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ABSTRACT 
Despite the many advances in face recognition technology, practical face detection and matching for 
unconstrained images remain challenging. A real-world Face Image Retrieval (FIR) system is described 
in this paper. It is based on an optimally weighted image descriptor ensemble utilized in a single-image-
per-person (SIPP) approach that works with large unconstrained digital photo collections. The described 
visual search can be deployed in many applications, e.g. person location in post-disaster scenarios, 
helping families reunite quicker. It provides efficient means for face detection, matching and annotation, 
working with images of variable quality, requiring no time-consuming training, yet showing commercial 
performance levels. 
Keywords: Face Detection, Face Recognition, Image Retrieval, Family Reunification 

INTRODUCTION 
The Content Based Image Retrieval (CBIR) technology has seen significant advances recently 
resulting in many useful web-scale image search techniques (Dharani & Aroquiaraj, 2013). 
Several web search engines (e.g. bing.com/images, images.google.com, yandex.com/images) 
employ those techniques to provide visual search capabilities. The face recognition (FR) 
technology has also seen a considerable progress during the last decade, in several cases 
approaching human-level accuracy in face detection and verification tasks (Naruniec, 2010; Tan, 
Chen, Zhou, & Zhang, 2006; Zhang & Zhang, 2010), especially in well-controlled environments 
such as studios. 
 

   
Figure 1: Unconstrained images present challenges to face recognition systems. 
 
Modern web-based FR solutions (e.g. in facebook.com or plus.google.com) may work well with 
limited face datasets (e.g. user circles, family albums) that tend to contain tagged pictures of the 
same few individuals (e.g. family and friends) with multiple photos per person, which allows for 

http://www.bing.com/images/
https://images.google.com/
https://yandex.com/images
https://www.facebook.com/
https://plus.google.com/


user-specific recognition model training. Our experience did not provide us with an abundance of 
publicly available single image per person (SIPP) face image retrieval systems that can work 
effectively using no training with millions of unconstrained face images, presenting many 
challenges for such systems in practice, e.g. disaster recovery: 

• no constraints on gallery or query pictures, as in Figure 1 
• often suboptimal quality images for query and gallery, 
• dataset size: web-scale collections with many near-duplicates1 
• large inconsistency in query and gallery face appearance. 

Many of those challenges are being addressed by modern FR systems thanks to the emergence of 
labeled datasets with constrained-free images (Beveridge et al., 2013; Huang, Ramesh, Berg, & 
Learned-Miller, 2007; Kemelmacher-Shlizerman, Seitz, Miller, & Brossard, 2016) utilized for 
various competitions. Development of such challenging datasets presents a great opportunity to 
assess capabilities of the existing systems on the real-world data, and then improve them or 
develop some new capabilities, ultimately approaching a human-level visual matching accuracy. 

Typical FR systems would approach the face recognition problem in one of the two 
formulations (Zhou et al., 2014): verification (answering if photos depict the same person) or 
identification (suggest the person ID by visual similarity to the query image). Such systems 
usually require some sort of model training, using multiple photos per individual. They would 
typically work with a set of visual features extracted from images by learning a measure of visual 
similarity, modeling human visual perception of faces. While modern automatic face 
classification and verification methods can work fairly well on good quality (fairly well lit, 
sharp, 80×80 pixels or better) face images, their performance degrades quite rapidly as the image 
quality drops (e.g. due to blurring, scaling, re-compression, etc.) causing significant degeneration 
of the visual attributes (Scheirer, Kumar, Iyer, Belhumeur, & Boult, 2013) they rely on. 

We approach our face matching task as a face image retrieval (FIR) problem: given a 
query image, we aim at returning visually similar faces from a dynamically changing photo 
gallery, thus effectively reducing the search space from several thousands to about 20 likely 
candidates conveniently displayed on a single page. Our open-set approach practically out-rules 
person-specific training and uses the accuracy evaluation methods (e.g. top-N hit rate) that are 
typical of CBIR, rather than those typical of FR, e.g. Receiver Operating Characteristic (ROC), 
although the latter could also be used for compatibility reasons (Fawcett, 2006). 

Our SIPP face image retrieval methodology has been deployed in a real-world face 
retrieval system (FaceMatch), detecting and matching faces in arbitrary orientation or lighting 
conditions. Handling large scale photo collections, our system requires no training while dealing 
with any open sets of images. FaceMatch R&D project attempts to solve most of the challenges 
mentioned, providing the following functionality: 

• semi-automatic annotation for faces and landmarks 
• accurate face detection robust to scale and rotation 
• image descriptors ensemble for improved face image match 

We present FaceMatch evaluation results for the face detection, matching and retrieval tasks, 
using several publicly available data sets, some of which were annotated in our laboratory. Our 
face image retrieval system is naturally fine-tuned for face detection and matching, but it can 
also be used for general-purpose object and scene matching, thus providing a rich set of tools for 
practical large-scale image collection exploration and manipulation. 

                                                 
1 visually almost identical, but not the same 



In what follows, we discuss our image repository, detail on the proposed methodology 
and present major components of our FaceMatch (FM) system. In each section, we review the 
relevant publications, describe our approach, and present experimental results. 

IMAGE DATA COLLECTIONS 
Our approach to face image retrieval is driven by data. The described methodology automatically 
extracts and weights image features based on statistics. We build and utilize annotated image 
repositories that provide us with ground truth (GT) for the accuracy evaluation and optimization 
of individual components, e.g. skin mapping for face localization. 

Image annotation for face detection typically consists of localized face regions (and 
optionally face landmarks: eyes, nose, mouth, and ears), optional gender and age groups, and 
some skin patches. Such annotations are done semi-automatically, providing the human 
annotator with initial face and landmark localization, which can be manually corrected or 
completed. 

Ground truth for face matching and retrieval involves labeling face images with person 
ID2 that are used to assess the quality of retrieval accuracy. Our system targets unconstrained 
image datasets, e.g. photos from natural disaster events collected by People Locator (PL). PL 
dataset consists of 40 thousand weakly text-labeled mostly color, low quality images, some of 
which are shown in Figure 1. PL image repository is changing over time, as disasters happen 
(Thoma, Antani, Gill, Pearson, & Neve, 2012). 
 

 
Figure 2: Face and landmarks annotation examples 
 
To better organize PL repository, we have developed several cross-platform image processing 
and annotation tools to 

• reduce data size by removing near-duplicates, 
• outline faces and profiles as rectangular regions, 
• localize facial landmarks: eyes, nose, mouth, and ears, 
• extract skin patches from the skin-exposed regions. 

These tools are used to partially annotate various image collections with the correct face and 
profile locations and facial landmarks, as shown in Figure 2. Our near-duplicate detector is based 
on an efficient image retrieval by sketch (Jacobs, Finkelstein, & Salesin, 1995) method using 
color wavelets, and capable of comparing millions of image signatures in a second. Our 
annotation tools are semi-automatic because image processing is never perfect, and each dataset 
has some unique characteristics, requiring a human annotator to confirm the annotation as 
ground truth, which is then used for accuracy assessments and methodology improvements. Face 
and landmark annotation tools use the corresponding capabilities of our FaceMatch library, to be 
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described later in more detail. Using these web-based and desktop annotation tools, our team 
provided image ground truth for several thousand PL images, producing several annotated sets: 

PL-Faces: consists of 2882 low resolution, color PL images, with ¾ of face regions being 
frontal and about ¼ being profile views. The average face and profile diameters are 40 
and 50 pixels respectively. 

HEPL-500: is a subset of PL containing 500 images from 2011 Haiti earthquake, containing 
a large variety of faces. Some of them are over-exposed, blurry or occluded as shown in 
Figure 1. 

Boston-2013: image set consists of 417 low resolution images reported in connection to the 
2013 Boston marathon bombing, with 28 photos of the two main suspects. 

PL-Skin: was created for the skin color mapping needs. 7680 PL images producing 33,431 
patches from faces, arms, legs were annotated resulting in a total of 13 million pixels, of 
which 7 million were labeled as skin and 6 million were labeled as non-skin. 

The images were selected to include a large range of skin tones, environments, cameras, 
resolutions, and lighting conditions. Some of the images contain multiple human subjects. The 
quality of the images varies significantly in illumination, resolution and sharpness. 

Some of the datasets were created in collaboration with other research labs, benefiting 
face recognition research community in general with some additional annotations and checks: 

Lehigh Faces: set was obtained through our collaboration with Lehigh University (Kim, 
Huang, & Heflin, 2011) exhibiting wide variations in background and pose, with mostly 
light skin tones. C1 subset contains 512 unconstrained but near frontal looking images of 
celebrities. C2 subset contains 550 images, but with a greater variety in face appearances. 

Compaq Skin: set (Jones & Rehg, 2002) of nearly 1 billion skin/non-skin labeled pixels for 
training/testing skin tone classifiers. We had to filter out some obvious (black or white) 
outliers, thus reducing the dataset by about a million points. 

Additional meta-data annotation (e.g. skin tone, age group, gender) have also been introduced for 
most datasets. The annotated repository is used for improving face detection and matching 
performance. 

We also utilize some publicly available benchmark datasets depicting humans in 
unconstrained environments for algorithm evaluation and tuning: 

CalTech Faces: set consists of 450 frontal views of 29 subjects, which are taken under 
varying lighting and background conditions. 

Indian Faces: set contains 676 face images of 61 individuals, photographed in a studio, 
exhibiting large variations in head pose, face expression, and lighting. 

ColorFERET: set contains 2413 facial images of 856 individuals showing frontal and 
left/right profile head pose variation, optional glasses, and various facial expressions. 

FDDB: Face Detection Data Set and Benchmark contains 2845 images with 5171 
unconstrained faces (V. Jain & Learned-Miller, 2010). 

For some of the mentioned sets (e.g. CalTech and Indian Faces) we have contributed landmark 
annotations in addition to the supplied head/face regions. Our experiments use those sets to test 
FaceMatch performance, and the evaluation results are presented in the respective sections. 

COLOR-AWARE FACE AND LANDMARK DETECTION 
Reliable face localization is the first critical step in any face matching application. Color-blind 
face detection has been well researched and some efficient detectors have been developed 
(Zhang & Zhang, 2010). Some of those detectors can run in near-real time (Viola & Jones, 

http://www.vision.caltech.edu/Image_Datasets/faces/
http://vis-www.cs.umass.edu/%7Evidit/IndianFaceDatabase/
https://www.nist.gov/itl/iad/image-group/color-feret-database
http://vis-www.cs.umass.edu/fddb/


2004), but they typically come with pre-trained models that may work well for the near-frontal 
views of faces, but fail on many unconstrained images where faces could be arbitrarily 
positioned, occluded, blurred or sub-optimally lit, as in Figure 1. 

To improve on this base-line face detection accuracy, we propose to use color as one the 
most important cues for face (and its landmarks) presence or absence (Deng & Pei, 2008; Hsu, 
Abdel-Mottaleb, & Jain, 2002). To have the resulting color-aware detector run at similar near-
real-time speeds as the base, we propose to utilize graphics processing units (GPU) for gray-
scale face detection, skin color mapper and basic image processing, while running higher level 
components on separate CPU cores using multi-threading techniques, thus taking advantage of 
CPU/GPU parallelism. 

Our face localization sub-module (FaceFinder) is an ensemble of several algorithms 
working together: base grayscale face detector (Viola & Jones, 2004), and color-aware neural 
network based skin mapper with landmark detector (developed by us), as shown in Figure 3: our 
additional modules help recover missing faces while reducing the number of false alarms.  
 

 
Figure 3: FaceFinder components (blue) with data items (gray) and parallel execution flow 
 
Our real-valued skin mapping module (run in parallel with the base detector) helps diminish the 
non-skin regions (reducing some false alarms) and enhance the large skin blobs (recovering 
some missing face candidates). The color enhanced large skin blobs are then run through the 
color-based landmark (eyes, mouth) detector (Hsu et al., 2002), which helps identify them as 
face candidates that can be rectified by their eye lines and re-inspected by another instance the 
base face localizer for new possible faces not found originally by the grayscale face detector. 

Some visual results of our FaceFinder major stages are presented in Figure 4: base 
detection (a) gets corrected by computing the real-valued skin color map (b), which is used to 
remove the false detection and recover the missing candidates by landmark localization and eye-
line rectification (c) to produce the output (d). 

To evaluate the face detection accuracy of FaceFinder, we have considered a variety of 
image collections, described in the section describing our image collections. For evaluation, we 
have used the traditional information retrieval metrics: R=Recall, P=Precision and F=F-score, 
defined as 
 



R = M/S, P = M/D, F = 2PR/(P+R), 
 
where respective counts are M=Match, S=Source, and D=Destination. Match was incremented 
every time there was a considerable overlap between the detected and the source region, known 
from the pre-annotated ground-truth data. 
 

 
 

  

    
(a) base detection (b) skin color map (c) rotated skin blobs (d) corrected output 

Figure 4: Corrected face detection using real-valued skin map and landmarks 
 
The overlap of two rectangular face regions A and B can be calculated as 
 

 
 
and if the overlap L > 0.5, we considered that to be a correct detection (match). 
 
Table 1: Face detection accuracy on different datasets 
Data Methods Recall Precision F-score 

HE
PL
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00

 

VJFD 0.76 0.87 0.81 
FaceFinder 0.77 0.89 0.83 
CmrMbl 0.68 0.87 0.76 
OpnMbl 0.47 0.94 0.62 
FaceSDK 0.75 0.91 0.82 
OpnSrc 0.33 0.92 0.49 

FD
DB

 

VJFD 0.67 0.88 0.76 
FaceFinder 0.75 0.86 0.81 
CmrMbl 0.63 0.76 0.69 
OpnMbl 0.48 0.91 0.63 
FaceSDK 0.76 0.87 0.81 
OpnSrc 0.61 0.79 0.69 

Le
hi

gh
-C

1 

VJFD 0.95 0.81 0.88 
FaceFinder 0.97 0.91 0.94 
CmrMbl 0.95 0.92 0.94 
OpnMbl 0.52 0.93 0.67 
FaceSDK 0.96 0.93 0.94 
OpnSrc 0.83 0.91 0.87 



 
Table 1 summarizes the accuracy figures for the following face detection systems that our 
FaceFinder is compared with: 

VJFD: baseline open-source system (Viola & Jones, 2004) 
FaceFinder: our skin-tone based and landmark-aware detector 
CmrMbl: commercial mobile face detector 
OpnMbl: open-source mobile face detector 
FaceSDK: commercial desk-top based face detector 
OpnSrc: desk-top based open-source detector OpnSrc (Zhu & Ramanan, 2012) 

Overall, our FaceFinder accuracy is on par with, if not better than, those of the leading 
commercial and open-source face detectors. The benefits of our face detection subsystem can be 
summarized as follows: 

• recovering faces missed by baseline detection stage, 
• overruling false alarms by eliminating low skin regions, 
• detecting rotated faces by recovering their landmarks. 

Our color-aware face detection method is robust to the affine transformations, lighting and image 
noise. Provided enough CPU/GPU power, our adaptive cross-platform multi-core 
implementation is more accurate than its baseline face detector, yet it runs on average at about 
the same speed as the CPU-based VJFD implementation on the same hardware. 

The described FaceFinder functionality is utilized in the subsequent color-aware face 
image ingest and retrieval stages, whenever reliable face detection is needed, e.g. during ingest 
or query requests. 

FACE IMAGE RETRIEVAL 
Our FaceMatch (FM) method addresses the single image per person (SIPP) face image retrieval 
problem that is optimized for interactive-time visual queries in large dynamic collections of face 
pictures in unconstrained environments, e.g. arbitrary resolution, scale, and illumination. Thus 
our approach is different from face verification (1:1, as our decision is not binary) or face 
identification (1:N, as our image sets are dynamic) that are typically addressed by FR systems. 

Although in the last couple of decades the FR community has considerably advanced the 
field and produced a large number of strong methods, FR in general conditions remains to be an 
open problem that's being researched actively (Azeem, Sharif, Raza, & Murtaza, 2014; Jafri & 
Arabnia, 2009; Sharif, Mohsin, & Javed, 2012). Beham (Beham & Roomi, 2013) gives a good 
overview of FR techniques and divides them in the following major groups (holistic, feature-
based, and soft-computing), providing normalized accuracy (NA) figures, pointing out their 
advantages and drawbacks. 

Unconstrained, SIPP face retrieval from a large, dynamically changing (open-set) 
reference gallery basically requires its face matching to be training-less, robust to pose, 
occlusion, expression, lighting, and fast, i.e. essentially modeling human perception of 
unfamiliar faces from a single photo and utilizing some fast approximate indexing for efficiency. 

Several very promising methods (Gao & Qi, 2005; A. K. Jain, Klare, & Park, 2012; Tan 
et al., 2006) have been proposed over the past decade, and more recent papers describe systems 
that are comparable to the human performance at face verification task (Lu & Tang, 2014; 
Taigman, Yang, Ranzato, & Wolf, 2014). This kind of accuracy typically implies (deep) learning 
systems with a substantial training stage using hundreds or thousands shots per person, and their 
matching time may still be not very practical for large scale interactive searches. 



The one-shot similarity kernel (Wolf, Hassner, & Taigman, 2009) approach to face 
matching uses a special similarity measure to produce some impressive face matching results on 
Labeled Faces in the Wild (LFW) collection (Huang et al., 2007). We cannot utilize this 
approach directly, as it requires some training with the background examples. 

Face matching 
We propose a scalable visual search method addressing the face image retrieval problem for 
dynamically changing image collections. Face image queries can be executed after all face 
regions in the image collection are detected and their image descriptors are indexed. The 
proposed method uses an ensemble of image descriptors that capture various important aspects 
of a face and thus accommodates wide variations in face appearance mentioned in the 
introduction. We have experimented with several individual image descriptors for face matching: 

HAAR: our modification of the holistic color-aware Haar wavelet (Jacobs et al., 1995) 
descriptor with three color-band structure, where each band keeps (a) the average of 
128×128 bins, and (b) signed integer offsets of the 40 largest wavelet coefficients. This 
accelerates the search and reduces the storage for the visual index. 

LBPH: our adaptation of the holistic gray-scale Local Binary Pattern Histogram descriptor 
(Ahonen, Hadid, & Pietikäinen, 2004) using histogram of 256 local (radius=1) binary 
patterns collected from 8×8 cell grid imposed on the input face region, resulting in 
214=16384 float values signature. The descriptor is robust to lighting showing good 
frontal face matching performance. 

ORB: Oriented FAST (Rosten, Porter, & Drummond, 2010) and Rotated BRIEF (Calonder, 
Lepetit, Strecha, & Fua, 2010) key-point descriptor (Rublee, Rabaud, Konolige, & 
Bradski, 2011) that computes 500 binary feature values taking 64 bytes for each key-
point, measuring pixel intensity differences at random image locations within the key-
spot region, and recording 1 for a positive difference, and 0 for a negative one. ORB key-
points tend to cluster around corner-rich face features (eyes, mouth, nose, ears) and using 
fast matching procedure for the descriptors. 

SIFT: gray-scale Scale Invariant Feature Transform (Lowe, 2004): computes 128 float value 
signature for each key-point location, which is characterized by the texture that is robust 
to object scale, translation and rotation within an image. This provides for a great 
flexibility with respect to the head pose and the distance to the camera. 

SURF: gray-scale Speeded Up Robust Features (Bay, Tuytelaars, & Gool, 2006), as a 
quicker alternative to SIFT, it computes 64 float value signature for each key-point 
location that is also characterized by the texture that is robust to object scale, translation 
and rotation within an image. SURF computation is accelerated by the use of the integral 
images and a discrete approximation for the Hessian matrix. 

RSILC: our Rotation and Scale Invariant Line Color (Candemir, Borovikov, Santosh, 
Antani, & Thoma, 2015) descriptor using 3 color band structure producing 512 float 
values per band per key-line. In addition to the key-line local gradient and color 
information, this descriptor also captures the spatial information, e.g. what other key-
lines are visible at which angles from the given key-line. Thus RSILC is a larger and 
more accurate image descriptor then SIFT or SURF, but it is significantly slower to 
compute and compare than its key-point competitors by an order of magnitude, which 
suggests its acceleration via GPU. 

 



  
(a) same person, different faces (b) different people 

Figure 5: SIFT based matching performance of the system on two example faces 
 
Given a query face image, the goal is to match its descriptors against the index of the existing 
face descriptors, and output a list of likely face candidates ordered by similarity. The proposed 
matching technique does not assume that many faces of the same subject are present in the 
database, and it is robust to illumination, scale and affine transformations. 

Figure 5 presents two unrestricted key-spot matching examples using SIFT descriptors. 
The left pair shows matches between two different photos of the same person: the number of 
correctly matched locations is relatively high. The right pair shows the faces that belong to 
different people: there are evidently fewer sensible matching locations, e.g. note the non-
matched key-spots at the chin location of the faces. Experiments on several datasets revealed that 

• single descriptor is insufficient for accurate retrieval, 
• some key-spot matches need to be filtered as outliers, 
• face landmarks help filter and weigh the matches. 

Having several image descriptors per face (HAAR, LBPH, SIFT, etc.) allowed us to capture both 
holistic and key-spot information about each face, improving the overall matching power by 
leveraging the strengths while downplaying the weaknesses of the descriptors. We experimented 
with similarity distance-based and similarity rank-based feature combination strategies. The 
combinations used individual distances di ∈ [0,1] (or ranks) and descriptor matching confidence 
weights wi ∈ [0,1]: 

DIST: weighted distance product d = ∏ diwi 
RANK: rank-based combination based on Borda 

The weighted descriptor ensemble hence allows: 
• combination of holistic with the key-spot based image descriptors, 
• utilization of color along with the texture information, 

The optimization procedures are performed using the non-linear simplex (Nelder & Mead, 1965) 
method maximizing the retrieval accuracy expressed as F-score or hit rate, i.e. the frequency of 
retrieving the correct subject given a probe photo in a top-N query, i.e. for a set of query images 
Q, define the hit rate for top-N matches as 

HitRate(N) = HitCount(N, Q)/| Q| 
where HitCount counts the successful top-N matches using the query set of size |Q|. 

Enhancing key-spot matching accuracy and speed 
As Figure 5 suggests, there may be some key-spot mismatches that may in turn cause some false 
hits in face image queries. To improve matching confidence, our key-spot descriptor matching 
scheme includes the descriptor symmetric match cross-check to ensure that best match 
relationship works both ways. Our key-spot matching algorithm ignores descriptor matches 



whose distance is greater than two minimum distances across the matching pool, but it still may 
result in some false hits. 
 

  
(a) RANSAC scale and rotation (b) MEADOW scale and rotation 

Figure 6: Spurious SURF key-spot match filtering to ensure geometric consistency 
 
To further improve the key-spot descriptor matching accuracy, we filter out the outliers among 
the two-way descriptor matches via the inter-view homography (Chum, Pajdla, & Sturm, 2005) 
based RANdom SAmple Consensus (RANSAC) algorithm (Zuliani, Kenney, & Manjunath, 
2005). This iterative statistical method computes and uses an affine transform between two 
images (homography) of the same (or similar) object to assert the key-spot consensus. It works 
quite well for the near-frontal views of in-plane rotated and scaled faces, as shown in Figure 6, 
but it may slow down the face matching process because of is iterative nature and having to 
estimate the homography matrix at each iteration. 
 

 

Figure 7: MEADOW filters distance outliers above and below the median deviation lines (red) 
with respect to the sample's median (green). The vertical axis is the geometric distance between 
key-points p and q, while horizontal axis is the index of the distance. 



As a quicker alternative to RANSAC, we researched and developed MEdian-based 
Anomalous Distance Outliers Weeding (MEADOW) method. As the name suggests, the method 
weeds out the key-spot outliers, i.e. matches with too unlikely geometric distances between the 
corresponding key-spots. Compared to RANSAC, MEADOW is intended to be 

• more efficient: no iterative estimation of homography 
• less constrained: no key-spot co-planarity assumption 

MEADOW is expected to be less accurate than RANSAC in general, but for practical face image 
matching applications, their accuracies are comparable. 

For each two-way descriptor match MEADOW computes the Euclidean distance between 
their key-points (not descriptors) p and q, and we discard that match as a false positive, if that 
distance D = |p-q| is an outlier among all the distances in the match sample: |D-M| > T, as shown 
in Figure 7, where M is the sample's distance median (dashed green lines), and T is computed as 
a median deviation from M. MEADOW is a simpler (than RANSAC) method for filtering out the 
largest outliers from a sample, which is what we intend for the key-spot distances to ensure the 
key-spot geometric consistency. As we can see in Figure 6, MEADOW efficiently handles the 
outliers, filtering out most of the false matches, typically five times faster than RANSAC, 
resulting in a similar matching accuracy. 

Descriptor search space partitioning 
While dealing with large unconstrained face image datasets (over 40K images), our system, to be 
practical, needs to retrieve face images within interactive (about 1 second) turn-around time 
intervals. To accomplish that we researched and developed the attribute bucketing strategy and 
utilized the approximate nearest neighbor (FLANN) searches (Muja & Lowe, 2009). 

We have noticed that our images typically carry gender and age-group meta-information, 
which allowed us to partition the search space into a number of age and gender groups (called 
buckets), which we could query in parallel using multi-threading. This allowed us to optimize 
our query turn-around times by a factor of 9 or more, especially when we introduced sub-
bucketing within groups. 

Utilization of FLANN resulted in the additional (five-fold on average) queries speed-up 
with a small penalty (a couple of percentage points) to the retrieval accuracy and a small one-
time clustering overhead during the index loading and incremental update. Overall, the face 
image query turn-around times are kept under a second for our image data-sets. Provided enough 
multi-core processing power it should be scalable to the web-scale sets of millions of images. 

Experiments 
Due to the sources of our target image collections, we very rarely have more than one picture of 
the same person. Hence, in our face retrieval evaluations, we had to rely on a mixture of datasets, 
e.g. the CalTech Faces data mixed with some typical PL photos. 
 
Table 2: Color-aware face matching top-1 hit rates 

 IndianFaces ColorFERET 
descriptor alone + color wavelet alone + color wavelet 

color wavelet 0.52 0.52 0.78 0.78 
SIFT 0.61 0.66 0.91 0.95 
SURF 0.75 0.78 0.96 0.98 
SURF+SIFT 0.76 0.79 0.97 0.98 



 
For the color-aware face matching experiments, we considered IndianFacesDB and ColorFERET 
datasets, containing color images of male and female faces with good variations in lighting, pose, 
and expression. 

As shown in Table 2 our color wavelet (CW) descriptor alone is a weaker matcher than 
any of the key-point based descriptors, but it considerably improves the query hit rates, when 
included in the ensemble with the stronger (but color-blind) descriptors. This behavior suggests 
that bringing color-awareness to the descriptor ensemble helps improve the face matching 
performance on color images. 
 
Table 3: FaceMatch (FM) vs. FaceSDK (FSDK) hit rate accuracy in top-N queries 

 CalTech ColorFERET IndianFacesDB 
top-N FaceMatch FaceMatch FaceMatch FaceSDK FaceMatch FaceSDK 

1 0.98 0.98 0.93 0.74 0.79 0.69 
3 0.98 0.98 0.96 0.75 0.85 0.73 
5 0.99 0.99 0.96 0.75 0.87 0.76 

10 0.99 0.99 0.97 0.76 0.90 0.79 
20 1.00 1.00 0.98 0.76 0.92 0.83 

 
For the FaceMatch overall visual feature ensemble (with optimally weighted descriptors), the 
top-N hit rate accuracy results on the available benchmark datasets are summarized in Table 3 in 
comparison with the commercial face matching engine FaceSDK: on a relatively easy CalTech 
dataset (with large, mostly frontal faces), accuracy figures of both FaceMatch and FaceSDK are 
predictably high and close to each other. 
 

 
Figure 8: ROC curves for FaceMatch and baseline algorithms 
 



On the more challenging (than CalTech) ColorFERET benchmark dataset with considerable 
variations in head pose and lighting, FaceSDK clearly yields to FaceMatch, which performs just 
as well as it does on CalTech, reaching the statistically guaranteed retrieval of the correct person 
within top 20 retrieved records. The accuracy on even more challenging (than CalTech or 
ColorFERET) IndianFacesDB dataset is noticeably lower for both competitors probably due to 
some extreme head pose variations, but FaceMatch clearly outperforms FaceSDK, providing the 
92% likelihood of retrieving the right person in top twenty visual query results. 

To perform Receiver Operating Characteristic (ROC) analysis (Fawcett, 2006) of 
FaceMatch in comparison to some baseline algorithms, we used the evaluation protocol for 
Point-and-Shoot Camera challenge posted by NIST (Beveridge et al., 2013). As Figure 8 shows, 
our IM FaceMatch algorithm produces a rather smooth ROC curve, and by the Area Under the 
Curve (AUC) measure, it outperforms the baseline LRPCA (Phillips et al., 2011) and 
CohortLDA (Lui, Bolme, Phillips, Beveridge, & Draper, 2012) algorithms on the ColorFERET 
dataset. The RandomMatcher and OracleMatcher curves are shown for the reference to the worst 
and the best possible matcher performance. 

SYSTEM 
Our production-level system is cross-platform and data-driven. The core FaceMatch (FM) library 
is written in portable C++11, relying on open source libraries, e.g. STL, OpenCV, and OpenMP. 
It is deployable for desktop applications or over as web services. The main focus for the web 
integration was to ensure best performance across principal FaceMatch operations, e.g. list, 
ingest, query and remove. Our design takes advantage of multi-core architectures by exploiting 
task level and functional parallelism inside all critical modules. For instance, the web service can 
answer multiple queries while ingesting or removing descriptors. 
 

 
Figure 9: FaceMatch sample visual query results on the CalTech+PL data 
 
The FaceMatch (FM) services are currently utilized in a real-world family reunification system, 
adding a visual search capability to the otherwise text based searches. The uses can inspect the 
details of the retrieved records and optionally re-submit queries using the retrieved faces as 
examples. The output of the FaceMatch module can be optionally fused with the text query 
results for an increased query accuracy. A sample visual query results are shown in Figure 9, and 

https://pl.nlm.nih.gov/


we can see how the system retrieves the faces similar to the query in the ascending distance-to-
query order, observing the same person photos being at the top of the result set. 

CONCLUSION 
Targeting a practical system handling web-scale photo collections with real-world images, we 
researched and developed a single-image-per-person (SIPP) query-by-photo methodology 
(FaceMatch) working with unconstrained images of variable quality, implemented it as a cross-
platform software library, exposing its face localization and image retrieval functionality via 
web-services, which are consumed by real-world applications, such as efficient photo collection 
search for the disasters management. 

With real-world collections of hundreds of thousands records, FaceMatch can help reduce 
the user browsing set of most likely candidates to about 20, running queries at user-friendly turn-
around times of about a second. FaceMatch has shown certain robustness in cross-ethnicity face 
queries, retrieving visually similar other-ethnicity photos faster and at times more reliably than a 
hospital worker could under the stress of an emergency. This could help save time and effort for 
the disaster event managers and for people who search for their missing relatives. 

We evaluated a few state-of-the-art systems on available datasets, researched and 
developed methodology for face image retrieval, resulting in a software library for: (i) image 
near-duplicate detection, (ii) general image queries, (iii) robust face detection, (iv) efficient face 
matching. The major features that make FaceMatch practical for the real-world face image 
retrieval: 

• unconstrained images handling, 
• training-less single-image-per-person (SIPP) approach, 
• cross-platform approach to the implementation. 

Our technology matches the performance of the leading open-source and commercial solutions. 
We have made several important improvements to the existing methods and developed some 
new ones: 

Face detection was improved by using human skin tone information and facial landmarks 
along with default (color-blind) face detection algorithm. The skin regions are mapped 
using an artificial neural network (ANN). On public data sets, our face detector was more 
accurate than the available state-of-the-art engines, both commercial 

Face matching utilized a SIPP approach using weighted image descriptor ensemble to 
optimize the matching accuracy without training. Our MEADOW key-point filtering, 
attribute bucketing and FLANN indexing helped speed-up queries up to 20-times 
(compared to the linear search), keeping turn-around time within one second for a typical 
real-world collection. 

We have annotated thousands of face images in the PL dataset with face, profile and landmark 
regions. The annotated datasets are public domain and can be made available upon request. 
 We are currently researching the human-in-the-loop (HiL) approach for naturally 
merging face image retrieval with annotation, making both more efficient via semi-supervised 
and incremental machine learning techniques as well as via more natural human-computer 
interactions, which may include the development of more convenient game-like visual 
annotation tools, and use of crowd-sourcing for developing more comprehensive testing and 
evaluations data sets, including video, because mobile technology tends to generate an increasing 
amount of moving pictures often with characteristic audio tracks, quite useful for practical face 
and object image retrieval. 



Our public FaceMatch services can be expanded in several ways including visual search 
by photo for missing children, pets, as well as detecting disaster scenes. FaceMatch R&D team is 
actively engaged in research and development that may lead to (i) robust automatic estimation of 
gender, age and ethnicity, and (ii) robust image retrieval depicting objects and animals. 
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