
UNSUPERVISED STYLE CLASSIFICATION OF DOCUMENT PAGE IMAGES

Song Mao,a Lan Nie,b, and George R. Thomaa

aU.S. National Library of Medicine, Bethesda, MD 20894, USA
bComputer Science and Engineering Department, Lehigh University, PA 18015, USA

Style classification of document page images is crucial
for logical structure analysis of heterogeneous collections
of documents. Both layout and contextual features contain
significant information about document styles. Most exist-
ing methods are supervised methods in which specific docu-
ment models or classifiers are learned from a training set of
document page images with known class labels. In this pa-
per, we propose an unsupervised classification method that
involves no training or manual selection of algorithm pa-
rameters. In particular, we first represent each document
page as an ordered labeled X-Y tree. A tree matching al-
gorithm is then used to compute style dissimilarity between
two document pages. We propose a set of tree edit cost
functions based on Karl Pearson distance between two mul-
tivariate feature observations, which is robust to the over-
segmentation problem and zone length variations of same
logical entities. Finally, the K-medoids algorithm is used to
find an optimal grouping of the trees into K clusters, each of
which corresponds to a distinct document style. We evalu-
ate our algorithm on test datasets with different cluster sizes
and degrees of style similarity. Experimental results show
our algorithm achieved an average classification accuracy
of 95.69% over six datasets consisting of 150 pages of 11
different styles.

1. INTRODUCTION AND PRIOR WORK
The style of a document page is represented by both layout
and contextual features of its physical zones. While it is
difficult to design a document image analysis algorithm that
works for an arbitrary set of documents, domain specific
knowledge such as document style is very useful for logical
structure analysis of documents, which is essential in a doc-
ument image analysis system. Document identifiers such as
header and footer text could contain significant information
(e.g. the name of a journal) about document styles. How-
ever, documents from different journal titles could have the
same style and vice versa. For example, articles from two
different journals can have the same one-column layout and
same font size and attribute for the same logical entities,
and documents in the same journal could have different ar-
ticle types such as regular paper and correspondence, each
of which has a distinct style.

Most document image classification methods follow the
supervised approach where classifiers or specific document
class models are learned from training data with known class
labels. Diligenti et. al. [1] propose Hidden Tree Markov
Models (HTMMs) for classifying commercial invoices. Ce-
sarini et. al. [2] use artificial neural networks to classify
documents modeled by a vector representation of modified
X-Y trees. Baldi et. al. [3] first use tree grammars to expand
training sets consisting of modified X-Y trees with class la-
bels, and then use a K − nn approach to classify the pages.
Hu et. al. [4] propose a novel feature set called interval en-
coding to encode region layout information, and use it in a
hidden semi-Markov model (HSMM) to classify letters and
journal pages. All the above methods rely on training of
specific document class models or classifiers. When such
labeled training data is not available or expensive to create,
unsupervised classification methods are necessary.

In this paper, we propose an unsupervised classification
method. Character font size and zoning results of a docu-
ment page are used to build an ordered labeled X-Y tree. A
set of edit cost functions are proposed, based on the Karl
Pearson distance between two multivariate feature vectors.
They are used in a dynamic programming algorithm to com-
pute an edit distance between any pair of such trees. Finally,
a K-medoids algorithm is used to find an optimal grouping
of these trees into K clusters by minimizing a within-cluster
distance measure. Each of the obtained clusters corresponds
to a distinct document class.

This paper is organized as follows. In Section 2, we
represent each page as an ordered labeled X-Y tree. In Sec-
tion 3, we provide a detailed description of a tree matching
algorithm and associated edit cost functions. The clustering
algorithm is presented in Section 4. Finally in Section 5, we
describe the experimental protocol, report results, provide a
discussion, and give future directions.

2. DOCUMENT PAGE IMAGE REPRESENTATION
A document page image having the Manhattan layout can
be represented as an ordered labeled X-Y tree [1, 2, 3, 5]
since it concisely summarizes layout and contextual styles
of the page. Each node in the tree denotes a document re-
gion where root node denotes the whole document page.

 (a) (b) (c)

Fig. 1. An ordered labeled X-Y tree is built for each of the three documents shown in (a) (left tree), (b), and (c) using their
zone bounding boxes. Page (a) and (b) have the same layout and contextual type, but their trees are quite different. After
removing the ambiguity using the widths of Gap 1 and Gap 2, a new tree (right of arrow) is built for page (a), which is similar
to tree (b) but is different from tree (c). Note that gray and shaded zones represent different logical entities, numbers 1,2,3,4
represent read order, and notation X and Y denote the projection axes.

A parent-child relationship represents hierarchical contain-
ment of the physical regions in a document page. The chil-
dren nodes of a parent node is read left to right. Each node
is labeled with a feature vector, which represents the layout
and contextual characteristics of the corresponding region.

2.1. Build Ordered and Labeled Tree
Zone bounding boxes in the whole page are first projected
onto the X axis. Subsequently, each non-overlapping zone
on a projection profile denotes a leaf node, and overlapping
zones are merged into a single node, which will be projected
onto a different axis in the next projection step. We repeat
this process until all leaf nodes of the tree denote singular
zones as shown in Figure 1 (b). Since noise zones and skew
can adversely affect this process, document pages should be
deskewed and cleaned in a preprocessing step.

Ambiguity could arise in this process in that trees with
identical structure may be built for documents with quite
different layout and contextual styles. An example is shown
by the left tree in Figure 1 (a) and the tree in (c). We can
remove the ambiguity by first splitting at the wider gap as
shown in the right tree in Figure 1 (a). At tree level 2, we do
not split zones at Gap 1 since it is thinner than that the in-
tersecting Gap 2. However in Figure 1 (c), the split at Gap 1
precedes the separation at Gap 2 since Gap 1 is thicker than
Gap 2. This is a reasonable operation since document style
editors typically use gaps (or field separators) of different
widths to signify logical separations at different degrees.

2.2. Feature Selection for Labeling Tree Nodes
Each node v in an ordered labeled tree T is labeled with a
4-tuple feature vector fv = (fv

1 , fv
2 , fv

3 , fv
4), where fv

1 , fv
2 ,

and fv
3 denote average character font size, level number in

T , and center X coordinate (in pixels) of v, respectively. If
v is a node on a Y projection profile, fv

4 denotes the min-
imum vertical distance (in pixels) between v and its top or
bottom sibling on the profile. We see that this feature vec-
tor contains both the contextual (fv

1) as well as layout re-
lated information (fv

2 , fv
3 , fv

4). In the next section, we will
describe how the feature vector is used to compute an edit
distance between a pair of ordered labeled X-Y trees.

3. COMPUTE EDIT DISTANCE BETWEEN TREES
Zhang et. al. [6] proposed an efficient algorithm for match-
ing ordered labeled trees using relabel, deletion, and inser-
tion operations on tree nodes. We adapt this algorithm to
compute an edit distance between two ordered labeled X-Y
trees.

3.1. The Tree Matching Algorithm
Let T be an ordered labeled X-Y tree and let V (T) be the
set of nodes in T . Let T (v) be the subtree of T rooted at
a node v ∈ V (T). Let F1 and F2 be two ordered forests.
Let D(., .) be the edit distance between its two arguments,
which can be either trees or forests. Let C be a cost func-
tion defined on labels (feature vectors) of tree nodes. Let r1

and r2 be the rightmost roots of the trees in F1 and F2. Let
φ and Φ denotes empty node and empty tree, respectively.
The algorithm described in [6] computes a tree edit distance
based on the following dynamic programming procedures:
D(Φ,Φ) = 0, D(F1,Φ) = D(F1 − r1,Φ) + C(r1 →
φ), D(Φ, F2) = D(Φ, F2 − r2) + C(φ→ r2),

D(F1, F2) = min

D(F1 − r1, F2) + C(r1 → φ),
D(F1, F2 − r2) + C(φ→ r2),
D(F1 − T (r1), F2 − T (r2))+
D(T (r1), T (r2)),

D(T (r1), T (r2)) =

min

 D(T (r1)− r1, T (r2)) + C(r1 → φ),
D(T (r1), T (r2)− r2) + C(φ→ r2),
D(T (r1)− r1, T (r2)− r2) + C(r1 → r2).

Deletion, insertion, and relabel cost functions C(r1 → φ),
C(φ→ r2), C(r1 → r2) are described in the next section.

3.2. Edit Cost Functions
In the problem of document page style classification, the
edit distance between two ordered labeled X-Y trees is used
as a dissimilarity measure between the represented docu-
ment page images. Therefore, the cost functions for node
deletion, insertion, and relabel operation should reflect the
degree of dissimilarity between a pair of document page im-
ages. In order to make the edit distance computation sym-
metric between two trees, we define identical cost functions
for deleting and inserting the same node in a tree.

The cost to relabel a node v in tree T1 to a node w in
tree T2 is defined in Equation 1 as Karl Person distance (a
type of weighted Euclidean distance) between the two mul-
tivariate feature vectors, each of which consists of the first
three feature variables in fv and fw, respectively.

C(v → w) = C(w → v) =

√√√√ 3∑
i=1

(fv
i − fw

i)2

s2
i

, (1)

where s2
i is the variance of feature variable fi. Here we use

sample variance to approximate s2
i . Since the feature vari-

ables have different measurement units, their sample vari-
ances are used as weights so that the computed cost is ap-
proximately scale-invariant. Similarly, we define the cost
for deleting (or inserting) a node v in a tree as follows: If v
is obtained from a X projection profile,

C(v → φ) = C(φ→ v) =

√√√√ 3∑
i=1

(fv
i − f

′
i)2

s2
i

. (2)

If v is obtained from a Y projection profile,

C(v → φ) = C(φ→ v) =

√√√√ 4∑
i=1,i 6=3

(fv
i − f

′
i)2

s2
i

, (3)

where f
′

i denotes the ith variable of feature vector f
′
. If v

has a left sibling, f
′

is the label of that sibling. Otherwise,
f
′

is the label of the right sibling of v, if v has one. If v
does not have any sibling, set f

′
= (0, 0, fv

3 , fv
4), i.e., only

the first two features are used to compute a cost to delete or
insert a singular child in Equation 2 or 3.

Note that the relabel cost function does not involve the
vertical minimum distance features fv

4 and fw
4 . This is be-

cause the cost of relabeling one zone into another should be
small if they have very similar contextual and layout styles
(except their lengths). The deletion (or insertion) cost func-
tions compute a small cost for deleting a part from the whole

on the Y projection profile, and therefore is insensitive to the
over-segmentation problem in zoning results. On the other
hand, the cost of using the center X coordinate feature to
penalize the deletion of a column from a multi-column page
should be large.

4. TREE CLUSTERING
Combinatorial clustering algorithms directly work on the
observations without assuming an underlying probability model.
The popular K-means algorithm uses squared Euclidean
distance as the dissimilarity measure and requires that ob-
servations can be considered as points in the Euclidean space.

In our case, observations are ordered labeled X-Y trees
that cannot be readily represented as points in the Euclidean
space. On the other hand, we can compute a dissimilar-
ity measure (tree edit distance) for each pair of trees. We
cluster our trees using the K-medoids algorithm [7] since
it only makes use of the pairwise dissimilarity measure of
the observations. Moreover, the expensive tree edit distance
computation is a one-time operation and is not involved in
the optimization steps of the K-medoids algorithm. Hastie
et. al. [8] proposed a method based on the Gap statistic to
estimate the number of clusters in a set of data, which can
be applied to our case. Assuming the number of clusters is
K, the detailed steps of the algorithm are as follows:
1. Randomly choose a set of K initial cluster centers

T0 = (T 0
1 , . . . , T 0

K) from T1, . . . , TN . Let Tc = T0.
2. For the current K cluster centers Tc, assign each tree to

the closest (in terms of tree edit distance) cluster center:
L(i) = arg min1≤k≤K D(Ti, T

c
k), i = 1, . . . , N ,

where L(i) denotes the cluster label of tree Ti.
3. Given cluster assignment L, find a new center in each

cluster that minimizes total distance to other points in that
cluster: i∗k = arg mini:L(i)=k

∑
i′ :L(i′)=k D(Ti, Ti′).

Update current cluster centers as T c
k = Ti∗k

, k = 1, . . . ,K.
4. Repeat steps 2 and 3 until assignments do not change.

Let L∗ and T ∗c be final assignments and cluster centers.
Compute a within-cluster distance measure (correspond-
ing to T0) as

∑K
k=1

∑
i:L∗(i)=k D(Ti, T

∗c
k).

5. EXPERIMENTS
We collected 150 article title page images from 9 journal
issues. They belong to 11 distinct styles in terms of lay-
out and contextual features as shown in Figure 2. We see
they consist of three major layouts: one column, two col-
umn, and three column pages. Each major layout contains
document styles with different degrees of finer style varia-
tion. These document styles or clusters do not all have the
same size. The smallest cluster only has three pages and the
largest one has 24 pages. Six datasets with different doc-
ument style and cluster size compositions are selected to
evaluate our method.

We run the K-medoids algorithm using 20 randomly se-
lected initial cluster center sets and consider the clustering

result giving the minimum within-cluster distance measure
as the final result. In the clustering results, each cluster is
labeled by the document style that has the maximum num-
ber of pages, and pages belonging to other document styles
in the cluster are counted as misclassified. Statistics as-

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11)
Fig. 2. The 11 document styles in our dataset. Note that
different zone shadings represent different logical entities.

Table 1. Dataset descriptions and their classification results.
Note that in the second column, we use the document style
numbers shown in Figure 2.

Dataset (Style):size No. of No. of Classification
pages misclassified accuracy

pages
I (9):8, (10):3, (11):14. 25 1 96%
II (1):10, (2):15, (3):9, 96 4 95.83%

(4):24, (5):22, (6):16.
III (8):9, (9):8 17 1 94.12%
IV (2):15, (5):22, (8):9. 46 0 100%
V (1):10, (2):15, (3):9, 105 4 96.19%

(4):24, (5):22, (6):16,
(8):9.

VI (1):10, (2):15, (3):9, 150 12 92%
(4):24, (5):22, (6):16,
(7):20, (8):9, (9):8,
(10):3, (11):14.

sociated with each of the six datasets and their classifica-
tion results are reported in Table 1. We see that our method
works well on both relatively balanced clusters in datasets
II, III, IV, V and unbalanced clusters in datasets I and VI.
When a dataset is very unbalanced, smaller clusters tend to
be merged into larger ones. For example in experimental
results on the dataset VI, three pages from style (10) are
merged into a larger cluster. Curves in Figure 3 characterize
the relationship between minimum within-cluster distance
measure and the number of randomly selected initial cluster
center sets for all six datasets. We see that the K-medoids
algorithm quickly finds an optimal grouping of the docu-
ment pages in most datasets after using only one or a few
randomly generated initial cluster center sets.

Future work will include clustering data with severely
unbalanced clusters, extracting high dimensional features
and projecting them onto low dimensional manifold, and
estimating cluster number K using the Gap statistic [8].

Fig. 3. Relationships between within-cluster distance and
number of initial cluster center sets for all 6 datasets.

6. REFERENCES

[1] M. Diligenti, P. Frasconi, and M. Gori, “Hidden tree
Markov models for document image classification,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 25, pp. 519–523, 2003.

[2] F. Cesarini, M. Lastri, S. Marinai, and G. Soda, “Encod-
ing of modified X-Y trees for document classification,”
in Sixth International Conference on Document Analy-
sis and Recognition, Seattle, Washington, September
2001, pp. 1131–1136.

[3] S. Baldi, S. Marinai, and G. Soda, “Using tree-
grammars for training set expansion in page classifi-
cation,” in Seventh International Conference on Doc-
ument Analysis and Recognition, Edinburgh, Scotland,
August 2003, pp. 829–833.

[4] J. Hu, R. Kashi, and G. Wilfong, “Document classi-
fication using layout analysis,” in 10th International
Workshop on Databases and Expert Systems Applica-
tions, Florence, Italy, September 1999.

[5] M. Krishnamoorthy, G. Nagy, S. Seth, and
M. Viswanathan, “Syntactic segmentation and la-
beling of digitized pages from technical journals,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 15, pp. 737–747, 1993.

[6] K. Zhang, D. Shasha, and J. T. L. Wang, “Approximate
tree matching in the presence of variable length don’t
cares,” Journal of Algorithms, vol. 16, pp. 33–66, 1994.

[7] L. Kaufman and P. Rousseeuw, Finding Groups in
Data: An Introduction to Cluster Analysis, Wiley, New
York City, New York, 1990.

[8] T Hastie, R. Tibshirani, and G. Walther, “Estimating
the number of data clusters via the Gap statistic,” Tech.
Rep. 208, Stanford University, Stanford, CA, March
2000.

