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Abstract. This paper presents a biomedical image retrieval approach
by detecting affine covariant regions and representing them with an in-
variant fuzzy feature space. The covariant regions simply refers to a set
of pixels or interest points which change covariantly with a class of trans-
formations, such as affinity. A vector descriptor based on Scale-Invariant
Feature Transform (SIFT) is then associated with each region, computed
from the intensity pattern within the region. The SIFT features are then
vector quantized to build a codebbok of keypoints. By mapping the in-
terest points extracted from one image to the keypoints in the codebook,
their occurrences are counted and the resulting histogram is called the
“bag of keypoints” for that image. Images are finally represented in fuzzy
feature space by spreading each region’s membership values through a
global fuzzy membership function to all the keypoints in the codebook.
The proposed feature extraction and representation scheme is not only
invariant to affine transformations but also robust against quantization
errors. A systematic evaluation of image retrieval on a biomedical image
collection demonstrates the advantages of the proposed image represen-
tation approach in terms of precision-recall.

1 Introduction

In recent years, rapid advances of software and hardware technology in medical
domain facilitate the generation and storage of large collections of images by
hospitals and clinics every day [1]. Such images of various modalities constitute
an important source of anatomical and functional information for the diagnosis of
diseases, medical research and education. In a heterogeneous medical collection
with multiple modalities, such as ImageCLEFmed benchmarks 1 [2], images are
often captured with different views, imaging and lighting conditions, similar to
the real world photographic images. Distinct body parts that belong to the same
modality frequently present great variations in their appearance due to changes
in pose, scale, illumination conditions and imaging techniques applied. Ideally,
the representation of such images must be flexible enough to cope with a large
1 http://ir.ohsu.edu/image/



variety of visually different instances under the same category or modality, yet
keeping the discriminative power between images of different modalities.

Recent advances in computer vision and pattern recognition techniques have
given rise to extract such robust and invariant features from images, commonly
termed as affine region detectors [3]. The regions simply refers to a set of pixels or
interest points which are invariant to affine transformations, as well as occlusion,
lighting and intra-class variations. This differs from classical segmentation since
the region boundaries do not have to correspond to changes in image appearance
such as color or texture. Often a large number, perhaps hundreds or thousands,
of possibly overlapping regions are obtained. A vector descriptor, such as scale
invariant feature transform (SIFT) [6] is then associated with each region, com-
puted from the intensity pattern within the region. This descriptor is chosen
to be invariant to viewpoint changes and, to some extent, illumination changes,
and to discriminate between the regions. The calculated features are clustered or
vector quantized (features of interest points are converted into visual words or
keypoints) and images are represented by a bag of these quantized features (e.g.,
bag of keypoints) so that figures are searchable similarly with “bag of words” in
text retrieval.

The idea of “bag of keypoints”-based image representation has already been
applied to the problem of texture classification and recently for generic visual
categorization with promising results [8, 9]. For example, the work described in
[9] presents a computationally efficient approach which has shown good results
for objects and scenes categorization. Besides, being a very generic method, it
is able to deal with a great variety of objects and scenes. However, the main
limitation of keypoint-based approaches is that the quality of matching or cor-
respondence (i.e., covariant region to keypoints) is not always exact. During the
image encoding process, a region in general is classified or matched to a single
keypoint only and the rest are simply overlooked or ignored. Hence, the corre-
spondence of an image region to a keypoint is basically “one-to-one” due to the
nature of hard classification. In reality, there are usually several keypoints with
almost as closely match as the one detected for a particular image region. Al-
though, two regions will be considered totally different if they match to different
keypoints even though they might be very similar or correlated to each other.

To overcome the above limitation, this paper presents an image representa-
tion scheme with “bag of keypoints” based on a fuzzy soft annotation scheme. In
this approach, the SIFT features are extracted at first from the covariant regions
and then vector quantized to build a visual vocabulary of keypoints by utilizing
the Self-Organizing Map (SOM)-based clustering. The images are presented in
a fuzzy feature space by spreading each region’s membership values through a
global fuzzy membership function to all the keypoints in the codebook during
the encoding and consequent feature extraction process. The organization of the
paper is as follows: Section 2 describes the keypoint-based feature representa-
tion approach and an image representation scheme is a fuzzy feature space is
presented in Section 3.Experiments and analysis of the results are presented in
Sections 4 and 5. Finally, Section 6 provides our conclusions.



2 “Bag of Keypoints”-based feature representation

(a) Endoscopy Gastro Image (b) Chest CT Image

Fig. 1. Images from the medical collection marked (white crosses) with interest points
detected by the affine region detector.

A major component of this retrieval framework is the detection of interest
points in scale-space, and then determine an elliptical region for each point.
Interest points are those points in the image that possess a great amount of in-
formation in terms of local signal changes [3]. In this study, the Harris-affine de-
tector is used as interest point detection methods [4]. In this case, scale-selection
is based on the Laplacian, and the shape of the elliptical region is determined
with the second moment matrix of the intensity gradient [5]. Fig. 1 shows the
interest points (cross marks) detected in two images of different modalities from
the medical collection.

A vector descriptor which is invariant to viewpoint changes and to some ex-
tent, illumination changes is then associated with each interest point, computed
from the intensity pattern within the point. We use a local descriptor developed
by Lowe [6] based on the Scale-Invariant Feature Transform (SIFT), which trans-
forms the image information in a set of scale-invariant coordinates, related to
the local features. SIFT descriptors are multi-image representations of an image
neighborhood. They are Gaussian derivatives computed at 8 orientation planes
over a 4× 4 grid of spatial locations, giving a 128-dimension vector. Recently in
a study [3] several affine region detectors have been compared for matching and
it was found that the SIFT descriptors perform best. SIFT descriptor with affine
covariant regions gives region description vectors, which are invariant to affine
transformations of the image. A large number of possibly overlapping regions are
obtained with the Harris detector. Hence, a subset of the representative region



vectors is then selected as a codebook of keypoints by applying a SOM-based
clustering algorithm [10].

For each SIFT vector of interest point in an image, the codebook is searched
to find the best match keypoint based on a distance measure (generally Eu-
clidean). Based on the encoding scheme, an image Ij can be represented as a
vector of keypoints as

fKV
j = [f̂1j · · · f̂ij · · · f̂Nj ]T (1)

where each element f̂ij represents the normalized frequency of occurrences of
the keypoints ci appearing in Ij .

This feature representation captures only a coarse distribution of the key-
points that is analogous to the distribution of quantized color in a global color
histogram. As we already mentioned, image representation based on the above
hard encoding scheme (e.g., to find only the best keypoints for each region) is
very sensitive to quantization error. Two regions in an encoded image will be
considered totally different if their corresponding keypoints are different even
though they might be very similar or correlated to each other. In the following
section, we propose an effective feature representation scheme to overcome the
above limitation.

3 Image representation in a fuzzy feature space

There are usually several keypoints in the codebook with almost as good match
as the best matching one for a particular covariant region. This scheme considers
this fact by spreading each region’s membership values through a global fuzzy
membership function to all the keypoints in the codebook during the encoding
and consequent feature extraction process. The vector fKeypoint is viewed as a
keypoint distribution from the probability viewpoint. Given a codebook of size
N , each element fij of the vector fKeypoint

j of image Ij is calculated as fij = li/l.
It is the probability of a region in the image encoded with label i of keypoint
ci ∈ C, and li is the number of regions that map to ci and l is the total number
of regions detected in Ij .

According to the total probability theory [11], fij can be defined as follows

fij =
l∑

kj=1

Pi|kj
Pk =

1
l

l∑

kj=1

Pi|kj
(2)

where Pk is the probability of a region selected from image Ij being the kjth
region, which is 1/l, and Pi|kj

is the conditional probability of the selected kjth
region in Ij maps to the keypoint ci. In the context of the keypoint-based vector
fkeypoint, the value of Pi|kj

is 1 if the kjth region is mapped to ci or 0 otherwise.
Due to the crisp membership value, this feature representation is sensitive to
quantization errors.

In such a case, fuzzy set-theoretic techniques can be very useful to solve
uncertainty problem in classification tasks [12, 15, 16]. This technique assigns an



observation (input vector) to more than one class with different degrees instead
of a definite class by crisp classification. In traditional two-state classifiers, an
input vector x either belongs or does not belong to a given class A; thus, the
characteristic function is expressed as [12]

µA(x) =

{
1 if x ∈ A

0 otherwise.

In a fuzzy context, the input vector x, belonging to the universe X, may be
assigned a characteristic function value or grade of membership value µA(x) (0 ≤
µA(x) ≤ 1) which represents its degree of membership in the fuzzy set A.

Many methods could be adapted to generate membership from input ob-
servations. These include the histogram method, transformation of probability
distributions to possibility distributions, and methods based on clustering [12,
15]. For example, fuzzy-c-means (FCM) [15] is a popular clustering method,
which embeds the generation of fuzzy membership function while clustering.
Few schemes have been proposed to generate fuzzy membership functions using
SOM [13, 14], where the main idea is to augment the input feature vector with
the class labeling information. However, without any class label information (as
in our case), it might be difficult to generate such fuzzy membership functions.
Due to this, we perform a two-step procedure, where in the first step we gen-
erate the proper clusters (e.g., keypoints in the codebook) based on the SOM
clustering and next the fuzzy membership values are generated according to the
generated clusters in the first step as follows [16]:

The membership degree µikj of a region vector xkj ∈ <d, k = 1, 2, · · · , l, of
the kjth region in Ij to keypoint vectors ci, i = 1, 2, · · · , N is:

µikj =

1

‖xkj
−ci‖2

2
m−1

∑N
n=1

1

‖xkj
−cn‖2

2
m−1

(3)

The higher the distance of an input SIFT vector from a keypoint vector, the
lower is its membership value to that keypoint based on (3). It is to be noted that
when the distance is zero, the membership value is one (maximum) and when
the distance is infinite, the membership value is zero (minimum). The values of
µikj lies in the interval [0, 1]. The fuzziness exponent 2

m−1 controls the extent or
spread of membership shared among the keypoints.

In this approach, during the image encoding process, the fuzzy membership
values of each region to all keypoints are computed for an image Ij based on
(3), instead of finding the best matching keypoint only. Based on the fuzzy
membership values of each region in Ij , the fuzzy keypoint vector (FKV) is
represented as fFKV

j = [f̂1j , · · · , f̂ij , · · · f̂Nj ]
T, where

f̂ij =
l∑

k=1

µikj Pk =
1
l

l∑

k=1

µikj ; for i = 1, 2, · · · , N (4)



The proposed vector essentially modifies probability as follows. Instead of using
the probability Pi|kj

, we consider each of the regions in an image being related
to all the keypoints in the codebook based on the fuzzy-set membership function
such that the degree of association of the kj-th region in Ij to the keypoint ci is
determined by distributing the membership degree of the µikj to the correspond-
ing index of the vector. In contrast to the keypoint-based vector (e.g., fKeypoint),
the proposed vector representation (e.g., fFKV)considers not only the similarity
of different region vectors from different keypoints but also the dissimilarity of
those region vectors mapped to the same keypoint in the codebook.

4 Experiments

Fig. 2. Classification structure of the medical image data set.

The image collection for experiment comprises of 5000 bio-medical images
of 32 manually assigned disjoint global categories, which is a subset of a larger
collection of six different data sets used for medical image retrieval task in Im-
ageCLEFmed 2007 [2]. In this collection, images are classified into three levels
as shown in Fig. 2. In the first level, images are categorized according to the
imaging modalities (e.g., X-ray, CT, MRI, etc.). At the next level, each of the
modalities is further classified according to the examined body parts (e.g., head,
chest, etc.) and finally it is further classified by orientation (e.g., frontal, sagit-
tal, etc.) or distinct visual observation (e.g. CT liver images with large blood
vessels). The disjoint categories are selected only from the leaf nodes (grey in
color) to create the ground-truth data set.

To build the codebook based on the SOM clustering, a training set of images
is selected beforehand for the learning process. The training set used for this
purpose consists of 10% images of the entire data set (5000 images) resulting
in a total of 500 images. For a quantitative evaluation of the retrieval results,
we selected all the images in the collection as query images and used query-by-
example (QBE) as the search method. A retrieved image is considered a match
if it belongs to the same category as the query image out of the 32 disjoint



categories at the global level as shown in Fig. 2. Precision (percentage of retrieved
images that are also relevant) and recall (percentage of relevant images that are
retrieved) are used as the basic evaluation measure of retrieval performances [7].
The average precision and recall are calculated over all the queries to generate
the precision-recall (PR) curves in different settings.

5 Results
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Fig. 3. PR-graphs of different codebook sizes.

To find an optimal codebook that can provide the best retrieval accuracy
in this particular image collection, the SOM is trained at first to generate two-
dimensional codebook of four different sizes as 256 (16× 16), 400 (20× 20 ), 625
(25× 25), and 1600 (40× 40) units. After the codebook construction process, all
the images in the collection are encoded and represented as “bag of keypoints”
as described in Section 2. For training of the SOM, we set the initial learning
rate as α = 0.07 due to its better performance.

Fig. 3 shows the PR-curves on four different codebook sizes. It is clear from
Fig. 3 that the best precision at each recall level is achieved when the code-
book size is 400 (20 × 20). The performances are degraded when the sizes are
further increased, as a codebook size of 1600 (40× 40) showed the lowest accu-
racies among the four different sizes. Hence, we choose a codebook of size 400



for the generation of the proposed keypoints-based feature representation and
consequent retrieval evaluation.
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Fig. 4. PR-graphs of different feature spaces.

Fig. 4 shows the PR-curves of the keypoints-based image representation by
performing the Euclidean distance measure in the “bag of keypoints”-based fea-
ture space (e.g., “KV”) and the proposed fuzzy keypoints-based feature space
(e.g., “FKV’). The performances were also compared to three low-level color,
texture, and edge related features to judge the actual improvement in perfor-
mances of the proposed methods. The reason of choosing these three low-level
feature descriptors is that they present different aspects of images. For color fea-
ture, the first (mean), second (standard deviation ) and third (skewness) central
moments of each color channel in the RGB color space are calculated to repre-
sent images as a 9-dimensional feature vector. The texture feature is extracted
from the gray level co-occurrence matrix (GLCM). A GLCM is defined as a
sample of the joint probability density of the gray levels of two pixels separated
by a given displacement and angle [18]. We obtained four GLCM for four differ-
ent orientations (horizontal 0◦,vertical 90 ◦, and two diagonals 45 ◦ and 135 ◦).
Higher order features, such as energy, maximum probability, entropy, contrast
and inverse difference moment are measured based on each GLCM to form a
5-dimensional feature vector and finally obtained a 20-dimensional feature vec-
tor by concatenating the feature vector for each GLCM. Finally, to represent
the shape feature, a histogram of edge direction is constructed. The edge infor-



mation contained in the images is processed and generated by using the Canny
edge detection (with σ = 1, Gaussian masks of size = 9, low threshold = 1,
and high threshold = 255) algorithm [19]. The corresponding edge directions are
quantized into 72 bins of 5◦ each. Scale invariance is achieved by normalizing
this histograms with respect to the number of edge points in the image.

By analyzing the Fig. 4, we can observe that the performance of the keypoints-
based feature representation (e.g., “KV”) is better when compared to the global
color, texture, and edge features in term of precision at each recall level. The
better performances are expected as the keypoints-based feature representation
is more localized in nature and invariant to viewpoint and illumination changes.
In addition, we can observe that the fuzzy feature-based representation (e.g.,
“FKV’) approach performed slightly better when compared to the similarity
matching in the normalized keypoints-based feature space. Overall, the improved
result justifies the soft annotation scheme by spreading each region’s membership
values to all the keypoints in the codebook. Hence, the proposed fuzzy feature
representation scheme is not only invariant to affine transformations but also
robust against the distribution of the quantized keypoints. For generation of the
fuzzy feature, we consider the value of m = 2 of the fuzziness exponent due to
its better performance in the ground truth dataset.

6 Conclusions

We have investigated the “bag of keypoints” based image retrieval approach in
medical domain inspired by the ideas of the text retrieval. In this approach, in-
terest points are detected and described by affine SIFT descriptor at first. Based
on the construction of a SOM generated codebook, images are represented in
a fuzzy feature space by spreading each region’s membership values through a
global fuzzy membership function to all the keypoints in the codebook. The
proposed feature representation scheme is invariant to affine transformations, as
well as occlusion, lighting and intra-class variations and robust against quan-
tization errors. Experimental results in a medical image collection justified the
validity of the proposed feature extraction and image representation approach.
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