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In this study, we developed a set of new methods to diagnose physiological conditions (PCs) 
of human subjects based on biometric multichannel time series data that were obtained 
through nine biosensors attached on the upper arms of the human test subjects.  The task is to 
learn the relationships between PCs and the biosensor data on the training dataset and 
identify the PCs of interest on the test dataset.  

The goal of this study is to test the predictive performances of two sets of Bayesian network 
topologies and the effectiveness of a new parameter learning method applied to the problem 
on the provided dataset.  This paper summarizes these methods. 

Data 

The dataset was collected and made available to the public by BodyMedia, Inc. as the 
workshop dataset of the Physiological Data Modeling Contest at the International Conference 
on Machine Learning in 2004.1 The entire dataset was deidentified such that the identifiers of 
human subjects and the original labels of PCs were replaced with unique integers.  

The training dataset was provided in 16 columns (see Table 1) and 580,264 cases (temporal 
records). The test dataset comprises 720,792 cases, whose format follows that of the training 
dataset except for the columns PC and gender, which are omitted and left to be predicted by 
the participants for each test case. 

Table 1: The Format of the Training Dataset2 

Line char1 char2 PC gender sensor1 … sensor9 userID sessionID sessionTime
1 38 0 0 0 0.168662 … -0.41966 1 2 0
2 38 0 0 0 0.159785 … -0.31002 1 2 60000

580264 24 0 0 0 0.754541 … -0.30018 32 4064 5400000

1 The dataset decomposed into two mutually exclusive subsets, training and test data, is available at the official 
website of the workshop: http://www.cs.utexas.edu/users/sherstov/pdmc/  
2 For the semantics of char1, char2 and gender, please refer to Section Determining Genders of the Subjects. 



Dynamic Simple Bayesian Modeling 

Dynamic simple Bayesian (DSB) modeling is a Bayesian method to forecast future outcomes 
of stochastic processes given a sequence of multivariate time series (Kayaalp, 2003).  A DSB 
model is a dynamic Bayesian network with the following assumptions (see Figure 1): 

1. The underlying data-generating stochastic process is strictly stationary, which implies 
that the parameters of the stochastic process are constant under any time displacement 

; i.e., d ∈! ( ) ( )( ) ( ) ( )( ),..., ,...,i n i d nP t t P t t+ + d=X X X X . 

2. All contemporaneous variables of a stochastic process are measured concurrently, 
and all successive measurements are performed in equidistant time intervals. 

3. Temporal dependencies are first-order Markov; that is, the state of a process at time 
 depends only on the state of the same process at time nt 1nt − , i.e. 

( ) ( )( ) ( ) ( ) ( )( )1 1 ,...,n n n nP t t P t t t− −=X X X X X 0 . 

4. The observations on a given time slice t are conditionally independent, given the 
outcomes in . 1t +

5. All variables are discrete. 
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Figure 1: Dynamic Simple Bayesian (DSB) Model with Three Temporal Variables 

In the provided dataset, physiological signals are represented in continuous numbers over a 
discrete timeline.  The conventional approach of using continuous data in Bayesian networks 
usually requires either a priori discretization of the data or a priori assumption that the data 
conform to a particular parametric distribution such as Gaussian.  These approaches may be 
optimal under certain conditions; however, they may fail when their (rather strong) premises 
contradict with the underlying distributions. 



In this study, parameters of the Bayesian networks are learned from continuous data. 
Consider the Bayesian network in Figure 2, where X and Y are continuous and binomial 
variables, respectively. 
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Figure 2: A Bivariate Bayesian Network and the Associated Density Distributions 

The area under any segment of a probability density function renders the probability density 
of that segment,  
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p x X x p X d≤ ≤ = ∫ x , (1) 

and the probability of X at any given point x  is equal to 0. 3  
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P X x p X dx= = ∫ =  (2) 

Using continuous data in Bayesian networks has always been problematic.  The most 
important problem is the difficulty of obtaining the integral value of Equation (1) for 
multivariate distributions.  The probability of any point on the real line is a null set may also 
be construed as a hurdle to parameterize a test data point in question.  To solve the current 
problem, what we need is to obtain the value of ( )P Y X x= , which is a non-zero value for a 
continuous variable X and a categorical variable Y.  Namely, in the example illustrated in 
Figure 2, ( ) ( )1 2P Y X x P Y X x= = + = = =1 .   

Given a test case in which X x= , how can we learn ( )P Y y X x= =  from a finite sample?  
Our approach is online parameter learning; that is, parameters of every test case are learned 
dynamically. Each probability of interest is learned parametrically by combining values of all 
training sample points via a sigmoid decay function (sdf), which discounts the contribution of 
each sample point ix  according to the Euclidean distance between ix  and the test data point 
x of interest. 

                                                 
3 In this work, we denote probability density functions with (a lower case letter) p and probability mass functions 
with (an upper case letter) P. 
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In Equation (3), n y  denotes the number of data points in the training sample where 
values of variable Y and X are equal to  and 

( ,k ix )
ky ix , respectively, and  ( ) ( )maxscale X X=

( )min X− .  In this study, we set sdf parameters as 400a =  and c 6= .  In Equation (4), 

kα α  denotes the prior probability of Y ky=  given X x= , and ii
αα =∑ , where all priors 

are distributed uniformly, i.e. ( )k,i k i∀ ≠  i kα α= .  

The computational complexity of Equation (3) as implemented in this study is Θ  where 
n is the number of unique

( )2n
4 data points in the training sample.  However, the current algorithm 

may easily be approximated numerically to achieve ( )1Θ . 

This method enables us to eliminate discrete data requirement (Assumption 5) from the list of 
assumptions without making as strong assumptions about the underlying distributions of the 
data as done by other methods (Shachter & Kenley, 1989; Cowell, 1998).  The rationale of 
the method is based on the natural order of the continuous data. It takes into account that 
measurements of a given phenomenon are usually bound to a certain variance, which may be 
accommodated through the parameters of the sdf. 

In this study, the outcomes of interest are categorical; hence, we restrict our implementation 
to discrete Y variables.  If Y were defined on real line, the two density plots in Figure 2 would 
be a surface plot.  In that case, the unidimensional Euclidian distance metric ix x−

( )
 of 

Equation (3) would be replaced with a two-dimensional one such as ( )2 2
i jx x y y− + −  

and the single summation over i in Equation (3) would be replaced with a double summation 
over i and j.  Extending sdf to an n-dimensional metric space is straightforward (Berge, 
1962). 

Modified Dynamic Simple Bayesian Modeling 

DSB models are designed for forecasting (i.e. for predicting future outcomes); however, the 
current task is diagnosing physiological conditions at time t from time series data that include 
sensor information at time t.  Such contemporaneous information is too valuable to ignore; 
                                                 
4 Depending on sensor resolutions, actual data do not always reflect the analog nature of the measured signals; 
rather, certain data points appear quite frequently.  For instance, each of the following Sensor 3 data points 
32.582733 and 32.751022 was recorded more than 1000 times in the training dataset.  Resolutions of Sensors 6 
and 8 seem significantly higher than the others; thus, computing Equation (3) took much longer for the data of 
these two sensors than for the data of the others. 



thus, we modified current DSB model and added contemporaneous variables.  The modified 
DSB model (mDSB) can be conceptualized as a coalescence of a DSB model and a simple 
Bayesian network model (SB); the latter is also known as naive Bayes classifier. 

An SB model is essentially an atemporal model such that its random variables are not 
associated with any temporal semantic and variable interdependencies do not indicate any 
temporal transitions.  In this study, the following assumptions are made for using the SB 
approach in the temporal domain: 

1. An event at time nt  are independent from any other event at time nt t≠ ; that is, 

 ( ) ( ) ( )( ) ( )( )1 0,...,n n nP t t t P t− =X X X X . (5) 

2. All covariates are conditionally independent given the outcome of the variable of 
interest. 

The main difference between the DSB and SB models is that the former contains only 
transitional (temporal) relations whereas the latter contains only contemporaneous 
(“atemporal”) relations.  As a combination of the two, an mDSB contains both transitional 
and contemporaneous relations. 

 
Figure 3: An mDSB Model 

The SB portion of an mDSB model comprises a set of variables ( )itX and a set of relations 
contemporaneous to it  (see Figure 3). The values of the variables of interest denoted by 
unshaded nodes were unobserved (i.e., unknown).  In the current study, transitional relations 
(represented with the dashed arcs in Figure 3) between successive unknown variables were 
not implemented.  In the general case of mDSB, variables with unknown values may also 
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have a complete set of first-order Markov dependencies as their observable contemporaneous 
counterparts. 

Determining Genders of the Subjects 

There are three additional variables of the training dataset that are not mentioned above: The 
gender of each subject, and two sets of subject characteristics, which we here denote as char1 
and char2 (see Table 1).  All three variables were deidentified and enumerated.  Here are 
some observations about this portion of the training dataset: 

• Both gender and char2 were static. 
• Changes in char1 over time were rare. 
• Effective sample size was small—four subjects with gender = 1 and 14 subjects with 

gender = 0 in the training dataset. 

The task specified by the organizers of the workshop was to determine the gender of each test 
subject by using all available information, which includes time series sensor data as well.  
With only a small set of parameters, we identified a deterministic relation between gender 
and the two characteristics on the training dataset through constructive induction: 

 
1  if  2 1 1 29 1 42
0 otherwise                                           

char char char
gender

= ∨ = ∨ == 


 

Results and Conclusions 

In this study, we applied a set of new Bayesian methods to diagnose physiological conditions 
(PCs) of human subjects from multivariate time series data that were obtained through a set 
of biosensors.  We submitted our results in three sets: The first two sets were predicted by 
two mDSBs with two different decision thresholds and the last set was predicted by an SB.  
At the time of submission of this paper, actual genders and PC values of the subjects in the 
test data were not publicized; thus, we defer the evaluation of the methods until the 
availability of the test results. 
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