, detection, and 
localization tasks because they are highly scalable and deliver superior results with end-to-end feature extraction and 
classification. In this study, we evaluated the performance of CNN based DL models for population screening using 
frontal CXRs. The results demonstrate that pre-trained CNNs are a promising feature extracting tool for medical imagery 
including the automated diagnosis of TB from chest radiographs but emphasize the importance of large data sets for the 
most accurate classification.  

Keywords: Tuberculosis, deep learning, machine learning, convolutional neural network, chest radiograph, 
classification, customization, screening 
 

1. INTRODUCTION  
Tuberculosis (TB) resulted in 1.7 million deaths worldwide in 2016. The World Health Organization (WHO) 
recommends chest X-ray (CXR) screening as a part of the routine protocol for high-risk groups1 such as those with 
HIV/AIDS. TB is endemic in under-resourced regions such as parts of sub-Saharan Africa. Lack of expertise in 
interpreting radiology reports has been reported, especially in TB endemic regions, severely impairing screening 
efficacy2. Thus, the current research is focused on developing cost-effective, computer-aided diagnosis (CADx) tools to 
assist medical providers in interpreting CXRs and improving the quality of diagnostic imaging. Appropriate use and 
development of these systems could help greatly improve the detection accuracy and reduce the human burden in 
screening and diagnosis of conditions like TB, particularly in endemic regions and third world countries that lack 
substantial radiology services.  

State-of-the-art CADx software uses machine learning (ML) techniques that utilize global and local feature descriptors 
to extract features from the underlying data. ML tools have been previously applied to detect abnormal texture in chest 
radiographs and to demonstrate extraction of texture and shape features and classification with a binary classifier in the 
process of TB screening from CXRs3–5. Morphology-based algorithms have been proposed to extract features including 
circularity, size, contrast and local curvature of the lung nodules for classification of abnormal and normal CXRs6. A 

Medical Imaging 2018: Computer-Aided Diagnosis, edited by Nicholas Petrick, Kensaku Mori, Proc. of 
SPIE Vol. 10575, 105751E · © 2018 SPIE · CCC code: 1605-7422/18/$18 · doi: 10.1117/12.2293140

Proc. of SPIE Vol. 10575  105751E-1

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/9/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

study focused on image level labeling using Local Binary Patterns (LBP) for detecting and classifying chest pathology 
was proposed7. Bag of Visual words (BOVW) was used in discriminating normal and pathological chest radiographs8. 
There are a few commercially available CADx tools based on ML approaches that use a combination of textural and 
morphological features. This includes CAD4TB, a CADx software from the Image Analysis Group, Netherlands that has 
an area under the curve (AUC) ranging from 0.71 to 0.84 in a range of studies in the process of detecting pulmonary 
abnormalities9. Another study achieved AUC of 0.87 to 0.90 while using a support vector machine (SVM) classifier to 
detect pulmonary TB from CXR images using texture and shape features10. However, these CADx tools used hand-
engineered features that change with size, background, angle, and position of the region of interest (ROI).  

To overcome challenges of devising high-performing hand-engineered features that capture the variation in the 
underlying data, Deep Learning (DL), also known as hierarchical machine learning, has been used with significant 
success11. DL models are constructed using a cascade of layers of non-linear processing units for end-to-end feature 
extraction and classification12. The models excel with high-dimensional datasets, especially images having multiple 
levels of representations. Convolutional neural networks (CNN), a class of DL models, have gained immense research 
prominence as they promise to deliver high-quality classification without the need for manual feature selection. Unlike 
kernel-based algorithms like SVMs, DL models exhibit improved performance with an increasing number of training 
samples and computational resources, making them highly scalable13. However, high performance using DL comes at 
the cost of huge amounts of labeled data which are difficult to obtain, particularly in biomedical applications. Transfer 
learning methods are commonly used to relieve issues with data inadequacy where DL models are pre-trained on a very 
large dataset like ImageNet, containing 15 million annotated natural/stock photography images from over 21,000 
categories14. These models can either be used as an initialization for a wide range of computer vision problems or a 
feature extractor for the task of interest15. In 2012, AlexNet was proposed16 that used a sequential stacking of 
convolutional layers and rectified linear units (ReLU). The model used dropout layers to combat the problem of data 
overfitting and was trained using a stochastic gradient descent (SGD) algorithm. A VGG model was proposed in 2014 
that used only 3×3 sized filters all through its length. The model won the ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) benchmark in object localization task in 2014. Several variants of these networks including VGG-
16 and VGG-19 were developed, where “16” and “19” indicated the number of weight layers in the network17. Another 
model named Xception was proposed that used depth-wise separable convolutions18 to outperform the Inception-V3 DL 
model19 on the ImageNet data classification task. In 2015, a model based on deep residual connections (ResNet) was 
proposed that achieved superhuman performance and won the ILSVRC classification task20.  

Medical images containing visual representations of the internal structures of the body have little in common with 
natural images21. Under these circumstances, in contrast to pre-trained DL models, a customized DL model, trained on 
the underlying medical imagery could learn task-specific features to aid in improved accuracy. A customized model 
would be highly compact with less trainable parameters and reduced computation cost. Literature studies reveal the use 
of customized CNNs toward medical image understanding/analysis. In22, a customized CNN based DL model was 
trained to perform automated classification of parasitized and uninfected red blood cells (RBCs) in thin blood smear 
images to aid in malaria diagnosis. The customized model achieved 97.37% accuracy in comparison to pre-trained 
CNNs that achieved 91.99%. The proposed model demonstrated superiority in performance metrics including sensitivity, 
specificity, precision, and F1-score. In23, a 12-layer customized CNN model was used to classify the parasitized and 
uninfected RBCs to aid in diagnosing malaria. The study also investigated the learned features and salient network 
activations in the customized model to aid in understanding the learning strategy. The study revealed that the customized 
CNN outperformed the pre-trained DL models in terms of classification accuracy, model complexity and computation 
time.  

A survey of literature revealed the use of pre-trained CNNs as feature extractors toward automated disease prediction 
from biomedical imagery. A study reported to use pre-trained models toward identifying pleural effusion and 
cardiomegaly from frontal CXRs24. The performance of the pre-trained CNN was compared to the classifiers trained on 
features extracted using LBP, GIST, and Pico-Descriptors25. The study achieved promising results with AUC of 0.93 and 
0.89 for right pleural effusion and cardiomegaly, respectively through a combination of the features extracted from the 
pre-trained CNN and Pico-Descriptors. The application of CNN toward TB detection was demonstrated in another study 
that used a customized CNN model with AlexNet framework, trained on a private CXR dataset of approximately 10K 
images26. The customized model gave poor results when trained with random weight initializations. However, with pre-
trained CNNs, the authors obtained competitive results on the publicly available Montgomery and Shenzhen CXR 
datasets27, achieving AUC of 0.884 and 0.926 respectively.  
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Our study aims to evaluate the performance of one customized model and five pre-trained CNNs towards improving the 
accuracy of TB screening using frontal CXRs. We evaluate the performance of a customized CNN based DL model that 
learns task-specific features from the posterior-anterior (PA) CXRs that could aid in improving the accuracy of TB 
detection. The proposed model is optimized for its hyper-parameters in the process of minimizing the classification 
error. We employ five different pre-trained CNN models to extract features from the PA CXRs to aid in detecting TB 
manifestations.  

The most important contributions of this work are as follows: The proposal of a customized CNN based DL model, 
optimized for its hyper-parameters toward the process of learning task-specific features from the underlying biomedical 
imagery, a comparative analysis of the performance of different pre-trained DL models as feature extractors for the task 
of TB detection, identification of optimal layers in the pre-trained CNNs for extracting the features from the underlying 
data, and a statistical analysis to test for the presence or absence of a statistically significant difference in performance 
across the models under study. The following paper is organized as follows: Section 2 elaborates on the materials and 
methods, section 3 discusses the results, and section 4 concludes the paper.  
 

2. INTRODUCTION  
2.1 Data collection and preprocessing 

This study uses four datasets that include two publicly available datasets from Montgomery County, Maryland, and 
Shenzhen, China, maintained by the National Library of Medicine (NLM), National Institutes of Health (NIH). Table 1 
presents the details pertaining to the origin and characteristics of the datasets.  

Table 1. Datasets and their characteristics. 

Origin # TB positive # Normal File type Bit depth Resolution 

Shenzhen  58 80 PNG 8-bit 4020-4892 × 4020-4892 

Montgomery 336 326 PNG 8-bit 948-3001 × 1130-3001 

Kenya 238 729 PNG 8-bit 1312-1852 × 1094-1838 

India 153 153 JPG 8-bit 1024-2480 × 1024-2480 

 

Ground truth information is available in the form of clinical readings, annotating the abnormal locations in the CXRs. 
The India dataset was created by the National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India and 
made available by the authors4. For the Kenya dataset, Indiana University School of Medicine and Academic Model 
Providing Access to Healthcare (AMPATH), a Kenyan NGO, collaborated with NLM to make available de-identified 
CXRs from rural western Kenya as a part of the mobile truck-based screening.  

The datasets used in this study contain regions other than the lungs that are irrelevant toward lung TB detection. To 
alleviate issues due to models that learn features that are irrelevant to detecting lung TB and demonstrating sub-optimal 
performance, the lung region constituting the ROI is segmented by a method that uses anatomical atlases with non-rigid 
registration10. An instance of a CXR with the detected lung region and cropped lung area using the proposed method is 
shown in Fig. 1. The method follows a content-based image retrieval (CBIR) approach to identify the training samples 
that bear resemblance to the patient CXR. The patient-specific anatomical lung shape model is created using SIFT-flow 
(SIFT: scale-invariant feature transform)28 for registering the training masks to the patient CXRs. The refined lung 
boundaries are extracted using an approach based on graph-cut optimization29 using a customized energy function. The 
approach is highly robust, resulting in a segmentation accuracy of 94.1% and 91.7% on the Montgomery and India 
datasets respectively. After lung segmentation, the resulting image is cropped to the size of a bounding box that contains 
all the lung pixels. The resultant images are enhanced for contrast by applying Contrast Limited Adaptive Histogram 
Equalization (CLAHE). The images are down-sampled to 224×224 and 299×299 pixel resolutions to suit the input 
requirements for the customized and pre-trained CNNs.  
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initializations for networks with ReLU non-linear activations is used20, a more sophisticated initialization than the 
regular method of weight initialization11 using the Gaussian distribution, however, the Gaussian is rescaled in 
accordance with the number of neurons connected to the input of a given layer.  

2.3 Feature extraction using pre-trained models  

We evaluate the performance of pre-trained DL models that include AlexNet (winner of ILSVRC 2012), VGG-16 and 
VGG-19 (winner of ILSVRC's localization task in 2014), Xception and ResNet-50 (winner of ILSVRC 2015) in the 
process of extracting the features from the CXRs across the normal and TB-positive categories. Table 2 shows the 
number of parameters and depth for the customized and pre-trained CNNs used in this study. 

Table 2.  Models and their parameters. 

Model # Parameters Depth 

Customized model 2,797,730 9 

AlexNet 60,000,000 25 

VGG-16 138,357,544 23 

VGG-19 143,667,240 26 

Xception 22,910,480 126 

ResNet-50 25,636,712 168 

 

The segmented ROI constituting the lungs are down-sampled to match the input dimensions of the pre-trained models. 
Each layer of the pre-trained CNNs produces an activation for the given image. Earlier layers capture primitive features 
that include blobs, edges, and colors that are abstracted by the deeper layers to form higher level features to present a 
more affluent image representation. Studies from the literature reveal that features are conventionally extracted from the 
layer, right before the classification layer33. The convolutional part of the pre-trained models including AlexNet, VGG-
16, VGG-19, Xception, and ResNet-50 is instantiated, everything up to the fully-connected layers and the models are run 
on the data to record the activation maps. A small fully-connected model is trained on top of the stored features. The 
performance of these models is compared with the customized DL model for the datasets under study. For the pre-
trained models, the architecture and weights are downloaded from the Keras GitHub repository34. We also 
experimentally determined the optimal layer in these pre-trained DL models for extracting the features to aid in 
improved TB detection. As with the customized model, we performed 5-fold cross-validation with the individual 
datasets and evaluated the performance.   

3. RESULTS AND DISCUSSIONS 
3.1 Comparing the results of feature extraction from different layers 

Table 3 shows the results for the customized CNN, trained to learn task-specific features from the datasets under study. 
The performance of the custom model, with respect to the India dataset, is the most promising, with an accuracy of 0.824 
and AUC of 0.900. The reason may be that TB manifestations in this dataset are obvious and are distributed throughout 
the lungs that give the customized model the opportunity to capture highly discriminative features across healthy 
controls and TB-positive cases.  

Table 3.  Performance of the customized model. 

Datasets Accuracy AUC 

Shenzhen  0.820 0.894 

Montgomery 0.658 0.744 

Kenya 0.572 0.642 

India 0.824 0.900 
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With the Kenya dataset, the custom model demonstrated sub-optimal performance. The principal reason may be because 
the dataset has a highly imbalanced distribution of instances across the classes, with 238 abnormal CXRs in comparison 
to 729 healthy controls. Also, the resolution of CXRs, even after ROI segmentation and CLAHE enhancement is not 
ideal that further impaired the performance of feature extraction and classification. With the Montgomery dataset, 
performance limitation may be attributed to the limited size of the dataset and also the degree of imbalance across the 
classes where 40% of the samples are TB-positive as compared to 60% healthy controls. Table 4 and Table 5 shows the 
results of using pre-trained CNNs as feature extractors in the process of classifying healthy and TB-positive cases. The 
second fully connected layer has been selected for feature extraction in AlexNet, VGG-16 and VGG-19 models. The last 
layer, before the final classification layer, is selected for extracting the features from Xception and ResNet-50 models. 
The models are trained using SGD with momentum and learning rate of 1e-4.  

Table 4.  Performance of the pre-trained DL models – Accuracy. 

Datasets AlexNet VGG-16 VGG-19 Xception ResNet-50 

Shenzhen  0.842 0.815 0.778 0.731 0.819 

Montgomery  0.725 0.708 0.650 0.600 0.676 

Kenya 0.657 0.666 0.679 0.653 0.678 

India 0.864 0.748 0.840 0.828 0.812 

 

Table 5.  Performance of the pre-trained DL models – AUC. 

Datasets AlexNet VGG-16 VGG-19 Xception ResNet-50 

Shenzhen  0.912 0.881 0.865 0.862 0.893 

Montgomery  0.800 0.736 0.724 0.672 0.616 

Kenya 0.743 0.739 0.722 0.702 0.753 

India 0.944 0.852 0.905 0.890 0.902 

 

For the Shenzhen dataset, AlexNet obtained the best accuracy of 0.842 and AUC of 0.912. The same pattern is observed 
across the Montgomery and India datasets. For Montgomery dataset, AlexNet obtained the best accuracy of 0.725 and 
AUC of 0.800. For the India dataset, AlexNet outperformed the other pre-trained CNNs with an accuracy of 0.864 and 
AUC of 0.944. Only for the Kenya dataset, we observed that the AUC of VGG-19 is slightly better than that of AlexNet, 
however, the accuracy of AlexNet is higher than that of the other pre-trained models. It can be noted that the results 
obtained with the India dataset are superior to the results obtained with the other datasets for the reasons discussed 
earlier. We empirically found that adding dropout improved the classification accuracy of shallow, sequential networks 
that include AlexNet, VGG-16, and VGG-19 but degraded the performance of deep CNNs that include Xception and 
ResNet-50.  

Among the pre-trained CNNs evaluated in this study, AlexNet outperformed the other models for the datasets used in 
this study. It could be expected that ResNet-50 would beat all other architectures since their performances were reported 
in the literature to be clearly superior with the large-scale ImageNet data20, but they didn’t, in this study. The architecture 
of ResNet-50 is deep, and may be more than is needed for the underlying task of binary medical image classification. 
For ImageNet data, deeper networks outperform shallow counterparts for the reason that the data is diverse and the 
networks learn abstractions for a huge selection of classes. In our case, for the binary task of TB detection, the variability 
in data is several orders of magnitude smaller as compared to ImageNet collection. The top layers of pre-trained CNNs 
like Xception and ResNet-50 are probably too specialized, progressively more complex and not the best candidate to re-
use for the task of our interest. This explains the difference in performance in our case.  

Literature studies reveal that features extracted from shallow layers of deep CNNs are useful in detecting small objects 
in the underlying data35. We found that these results hold good for our TB detection task. We evaluated the performance 
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of pre-trained CNNs by extracting features from different layers in the process of identifying the optimal layer for 
feature extraction, for the datasets under study. We chose the candidate convolutional layers from the 3rd, 4th, 5th, and 
final stage of the pre-trained models. The naming conventions for these layers are based on the models obtained from 
Keras® neural network library. We observed that for pre-trained models the performance of the layer before the 
classification layer was degraded compared to the other layers. The layers that gave the best classification accuracy and 
AUC for the different pre-trained CNNs are listed in Table 6. Table 7 and Table 8 presents the results obtained by 
extracting the features from these optimal layers in the pre-trained CNNs. In contrast to the results obtained in Table 4 
and Table 5, for Shenzhen dataset, VGG-16 performed better in terms of accuracy, however, AlexNet gave the highest 
AUC of 0.926. For Montgomery dataset, Xception model was more accurate, however, VGG-19 gave the best AUC of 
0.833. For Kenya dataset, both AlexNet and VGG-16 performed equally well with an accuracy of 0.695, however, 
AlexNet demonstrated a slightly better AUC of 0.775 as compared to other models. For India dataset, VGG-16 gave the 
highest accuracy of 0.876, however, VGG19 gave the best AUC of 0.956. 

Table 6.  Candidate layers giving the best performance for the datasets. 

Model Layer 

AlexNet  fc6 

VGG-16 Conv5_1 

VGG-19 Conv5_1 

Xception Block11_Sepconv1 

ResNet-50 Res4c_branch2a 

 

Table 7.  Performance of the pre-trained DL models with optimal features – Accuracy. 

Datasets AlexNet VGG-16 VGG-19 Xception ResNet-50 

Shenzhen  0.853 0.855 0.852 0.815 0.802 

Montgomery  0.725 0.742 0.733 0.758 0.717 

Kenya 0.695 0.695 0.690 0.679 0.691 

India 0.872 0.876 0.872 0.812 0.860 

 

Table 8.  Performance of the pre-trained DL models with optimal features – AUC. 

Datasets AlexNet VGG-16 VGG-19 Xception ResNet-50 

Shenzhen  0.926 0.917 0.916 0.900 0.892 

Montgomery  0.818 0.829 0.833 0.810 0.820 

Kenya 0.775 0.774 0.774 0.754 0.740 

India 0.949 0.950 0.956 0.894 0.944 

 

The results demonstrated that the final layer of pre-trained CNNs is not always optimal for the underlying data. Features 
from shallow layers performed better than deep features to aid in improved disease prediction. 

3.2 Statistical analysis  

The selection of the best performing model is validated using one-way analysis of variance (ANOVA) parametric test36. 
The test is performed to determine the presence or absence of a statistically significant difference between the means of 
three or more individual, unrelated groups. Specifically, one-way ANOVA tests the null hypothesis (H0), given by: 

 

Proc. of SPIE Vol. 10575  105751E-7

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/9/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

μ1	:0ܪ                                                                               = μ2 = 	μ3 = 	μ݇                                                                                          (1)                              

where µ = mean of parameters for the individual groups and k = total number of groups. If a statistically significant 
result is returned by the test, the alternative hypothesis (HA) is accepted that infers that there is a statistically significant 
difference between the means of at least two groups involved in the study. One-way ANOVA is an omnibus test that 
couldn’t identify the specific groups that have statistically significant differences in their mean values. A post-hoc 
analysis is needed to identify the specific groups that demonstrate statistically significant difference in their mean values. 
A Tukey’s post-hoc test is performed to identify these groups37. The consolidated results of one-way ANOVA and 
Tukey’s post-hoc tests for different performance metrics, for the different models are shown in Table 9. To conduct one-
way ANOVA, the data has to satisfy the assumptions of normality of data, homogeneity of variances and independence 
of observations. Normality of data is tested with Shapiro-Wilk test for normality38 and Levene’s statistic is used to test 
the homogeneity of variances for the data under study39. 

Table 9.  Consolidated results of one-way ANOVA and Tukey post-hoc test. 

Datasets Parameter M1 M2 M3 M4 M5 M6 ANOVA 
summary 

Tukey 

F p 
Shenzhen  Accuracy 0.853 0.855 0.852 0.815 0.802 0.709 6.674 0.001 M1, M2, 

M3 & M6, 
p = 0.001 

M4 & M6, 
p = 0.022 

M5 & M6, 
p = 0.005 

AUC 0.925 0.917 0.916 0.900 0.892 0.786 8.153 0.000 M1, M2, 
M3 & M6, 
p = 0.000 

M4 & M6, 
p = 0.002 

M5 & M6, 
p = 0.005 

Kenya Accuracy 0.695 0.695 0.690 0.679 0.691 0.572 1.963 0.121 - 

AUC 0.775 0.774 0.774 0.754 0.740 0.642 1.428 0.250 - 

Montgomery Accuracy 0.725 0.742 0.733 0.758 0.717 0.658 0.761 0.587 - 

AUC 0.818 0.829 0.833 0.810 0.818 0.744 0.585 0.711 - 

India Accuracy 0.872 0.876 0.872 0.812 0.860 0.824 1.923 0.128 - 

AUC 0.949 0.950 0.956 0.894 0.944 0.890 4.411 0.005 M3 & M6, 
p = 0.036 

 

When the results of these test statistics are not statistically significant, we could ensure that the data is normally 
distributed and have equal or homogeneous variances. We have used the notations, M1, M2, M3, M4, M5 and M6 to 
denote the mean values of accuracy and AUC metrics for AlexNet, VGG-16, VGG-19, Xception, ResNet-50 and 
customized model respectively. The values of the parameters across different folds for the individual models are tested 
for normality and homogeneity of variances with the Shapiro-Wilk and Levene’s test respectively. Since no statistical 
significance is observed, we justify the use of one-way ANOVA test statistic in this study. We performed these analyses 
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using IBM® SPSS® statistical package (IBM Corp. Released 2015. IBM SPSS Statistics for Windows, Version 23.0. 
Armonk, NY: IBM Corp.).  

One-way ANOVA test reveals that, for Shenzhen dataset, there is a statistically significant difference (p < 0.05) between 
the models for the accuracy metric (Accuracy: F (5, 24) = 6.674, p = 0.001 and AUC: F (5, 24) = 8.153, p = 0.000). 
Tukey post-hoc test further reveals that the customized model has a statistically significant difference in its mean value 
for accuracy, as compared to the other pre-trained models, except ResNet-50. With AUC, the customized model differs 
statistically significantly from all the pre-trained models. For Kenya and Montgomery datasets, there are no statistically 
significant differences observed in the mean values for the performance metrics. For India dataset, a statistically 
significant difference is observed for the mean value for AUC (F (5, 24) = 4.411, p = 0.005). Tukey post-hoc test reveals 
that the customized model has a statistically significant difference for AUC as compared to that of VGG-19. These 
findings indicate that there is no statistically significant difference in the performances among the pre-trained models 
across the datasets, however, the customized model shows a statistically significant difference in performance when 
compared to the pre-trained models, for Shenzhen and India datasets.   

Tables 10 and Table 11 compare the results obtained in this study with the studies available in the literature on TB 
detection4,3,26. In terms of accuracy, with Shenzhen dataset, the features extracted from the optimal layer of VGG-16 
model outperforms the state-of-the-art, however, the AUC values remains similar to that reported by Hwang et al. With 
Montgomery dataset, literature studies yield better results than the proposed study, the reason may be attributed to the 
fact that, unlike rule-based local and global feature descriptors, the performance of DL models suffer due to scarcity of 
data that prevent learning highly discriminative features and a highly imbalanced distribution of instances across the 
positive and negative classes. The same holds good to India dataset since DL models don't have enough data to learn the 
discriminative features to arrive at promising results.  

Table 10.  Comparison with literature – Accuracy. 

Datasets Proposed Stefan et al.3 Hwang et al.26 Chauhan et al.4 
Shenzhen  0.855 0.840 0.837 - 

Montgomery 0.758 0.783 0.674 - 

Kenya 0.695 - - - 

India 0.876 - - 0.943 

 

Table 11.  Comparison with literature – AUC. 

Datasets Proposed Stefan et al.3 Hwang et al.26 Chauhan et al.4 
Shenzhen  0.926 0.900 0.926 - 

Montgomery 0.833 0.869 0.884 - 

Kenya 0.775 - - - 

India 0.956 - - 0.960 

 

4. CONCLUSIONS 
In this study, we compared the performance of one customized DL model and five pre-trained DL models toward 
improving the accuracy of TB screening from frontal CXRs. We observed that the performance of pre-trained DL 
models is statistically significantly better than the customized model. We also identified that features from shallow 
layers of pre-trained CNNs gave better results in comparison to features from the deeper layers. The performance of the 
models used in this study is impacted by the scarcity of data and highly imbalanced distribution across the classes. With 
regard to advancements in TB detection, the current study and other studies40 demonstrate that future analysis demands 
large-scale biomedical datasets. The performance of customized and pre-trained DL models could be better with such a 
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large selection of data. Under the circumstances in the current study, which we believe simulate current real-world 
conditions, the pre-trained DL models provided the best performance.  
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