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Abstract—This paper presents a linear information-theoretic
model for neural signal processing using Chinese philosophi-
cal ideas, in particular Yin and Yang. The main goal is to
provide a mathematical model that can explain neural activity
in accordance with concepts in traditional Chinese medicine.
As yet, the lack of such models has prevented a more formal
explanation of the efficacy of traditional treatments related to the
nervous system, such as acupuncture. According to the proposed
model, a synapse performs a linear operation on its input. This
operation, when plotted in polar coordinates, follows the shape
of a Yin-Yang symbol. Synaptic learning becomes synonymous
with adapting the size and rotation of the Yin-Yang symbol. The
model distinguishes between the perceived input and the actual
input. Both, perception and reality, coincide in the golden ratio.
Learning thus becomes a process of aligning perception with
reality, which is a novel learning concept.

I. INTRODUCTION

Chinese philosophical concepts play a major role in tradi-
tional Chinese medicine. However, most major concepts have
eluded a closer mathematical investigation so far. Using earlier
results in [1], this paper shows that one of the most important
concepts, namely Yin and Yang, is not an obscure philosophi-
cal idea, but that it has a well-defined mathematical meaning.
Such a formalization of philosophical ideas is important in
order to give Chinese medicine a strong theoretical foundation,
which would also increase its acceptance in the western world.
As an example for such a formalization, this paper proposes an
information-theoretic model of neural activity in synapses and
neurons, using the mathematical definition of the Yin-Yang
symbol. To get a better understanding of traditional treatments,
such as acupuncture, better models of neural activity are
needed. In the view of many western researchers, traditional
Chinese medicine is lacking proper theoretical models to ex-
plain the efficacy of treatments. Of course, Chinese researchers
may not agree with this viewpoint, and argue that there are
models available, alas not very mathematical ones. Models that
are both mathematical and that use Chinese concepts may help
solve this dilemma. After all, it is only natural to use a neural
model based on Chinese philosophical principles to explain the
efficacy of medical methods in traditional Chinese medicine.
As such a model, the proposed model offers an explanation for
neural activity and learning, all in accordance with traditional
Chinese concepts. In fact, according to the model, a neural
learning process is a linear operation on the Yin-Yang symbol.

The paper structure is as follows: Section II shows how to
render the Yin-Yang symbol properly according to its original
meaning. This section is taken from [1]. Section III shows
how the Yin-Yang symbol can be closely approximated with
a linear information model. Then, Section IV presents the
information-theoretic model underlying the synaptic signal
processing as it is assumed in this paper. Section V describes
how learning works for the proposed model and explains the
difference between perceived input and actual input, including
the role of the golden ratio. Finally, Section VI discusses
the application of the proposed model to traditional Chinese
medicine, and acupuncture in particular, and a summary con-
cludes the paper.

II. YIN AND YANG

According to Chinese philosophy, there are two opposing
forces in the world, Yin and Yang [2], [3]. Yin and Yang are
not only believed to be the foundation of our universe, but
also to flow through and affect every being. Typical Yin-Yang
opposites are for example night/day, cold/hot, rest/activity.
Figure 1 shows the well-known black-and-white symbol of
Yin and Yang. We can see two intertwining spiral-like curves

Fig. 1. A common Yin-Yang symbol.

in Figure 1, which are actually semicircles in this simplified
graphics, separating the Yin and Yang area. The small spots
of different color in each area indicate that both Yin and Yang
carry the seed of their opposites; Yin cannot exist without
Yang, and Yang cannot exist without Yin. These spots will
play no role in this chapter. Neither will the assignment of
black and white to Yin and Yang have any significance here,
though Yin is typically associated with black and Yang with
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white. Contemporary literature has been mostly neglecting
the plotting of the Yin-Yang symbol, paying more attention
to philosophical questions. It turns out that the original Yin-
Yang symbol is more complex than its modern representation
as two semicircles suggests [4], [5]. The Yin-Yang symbol
has its origin in the I-Ching; one of the oldest and most
fundamental books in Chinese philosophy [6], [7]. The Yin-
Yang symbol is tightly connected with the annual cycle of the
earth around the sun, and the four seasons resulting from it. To
investigate this cycle, the ancient Chinese used a pole that they
put up orthogonally to the ground, as shown in Figure 2. With

Fig. 2. Shadow model.

this setup, the ancient Chinese were able to record precisely
the positions of the sun’s shadow and divide the year into
different sections. They measured the shortest shadow during
the summer solstice, and measured the longest shadow during
the winter solstice. After connecting the measured points
and dimming the part that reaches from summer solstice to
winter solstice (Yin), they arrived at a chart like the one in
Figure 3. The resemblance between this chart and the modern

Fig. 3. Yin-Yang symbol for Latitude L = 68◦ (near polar circle) with
equinoxes and solstices.

Yin-Yang symbol in Figure 1 is striking. Figure 3 provides

visual evidence that the original Yin-Yang symbol describes
the change of a pole’s shadow length during a year. In fact,
by rotating the chart and positioning the winter solstice at the
bottom, the Yin-Yang chart of the ancient Chinese becomes
very similar to the modern Yin-Yang symbol depicted in
Figure 1. The white area of the Yin-Yang symbol is typically
called Yang. It begins at the winter solstice and indicates a
beginning dominance of daylight over darkness, which is the
reason why the ancient Chinese associated it with the sun (or
male). Accordingly, the dark area of the Yin-Yang symbol
represents Yin, which begins with the summer solstice. Yin
indicates a beginning dominance of darkness over daylight.
The ancient Chinese therefore associated it with the moon (or
female).

The rendering method for the Yin-Yang symbol presented
here is based on daylight hours, which are connected with
shadow lengths [1]. A long day has the sun standing high on
the horizon at noon, casting a short shadow. On the other hand,
a short day is the result of the sun standing low on the horizon
at noon, which in turn produces a long shadow. For computing
the daylight time for a given day in the year, this section uses
the formula given in [8], [1]. The formula takes many different
factors into account, most notably the refraction of the earth’s
atmosphere. The daylight model presented here is therefore an
accurate description of the actual daylight measurement of an
observer on the ground. A detailed investigation of the formula
is beyond the scope of this paper, though. The formula requires
two input parameters, namely the day J of the year and the
latitude L of the observer’s location. It consists of three parts.
The first part computes an intermediate result P , which is the
input to the second part D′, which in turn is input to the third
part D that provides the final result. The equation for the first
part is:

P = arcsin[0.39795 ∗ cos(0.2163108 + 2 ∗ arctan{...
... 0.9671396 ∗ tan[0.00860(J − 186)]})] (1)

Given P , the second and third part then compute the actual
day length D in terms of sunshine hours as follows:

D′ = arccos

{
sin
(

0.8333∗π
180

)
+ sin

(
L∗π
180

)
∗ sin(P )

cos
(
L∗π
180

)
∗ cos(P )

}
(2)

D = 24−
(

24
π

)
∗D′ (3)

Using these equations, Figure 4 shows the daylight time for
each day of the year and a latitude of 68◦. This latitude is close
to the polar circle, or Arctic Circle, in the northern hemisphere.
The equivalent latitude in the southern hemisphere is the
Antarctic Circle. The Arctic Circle marks the southernmost
latitude in the northern hemisphere where the sun shines for 24
hours at least once per year (midnight sun) and does not shine
at all at least once per year. Theoretically, the Arctic Circle
marks the area where these events occur exactly once per year,
namely during the summer and winter solstices. However, due
to atmospheric refractions and because the sun is a disk rather
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Fig. 4. Daylight hours for Latitude L = 68◦ (near polar circle).

than a point, the actual observation at the Arctic Circle is
different. For example, the midnight sun can be seen south
of the Arctic Circle during the summer solstice. According to
Figure 4, the midnight sun shines for about 50 days at latitudes
around 68◦. Figure 5 shows the daylight hours in Figure 4 as
a polar plot. In this polar plot, the distance to the origin stands

Fig. 5. Polar daylight plot for Latitude L = 68◦ (near polar circle).

for the daily sunshine hours. One full turn of 360◦ corresponds
to one year. There is another important difference to Figure 4,
though. For the second half of the year, Figure 5 shows the
hours of darkness instead of the daylight hours. The number
of hours with darkness is simply the number of daylight hours
subtracted from 24. Drawing the daylight hours in such a way
produces the two spirals depicted in Figure 5. Coloring the
areas delimited by both spirals and the outer circle in black
and white then produces a rotated version of the Yin-Yang
symbol in Figure 3. For latitudes around the polar circle, the
spirals in Figure 5 originate either directly in the origin of the
polar plot or in a point close to it. This is because there will
be at least one day with no sunshine.

Figure 6 shows more examples of Yin-Yang symbols gen-

erated with the daylight model for L = 70◦, L = 75◦, and L =
80◦. All polar plots are rotated counter-clockwise by 45◦ so
the x-axis is vertical. Both spots in each Yin-Yang symbol lie
on the vertical axis, plotted halfway between the polar plot’s
origin and the outer circle.

Note that for latitudes L with |L| ≤ 68◦, the Yin-Yang
symbol will look similar to the symbols observed at the
polar circles when plotted in the following way: Instead of
the daylight hours, the polar plot shows the daylight hours
minus the minimum annual day length. Furthermore, instead
of the number of hours with darkness, the polar plot shows
the difference between the maximum annual day length and
the number of daylight hours.

III. INFORMATION-THEORETICAL YIN-YANG MODEL

The mathematical formulation of the Yin-Yang symbol
given in Eq. 1, Eq. 2, and Eq. 3 is clumsy. This section presents
a more concise description of the Yin-Yang symbol. It shows
that a linear information-theoretic model can approximate the
Yin-Yang symbol with an average error of less than 1%
with respect to the day length. To measure information, the
paper uses the standard Shannon way, where information is
measured using the negative binary logarithm (− log2(p)) for
a probability value p [9]. The expected information is then
simply the product −p · log2(p). The model proposed here has
the following form, where Θ(p) and r(p) are the angular and
radial coordinates, respectively, and p ∈ [0.5, 1] is the model’s
input.

Θ(p) = −π ∗ log2(p) (4)
r(p) = −24 ∗ log2(p) (5)

Both equations can be summarized in one equation:

Θ(p) =
π

24
∗ r(p) (6)

Figure 7 shows the approximation of one branch of the Yin-
Yang symbol for L = 68◦ (red curve), which we obtain when
applying Eq. 6. The figure also shows the original branch

Fig. 7. Approximation of one branch of the Yin-Yang symbol for L = 68◦

(close to polar circle) with a linear information model (red).

computed with the equations 1, 2, and 3 (blue curve). We
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Fig. 6. Yin-Yang symbols for L = 70◦, L = 75◦, and L = 80◦.

see that this approximation of the Yin-Yang symbol already
provides a very close model of the Yin-Yang symbol. The
model given by Eq. 6 can be further improved by using a
linear regression, exploiting the linear relationship between
the angular and the radial coordinate. Let

Θ(p) = mr(p) + c (7)

be the general form of the linear information model for the
Yin-Yang symbol, where m is the slope, c is the offset or
intercept, and r(p) is a logarithmic function of the input.
Accordingly, the linear approximation has the form Θ′ =
m′r + c′, where m′ and c′ are the slope and intercept of
the regression line, respectively. Figure 8 shows the optimal
regression line (red) obtained for the Yin-Yang branch (blue)
shown in Figure 7. Note that the range of the angular coordi-

Fig. 8. Linear regression line (red) for a branch (blue) of the Yin-Yang
symbol at L = 68◦ (close to polar circle).

nate is [π, 2π] and the radial coordinate has been normalized
to [0, 1], showing the normalized day length with the daylight
hours of each day divided by 24. As we can see in Figure 8, the
red regression line provides an almost perfect fit. Only toward
the limits of the angular range does the linear information
model differ from the original Yin-Yang model. This is mainly
due to numerical problems of the approximated function. With
m′ ≈ 0.134 and c′ ≈ 3, the mathematical equation for the
regression line is

Θ′(p) = 0.134r(p) + 3 (8)

Or, in another form stressing that Θ′ is indeed a linear function
of information:

Θ′(p) = 3− 3.2 · log2(p) (9)

The median error of this model is 0.23, which is less than
1% with respect to a day length of 24 hours. Figure 9 shows
a close-up of all approximations in one figure. The original

Fig. 9. Approximation of one branch of the Yin-Yang symbol for L = 68◦

(close to polar circle) with a linear model (green) and a linear regression
model (red).

Yin-Yang branch is again shown in blue. The first rough
approximation of Eq. 6 is shown in green, and the optimal
linear regression model is shown in red. We can see that the
linear regression model lies between the rough approximation
(green) and the Yin-Yang branch (blue), and we can see that
it is closer to the Yin-Yang branch.

IV. NEURAL MODEL

The main building blocks of the nervous system are neurons,
which are electrically excitable cells that can process and
transmit information by electrical and chemical signaling.
Neurons connect to each other via synapses, which transmit
signals from one neuron to another. All neurons and their
connections together form a neural network. Figure 10 shows
a typical signal path from one neuron to another. The lower
right corner of Figure 10 shows a close-up of a synapse.
Synaptic signals from other neurons are typically received
via a neuron’s soma and via its dendrites. The neuron sends
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Fig. 10. A signal propagating down an axon to the cell body and dendrites
of the next cell (Source: NIA/NIH).

signals to other cells via its axon, which is in turn connected
to the soma and dendrites of other cells. A synapse is therefore
the main contact between two neurons, connecting the axon
of one neuron to the dendrites and soma of another. If the
excitation received by a neuron exceeds a threshold, the neuron
generates an action potential, which originates at the soma and
propagates along the axon, activating the synapses of other
neurons.

Researchers have tried to understand the neural signal pro-
cesses, but our understanding is still limited. Today, there exist
theoretical models that can partly explain the biological signal
processes in the nervous system. One of the most successful
ones has probably been the Hodgkin-Huxley model [10].
There have also been attempts to mimic human cognitive
reasoning and to use artificial neural networks for practical
pattern recognition applications [11], [12]. Different types of
artificial neural networks have been proposed, and the multi-
layer feedforward networks with backpropagation learning are
probably among the most successful [13], [14].

The linear information-theoretic model proposed here dif-
fers from other models in that it does not define a decision
boundary, such as the Perceptron for instance [12]. Instead, it
tries to learn the expected information (uncertainty) contained
in a given input stimulus. It does so by adjusting, or training,
its two main parameters, slope and intercept. The main idea
is that training of the slope involves learning of the perceived
stimulus, so that the perceived postsynaptic information equals
the expected information of the perceived stimulus. Training
of the intercept, on the other hand, ensures that the perceived
postsynaptic information matches the actual presynaptic infor-
mation of the true stimulus.

The proposed model uses the sigmoid function to process
the input stimulus. The sigmoid function plays an important
role in biological neural network models, as for instance in the
Hodgkin-Huxley model [10]. This fact has motivated the use
of the sigmoid function across a wide range of artificial neural
networks, most notably the feedforward/backpropagation net-
works, where it plays the role of a transfer function [13], [14].
The sigmoid function Sig(x) has the following mathematical
form:

Sig(x) =
1

1 + e−λx
, (10)

where input x has no bound and parameter λ controls the
steepness of the function. Figure 11 shows the sigmoid func-
tion for λ = 1, λ = 2, and λ = 0.5. In the Hodgkin-

Fig. 11. Sigmoid function for λ = 1, λ = 2, and λ = 0.5.

Huxley model, the sigmoid function is related to the sodium
conductance of a cell membrane, which is an important feature
of the membrane’s electrical behavior [10]. In particular,
Hodgkin and Huxley assume that the sodium conductance is
proportional to the number of specific molecules on the inside
of the membrane but is independent of the number on the
outside. From Boltzmann’s principle the proportion Pi of the
molecules on the inside of the membrane is related to the
proportion on the outside,Po, by

Pi
Po

= exp[(w + zeE)/kT ], (11)

where E is the potential difference between the outside and the
inside of the membrane, w is the work required to move the
molecule from the inside to the outside of the membrane when
E = 0, e is the absolute value of the electronic charge, z is the
valency of the molecule (i.e. the number of positive electronic
charges on it), k is Boltzmann’s constant, and T is the absolute
temperature [10]. With Pi + Po = 1, the expression for Pi
becomes

Pi =
1

1 + exp
(
−w+zeE

kT

) (12)

This is the typical form of the sigmoid function, as shown in
Eq. 10.

Now, for the basic sigmoid function in Eq. 10, with x ≥ 0
and λ = 1, let s(x) = e−x be a stimulus with s(x) ∈ [0, 1].
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For a given input stimulus s(x), the perceived input stimulus p
is then given by

p(s) = Sig(s) =
1

1 + s
(13)

The sigmoid function thus maps the input range of the stimu-
lus, which is [0, 1], to the perception range of our information-
theoretic model, which is [0.5, 1].

The neural model proposed in this paper is modeled on
the information-theoretic Yin-Yang model developed in Sec-
tion III. Note that the angular coordinate in the linear Yin-Yang
model is actually information. Thus, the Yin-Yang model is a
linear model in which input and output are both information in
the Shannon sense (Eq. 7 and Eq. 9). The angular identifier Θ
will therefore be replaced with the identifier I here. The
proposed neural model then becomes

I = −m · log2

(
1

1 + s

)
+ c (14)

= −m · log2(p) + c (15)

The main assumption is that each synapse of a neuron transmit
signals according to Eq. 15. The neuron itself then integrates
over all outputs of its synapses and sends the result to other
neurons via its axon. A neuron thus essentially computes
the entropy of its input. The model postulates that adjusting
the slope m involves learning of the perceived stimulus, i.e.
m = 1/(1 + s), so that Eq. 15 computes the expected
information for the perceived stimulus plus a constant c. The
next section discusses the meaning of this constant according
to the information-theoretic model proposed here.

V. GOLDEN RATIO

Modeling the behavior of synapses has long been in the
focus of machine learning, as synapses are suspected to be one
the main locations where learning and adaptation takes place.
This paper assumes that a synapse performs a linear operation
on its input, according to the definition in Eq. 15. Learning
thus consists of adjusting the parameters of the linear model,
which are slope and intercept. As outlined in the previous
section, learning of the slope involves adjusting the slope to
the perceived value p, so that m = p. Ideally, the perceived
value p is also identical to the original stimulus s, which
guarantees that the perceived uncertainty −p · log2(p) is equal
to the original uncertainty of the actual stimulus s, which is
−s · log2(s). With m = p, this is the case when m satisfies
the following requirement:

m =
1

1 +m
(16)

=⇒ m =
√

5− 1
2

or
−
√

5− 1
2

(17)

=⇒ m ≈ 0.618 or − 1.618 (18)

According to Eq. 18, our perception p equals the true stim-
ulus s for p ≈ 0.618. This is the golden ratio, or strictly
speaking the reciprocal Φ of the golden ratio, which is

typically symbolized by ϕ ≈ 1.618 [15], [16]. The golden ratio
motivates the learning of the intercept c in the information-
theoretic model defined by Eq. 15. The idea is to move
the linear model into the golden ratio so to speak, so that
perception and reality coincide. This is the case when c is
defined as follows:

c = m · log2(p)− s · log2(s), (19)

For an intercept c defined according to Eq. 19, the expected
presynaptic information matches the perceived postsynaptic
information. Or, in other words, the input uncertainty matches
the output uncertainty of the model. Deviating from the golden
ratio blurs the input stimulus in the sense that the perceived
stimulus no longer corresponds to the true stimulus. For a
stimulus s equal to the golden ratio, learning of the intercept c
is not necessary because for m = p = s ≈ 0.618 the intercept
will be zero (c = 0). This could potentially explain why the
golden ratio is often preferred over other ratios [15]. According
to the synaptic learning model presented here, the golden ratio
can be perceived faster as it requires less learning. Similar
to other linear neural models presented in the literature, the
intercept c can act as an adaptive threshold that prevents action
potentials for input signals that are too small. Furthermore,
the model proposed here is supported by recent publications,
which confirm that the golden ratio indeed plays a role in
neural signal processing, e.g. [17], [18].

VI. APPLICATION TO CHINESE MEDICINE

Acupuncture is one of the most successful treatment meth-
ods for pain and disease in traditional Chinese medicine.
The treatment involves inserting thin needles into a patient’s
skin. According to traditional Chinese medicine, these needles
can correct imbalances or congestions in the flow of Qi, or
life energy, through channels known as meridians. Western
researchers have come up with different, and more mundane,
theories of why acupuncture helps reduce pain. One of the
most successful theories is the Gate Theory of pain proposed
by R. Molzack and P. Wall [19], [20]. According to this theory,
pain impulses are not directly transmitted from the body to
the brain. They have to pass through a gate in the spinal cord,
where they can be inhibited or blocked by inhibitory input
from other nerve fibers. Nevertheless, it is fair to say that
the principle of acupuncture is only partly understood to date.
For example, acupuncture excites the nerve fibers for a short
period of time, but the effects of acupuncture persist for a long
time after the acupuncture needles have been removed. In its
current form, the Gate Theory cannot explain this prolonged
effect.

The proposed model defined by Eq. 15 is capable of both
long-term learning and signal inhibition. Long-term, or slowly
changing, parameters can be saved in the slope m and the
intercept c of the model. Furthermore, the signal output can be
inhibited by reducing either the slope or changing the intercept
appropriately. According to the equations 6, 9, and 15, chang-
ing these parameters has a direct geometrical interpretation
with respect to the Yin-Yang symbol. Changing the slope m is
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equivalent to changing the radius, and thus the size, of the Yin-
Yang symbol. This becomes evident when we look at Eq. 6,
which uses the radius given by the daylight model presented
above, namely 24 hours. On the other hand, changing the
intercept c, which means adding a different constant offset to
the output, translates to a rotation of the Yin-Yang symbol. The
proposed model therefore provides a geometric interpretation
for learning processes that are intimately connected with the
Yin-Yang symbol.

The proposed model implies that Qi is essentially infor-
mation in the Shannon sense. Furthermore, according to the
proposed model, the flow of Qi can be controlled at the
synapses. Harmony and balance can be achieved by setting
the parameters for a synapse properly. A distorted flow of Qi
can be corrected by adjusting the slope and the intercept. Any
adjustment of these parameters is automatically an adjustment
of the Yin and Yang forces that determine the behavior of the
synapse. These results could lead to mathematical, and yet
very traditional, explanations of the efficacy of acupuncture in
the future.

VII. CONCLUSION

The work presented in this paper shows that it is possi-
ble to formalize Chinese philosophical concepts. Using the
daylight model for the Yin-Yang symbol, the proposed neural
model incorporates an essential part of Chinese philosophy.
According to the model, a synapse computes the expected
information contained in a stimulus. A neuron then integrates
the output of all its synapses and forwards the result, which
is basically entropy, to other neurons. The paper claims that
synapses perform linear operations and that they are capable
of learning the model parameters, which means slope and
intercept. Furthermore, the model distinguishes between the
perceived stimulus and the actual stimulus, which can differ
from each other. Learning therefore involves matching the
expected information of the perceived stimulus with the ex-
pected information of the actual stimulus. The paper shows
that the perceived and actual stimuli coincide when we observe
the golden ratio. For this reason, the paper postulates that
the golden ratio plays an important role in neural processes.
Recent publications support this assumption. Moreover, the
paper shows that learning is equivalent to adjusting the size
(radius) and rotation of the Yin-Yang symbol. The hope is
that the proposed model helps to explain the efficacy of

traditional treatments, in particular acupuncture. It may also
help to bridge the gap between western and eastern medicine.
Future steps include the verification of the proposed model
with biological reality, and the application to practical pattern
recognition problems.
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