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ABSTRACT   

This paper presents a new pixel labeling algorithm for complex histology image segmentation. For each image pixel, a 

Gaussian mixture model is applied to estimate its neighborhood intensity distributions. With this local distribution 

fitting, a set of pixels having a full set of source classes (e.g. nuclei, stroma, connective tissue, and background) in their 

neighborhoods are identified as the seeds for pixel labeling. A seed pixel is labeled by measuring its intensity distance to 

each of its neighborhood distributions, and the one with the shortest distance is selected to label the seed. For non-seed 

pixels, we propose two different labeling schemes: global voting and local clustering. In global voting each seed 

classifies a non-seed pixel into one of the seed’s local distributions, i.e., it casts one vote; the final label for the non-seed 

pixel is the class which gets the most votes, across all the seeds. In local clustering, each non-seed pixel is labeled by one 

of its own neighborhood distributions. Because the local distributions in a non-seed pixel neighborhood do not 

necessarily correspond to distinct source classes (i.e., two or more local distributions may be produced by the same 

source class), we first identify the “true” source class of each local distribution by using the source classes of the seed 

pixels and a minimum distance criterion to determine the closest source class. The pixel can then be labeled as belonging 

to this class. With both labeling schemes, experiments on a set of uterine cervix histology images show encouraging 

performance of our algorithm when compared with traditional multithresholding and K-means clustering, as well as 

state-of-the-art mean shift clustering, multiphase active contours, and Markov random field-based algorithms.   
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1. INTRODUCTION  

Histology [1, 2] is the study of the microscopic anatomy of cells and tissues of organisms. Histology analysis is 

performed by examining a thin slice of tissue under an optical or electron microscope. Such tissue samples are usually 

produced after a sequence of technical procedures, including fixation, dehydration, clearing, infiltration, embedding, 

sectioning, and staining. In practice, histology image use encompasses diverse modalities from various imaging 

acquisition technologies [3], based on which manual or automated analysis can be conducted by histopathologists and 

clinicians.   

In present research, histology image interpretation is regarded as the gold standard for clinical diagnosis of cancers and 

identification of prognostic and therapeutic targets. Histopathologists or clinicians visually examine the regularities of 

cell shapes and tissue distributions and make diagnostic decisions about cancer presence and degree of malignancy. At 

the present time, manual analysis of histology continues to be the primary instrument for identifying cancerous tissues, 

and depends heavily on the expertise and experience of histopathologists. These manual methods have the disadvantages 

of (a) being very time consuming for such high throughput and high content screening, and (b) lacking consistency and 

reproducibility in grading; intra- and inter-observation variations remains a serious issue. To attempt to address these 

problems, computer assisted diagnosis (CAD) systems, which provide rapid and consistent diagnostic results, have been 

developed for automated histology image analysis. Computer aided methods have been employed for numerous cancer 

detection and classification applications, such as prostate [4], breast [5], cervix [6], and lung [7] cancer detection and 

grading; neuroblastoma categorization [8], and follicular lymphoma grading [9]. 

A typical CAD system consists of a sequence of image processing and machine learning modules, such as image 

preprocessing, segmentation, feature extraction and dimensionality reduction, disease detection and grading, and post-

processing. We briefly describe these steps in the following, image preprocessing reduces the input image noise and 

enhances features of interest for easier analysis in later modules. Specifically for the high-throughput and high-content 



 

 
 

 

tissue screening, multi-scale decomposition may be applied to reduce the computational cost, i.e., low resolution images 

can be analyzed first to roughly locate the regions of interest (ROI), which will be the focus of higher resolution image 

analysis. Image segmentation extracts the target objects or regions for feature extraction. Traditional image segmentation 

methods [10, 11] include edge detection, thresholding, region growing, and K-means clustering, which usually requires 

post-processing such as edge linking or morphological operations to produce continuous and closed boundaries. 

Recently more advanced approaches such as active contours [12, 13, 20], Markov random field (MRF) models [11, 14], 

and mean shift clustering [15] have been proposed with promising performance. After segmentation, a variety of image 

features can be computed from the extracted regions, including morphometrics [4, 6, 8] with object size and shape (e.g. 

compactness and regularity), graph-based features [5, 6] (e.g. Voronoi diagram and Delaunay triangulation), intensity 

and color features (e.g. statistics in different color spaces [4]), as well as texture features [5, 7, 9] (e.g. Haralick entropy, 

Gabor filter, power spectrum, co-occurrence matrices, and wavelets). In addition to these spatial domain features, many 

features can also be extracted from other transformed spaces, e.g. frequency (Fourier) space and wavelet transformation 

[16]. In practice, the number of extracted features can be prohibitive for current CAD systems. Therefore, feature 

dimensionality reduction (DR) techniques [17] are needed to select the most discriminative ones for feasible analysis. 

The commonly used DR tools include both linear and nonlinear techniques. Linear techniques such as principal 

component analysis, linear discriminant analysis, and multidimensional scaling are used in cases of points which are 

linearly separable in the feature space. Nonlinear DR techniques such as spectral clustering, isometric mapping, locally 

linear embedding, and Laplacian eigenmaps do not assume Euclidean relationship among feature points. These 

techniques are more suitable for inherently nonlinear biomedical structures. Finally, supervised classification algorithms 

[11] (e.g. support vector machine and neural network) can be used to classify these simplified feature vectors in order to 

identify diseased tissues by comparing the input image features with pre-derived training sample features. In certain 

applications, post-processing may be required to derive high level knowledge from the CAD system results. For 

example, the extracted object shapes may be specifically indexed for advanced applications like image retrieval. 

Similarly, image analysis results may be applied for image annotation and information fusion. Note that the sequential 

order of the functional steps described above may vary in practical applications. For example, texture image 

segmentation requires that texture features should be computed before segmentation. Also, some steps may be omitted in 

particular systems, and other application-specific modules which we have not discussed, may be included.  

In this paper, we focus on automated image segmentation in a CAD system. Specifically, we propose a new pixel 

labeling algorithm to extract objects/regions of different classes (e.g. nuclei, stroma, cytoplasm, blood cells, and 

background) from histology images with complex distributions. With local distribution fitting techniques, we classify 

each pixel according to its similarity to either a set of predetermined seeds (called global voting) or its neighborhood 

(called local clustering). The paper is organized as follows. After a brief review of image segmentation approaches in 

Section 2, we present our proposed approach in Section 3. Section 4 shows experimental results, including the 

comparison with traditional multithresholding and K-Means clustering, as well as state-of-the-art multiphase active 

contours, mean shift clustering, and MRF-based methods. We present our conclusions in Section 5. 

2. BACKGROUND 

Early segmentation methods [10, 11] include thresholding, edge detection, region growing, and K-means clustering. 

Thresholding approaches search for a value (intensity threshold) to separate objects from background. The threshold is 

usually identified to satisfy some constraints or to optimize certain objective functions. For example, the commonly used 

Otsu’s method [10] finds the threshold to maximize the between-class variance. In the case of a histology image I (size X 

 Y) with K object classes (s1, s2, …, sK), Otsu’s method finds the thresholds that maximizes the between-class variance 
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filters) to determine the border among objects and background. Region growing [10] groups pixels with similar features 



 

 
 

 

(e.g. intensity or texture) into connected areas, each of which is regarded as homogenous or smooth according to 

predefined feature similarities. K-means clustering classifies an image point into one of the K clusters by minimizing the 

objective function: 
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where Ix is the intensity of a pixel x
2
, in the class Ci, and i is the current mean of Ci. Both thresholding and K-means 

clustering need post-processing operations to remove noise (spurious) edges and produce continuous object boundaries.  

Typical difficulties in image segmentation include noise, low intensity contrast with weak edges, and intensity 

inhomogeneity [18], which pose significant challenges to traditional segmentation methods. To address these difficulties, 

more advanced methods, such as the mean shift clustering, MRF-based pixel labeling methods, and active contour 

models, have been proposed for segmentation with promising results. Unlike the K-means clustering, the mean shift 

algorithm [15] does not assume prior knowledge of the number of clusters. For image segmentation, the image points in 

a d-dimensional (d=3 for color image) feature space can be characterized by a probability density function where dense 

regions correspond to the local maxima (modes) of the underlying distribution. Image points associated with the same 

mode (by a gradient ascent procedure) are grouped into one cluster. MRF approaches use a Bayesian framework to map 

a random field (with Gibbs distribution) to an image in which each pixel is characterized by a random variable with all 

possible class labels. The result is that the segmentation process is formulated as pixel labeling by maximizing the 

posterior probability of the labeled configuration, given the observation. In practice both deterministic (e.g. iterated 

conditional modes (ICM) [11] and graph cuts [14]) and stochastic algorithms (Metropolis and Gibbs sampling [11]) are 

used for the maximum a posterior estimation.  

Compared with above segmentation techniques, the active contour models can achieve subpixel accuracy and provide 

closed and smooth contours/surfaces, which become an increasingly important tool for microscopy image segmentation 

[19]. For example, the well-known Chan-Vese model (CV) [12] assumes homogeneous object and background regions 

with distinct intensity means. Given a gray scale image I0:   
2
, the CV energy functional is defined as: 
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where >0 is a constant. c1 and c2 are two global constants representing the intensity means of the two regions, i.e., 

background and objects. H is the Heaviside step function and  represents the level set function. Eq. (3) handles images 

with two different regions. To segment histology images with multiple object classes, Eq. (3) has to be extended to 

multiphase level sets [20]. The extended energy functional is: 
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where c = (c00, c01, c10, c11) represents the average values of four image regions produced by two level sets  = (1, 2). 

By calculus of variations, the level set evolution equation can be derived as: 

 ))}(1)()c()c(()())c()c(()
||

div(){( 2
2

000
2

1002
2

010
2

110
1

1
1

1 






HIIHIIν

t










, (5) 

))}(1)()c()c(()())c()c(()
||

div(){( 1
2

000
2

0101
2

100
2

110
2

2
2

2 






HIIHIIν

t










 

In Eq. (5),  is the Dirac function. 



 

 
 

 

With a different framework for extracting multiple objects, Samson’s image classification model [13] applies a group of 

level sets, (1,…, K), to divide the input image into K regions, each of which corresponds to the interior of a level set, 

i.e., i>0. 
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where ei>0, γi>0, and λ>0 are constants to balance the terms. 
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function, which deforms contours towards edges. Briefly, the first term in Eq. (6) ensure a homogeneous region within 

each level set, which can be fitted by a Gaussian distribution with pre-estimated mean μi and variance σi
2
. The second 

term prefers a smooth curve at edges, and the third term prevents overlapping level sets. The level set evolution 

equations are: 
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In this paper we compare our pixel labeling algorithm with traditional multithresholding and K-means clustering, as well 

as the advanced mean shift clustering, MRF-based methods, and  active contours (the multiphase CV model (Eq. (5)) 

and Samson’s model (Eq. (7)). 

3. PROPOSED APPROACH 

Histology images consist of a large quantity of objects of interest (usually cells and prominent cell structures, such as 

nuclei) widely distributed in the images and surrounded by different neighboring tissues (for example, in the cervix, 

epithelium and stroma). We propose a new pixel labeling algorithm for such complex histology image segmentation. We 

assume that an image pixel always belongs to a class (distribution) in its own neighborhood, and that these local 

distributions can be modeled by Gaussians with different means and variances, i.e., by a Gaussian mixture model 

(GMM).  

3.1 Gaussian mixture model 

Mixture models [21] are widely used to approximate complicated distributions with the output coming from one of a 

group of “hidden” sources (e.g. objects and background in an image), which provides a general framework to 

characterize heterogeneity. In this paper, we choose mixture models for our specific application of histology image 

segmentation, where we expect multiple classes of objects widely distributed in the image. In statistics, a mixture model 

is usually defined as a probability distribution that is a convex combination of several independent components, where 

the components are themselves characterized by different probability distributions. Given an output, the goal is to 

estimate from which source (measured by probabilities) the output is generated, as well as the parameters describing the 

source component distributions, e.g. means and variances of a GMM. With a set of N samples (image points) from n-

dimensional space, X = {x1, …, xj, …, xN}, in which each sample is drawn from one of M Gaussian components, a GMM 

can be denoted as: 
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Gaussian xj is drawn from, the probability of xj coming from the i-th Gaussian is: 
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The task is to estimate the hidden distributions given the data, i.e., to estimate the unknown parameters  which 

maximize Eq. (9). The GMM parameters can be estimated by the expectation-maximization (EM) algorithm [22], which 

repeats the E-step and M-step until convergence. The E-step is to calculate the expectation of which Gaussian is used, 

conditioned on the observations (X), using the estimated prior probability of each distribution (p(yj=i|i)) and current 

parameter values (t), 
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Given the E-step estimation of unknown variables (y = {y1,…,yN}, yj=1,…,M), the M-step estimates the distribution 

parameters () and the prior probability of each distribution, which maximize the data likelihood as 
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where the log-likelihood is used for easier numerical implementation. With gradient ascent approach, we can update the 

parameters and the prior probabilities as: 
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Figure 1. Local GMM distribution estimation example. (a) Original image with a region of interest. (b) Top: gray 

version of ROI in (a); Bottom: classes estimated by GMM. (c) Local intensity distribution fitting of (b) by GMM. 

These updated parameters then become the input for next E-step, and the convergence to a local maximum of the EM 

algorithm is guaranteed [22]. Using the EM algorithm, Figure 1 shows an example of local GMM-based distribution 

estimation in a small region (see the green rectangle). The left image in Figure 1 is an input image with three target 

classes of nuclei, cytoplasm, and background, which is cropped (size 200200) from a large size cervix histology image 

(size 7236041788). The middle top image is the gray scale version of the selected region. The middle bottom image is 

the segmentation result based on the estimated distribution, i.e., each pixel is grouped to the cluster (distribution) to 

which it has the closest distance. The blue lines in the right image correspond to the intensity histogram of the region. 

The estimated Gaussian distributions of the objects and background are illustrated as the red curves. It can be seen that 

the estimated distributions match well with the real intensity histogram, which show the suitability to use the GMM for 

objects and background distribution estimation. 
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3.2 Pixel labeling algorithm 

For our algorithm, we define the neighborhood of an image pixel as an r×r region centered on the pixel, where the size r 

is an algorithm parameter (e.g. r = 11). Then for each pixel, we estimate its neighborhood intensity distributions with a 

Gaussian mixture model. Given the intensity value of a pixel and the estimated GMM for the pixel’s neighborhood, the 

goal is to estimate from which source class (measured by probabilities) the pixel value is generated. Therefore, for each 

image region under the scanning window, the local intensity distribution is estimated by a local GMM with a prior 

number (K) of different target classes in the image. Since we use a fixed number K of distributions for each GMM, the 

computed local distributions may not truly represent different source classes. A pixel within a large homogeneous 

region, for example, will actually have only one source class in its neighborhood. To identify the source classes, we 

apply a confidence test to each GMM to attempt to distinguish between pixels with K “true” neighborhood classes, and 

those with fewer than K. The test is implemented by evaluating the distances among different distributions, i.e., two 

distributions are considered to represent two source classes only when their distance is larger than a predefined threshold 

(T). Bhattacharyya distance is applied to measure the distance of two Gaussian distributions: 
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We call the pixels with all K different source classes in their neighborhoods “seed” pixels. We assign each seed a source 

class label by comparing its intensity distance to its neighborhood Gaussian distributions, i.e., 
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This measures the probability of the pixel xj being generated by the ith Gaussian distribution in its neighborhood.  

To label non-seed pixels, we propose two different schemes: global voting and local clustering. In the global voting 

method, given a non-seed pixel, each seed pixel “votes” for one of its K neighborhood classes as being the most likely 

class using Eq. (14), viz., the class with the smallest distance to the non-seed pixel is used to label that pixel. The final 

label of the non-seed pixel is determined by tallying the votes cast by all the seeds. In practice, the larger the number of 

the seeds, the more confident the voting and thus the more accurate the segmentation. On the other hand, a large number 

of seeds always introduces a high computational cost. Thus the threshold T is chosen to balance the performance and the 

cost. In our experiments, we choose the threshold that produces about 100 seeds.  

In the local clustering method, a non-seed pixel is labeled directly with one of its own neighborhood distributions. The 

estimated neighborhood distributions of a non-seed pixel may not correspond to distinct source classes (i.e., two 

neighborhood distributions may correspond to the same source class). Because of this, the “true” source classes of the 

distributions have to be determined first by comparing them with those of the seeds by Eq. (13). Again, the local 

distribution classes of each non-seed pixel are computed by voting of all the seeds. In this manner the non-seed pixels 

can be finally labeled by the identified neighborhood clusters. 

4. EXPERIMENTS 

This section presents the experiments on a set of three cervix histology images with complex distributions. We compare 

our model to nine major image segmentation methods, including traditional multithresholding [10] and K-means 

clustering [11], as well as the more contemporary mean shift clustering [15], multiphase level set models [13, 20], and 

MRF-based labeling methods (including both deterministic algorithms: iterated conditional modes (ICM) [11] and graph 

cut [14], and nondeterministic algorithms: Metropolis algorithm [11] and Gibbs sampling [11]). Overall our algorithm 

obtains segmented regions that are visually comparable to, if not better than, the regions obtained by the methods listed 

above. For the active contour methods, multiple uniformly distributed small rectangles were used as the initial contours.  

In Figure 2(a), a cervix epithelium tissue image is shown with three target classes: nuclei, cytoplasm, and background. 

For this simple example, all methods can obtain results that might be considered acceptable; however, there are 

observable differences, some of which we note here. Because the mean shift clustering does not use the prior number of 

source classes, it usually produces more (or fewer) classes than the expected number (Figure 2(f)), which thus requires 

post-processing such as region merging or splitting for final results. We can also observe that minor texture details are 

missed in most of the results, except the traditional multithresholding (Figure 2(b)), K-means clustering (Figure 2(c)) and 



 

 
 

 

our pixel labeling algorithm (Figures 2(k), (l)), as shown by the red rectangles. In particular, MRF-based labeling 

approaches (Figures 2(g)-(j)) show loss of details by under-segmentation of the cytoplasm areas. For another example, 

Figure 3(a) shows an image of cervix stroma with three source classes: nuclei, connective tissue, and background. While 

most methods successfully extract the nuclei, none can accurately segment the connective tissue from the background 

due to the rather noisy and inhomogeneous content. MRF-based segmentation methods (Figures 3(g), (i), and (j)) and 

our global voting-based pixel labeling algorithm (Figure 3(k)) obtain better results than others. Nevertheless, MRF-based 

segmentation results show oversegmented nuclei, and our results include some background noise in the tissue 

constituents. Figure 4(a) consists of one more class than Figure 2: blood cells. Again, MRF-based methods (Figures 4(g), 

(i)) and our algorithm (Figures 4(k), (l)) obtain better results. Other methods produce larger segmentation error on 

separating the blood cells from the cytoplasm at the lower left part.  

 

    

     

    

Figure 2. Cervix epithelium histology image segmentation results (a) Original histology image with three classes. 

(b) Multithresholding [10]. (c) K-means clustering [11]. (d) Multiphase level sets [20]. (e) Samson’s model [13]. 

(f) Mean shift clustering [15]. (g) MRF by ICM [11]. (h) MRF by graph cuts [14]. (i) MRF by Metropolis 

algorithm [11]. (j) MRF by Gibbs sampling [11]. (k) Our method: pixel labeling by global voting. (l) Our method: 

pixel labeling by local clustering. 
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Figure 3. Cervix stroma histology image segmentation results (a) Original histology image with three classes. (b) 

Multithresholding. (c) K-means clustering. (d) Multiphase level sets. (e) Samson’s model. (f) Mean shift 

clustering. (g) MRF by ICM. (h) MRF by graph cuts. (i) MRF by Metropolis algorithm. (j) MRF by Gibbs 

sampling. (k) Our method: pixel labeling by global voting. (l) Our method: pixel labeling by local clustering. 
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Figure 4. Cervix stroma histology image segmentation results (a) Original histology image with three classes. (b) 

Multithresholding. (c) K-means clustering. (d) Multiphase level sets. (e) Samson’s model. (f) Mean shift 

clustering. (g) MRF by ICM. (h) MRF by graph cuts. (i) MRF by Metropolis algorithm. (j) MRF by Gibbs 

sampling. (k) Our method: pixel labeling by global voting. (l) Our method: pixel labeling by local clustering. 

5. CONCLUSION 

This paper presents a new pixel labeling algorithm for complex histology image segmentation. We characterize local 

image intensity distributions by Gaussian mixture models, which are then used to label pixels as members of one of K 

source classes in the image. We rely on the concept of “seed” pixels, i.e., the image pixels where neighborhood pixel 

distributions give strong evidence that we have the full K classes represented in the neighborhood. For each seed pixel, 

we use the distribution parameters of these neighborhood classes to determine the seed label. We propose two different 

schemes for labeling non-seed pixels: global voting and local clustering. Compared with nine traditional and state-of-

the-art methods, our model provides a simple and flexible framework for histology image segmentation; the only 

parameters are local neighborhood size (r) and the distribution distance threshold (T). In these experiments, our results 

appear favorable with respect to visual inspection, for separation of the major tissue classes in the image. We are 

investigating additional techniques, such as nondeterministic label propagation [23] to further improve the performance. 

Our planned future work also includes feature extraction in the classification for the segmented objects and regions, 

toward the goal of computer assisted cancer detection and malignancy level grading, e.g. cervical intraepithelial 

neoplasia (CIN) grading for cervix histology images. 
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